用户名: 密码: 验证码:
DPAL的动力学模拟和SrCl_2蒸气激光的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体泵浦的碱金属蒸气激光(Diode pumped alkali vapor lasers-DPALs)是兼有固体激光和气体激光优点的新型激光器件,具有量子效率高、光束质量好和线宽窄等特点。高频脉冲放电激励的SrCl2蒸气激光具有谱线丰富、多种机制、较好的光束质量和热分布均匀等特点。这两类激光在军事、定向能量传输、环境监测、材料处理和医疗等领域有广泛的应用前景,对它们的激光动力学过程和输出特性进行深入的理论和实验研究,具有较大的研究意义和学术价值。
     本论文扼要介绍了光泵碱金属蒸气激光和卤化锶蒸气激光的发展历史及特点和应用。在深入分析和理解DPAL的实验方案、技术路线和激光机理的基础上阐述了二极管泵浦线宽与碱金属原子D2线吸收线宽的匹配条件,比较分析了LDA线宽外腔压缩的实验方法,建立了一个物理模型完整描述二极管激光抽运Rb蒸气激光的动力力学过程和激光发射机制。结合实验参量,经理论估算和查阅文献,获得了求解模型所需的各种微观碰撞过程的速率系数和辐射跃迁等相关数据,数值求解出Rb原子有关能级粒子数密度和腔内、外光子数密度等微观参量演化过程,激光输出功率和效率与泵浦光、激光腔和缓冲气压等参量的关系,深刻阐明了该类激光的粒子数反转机制和激光发射的物理图象。
     分别建立了基于DPAL的MOPA系统的物理模型和用于计算Cs原子D1和D2吸收线谱线线型的物理模型。给出了振荡池和放大池中碱金属原子有关能级粒子数密度的速率方程和相关动力学过程的速率系数及光学跃迁参量等,通过求解一定实验条件下的MOPA系统模型,得到了与实验基本一致的模拟结果,进一步计算模拟了蒸气池长度、温度、种子光功率、缓冲气体压强对激光放大功率的影响,得到了一组优化的工作参数。Cs原子吸收谱线线型的物理模型考虑了碱金属原子D1和D2线的超精细结构分裂对光谱线型和吸收截面的影响,计算和分析了谱线中心频率偏移和超精细结构跃迁各组分的谱线线型,以及缓冲气体压强对铯原子D1线和D2线的吸收线宽的影响。
     在延续前期对碱土金属激光的理论和实验研究的基础上,设计加工了新型的激光放电管,建立了流动式纵向高频脉冲放电激励的He-SrCl2蒸气激光实验装置,并对流动式He-SrCl2激光的工作特性进行了详细的分析和探讨。利用温控仪测得的放电管外保温棉温度作为边界条件,计算分析了激光管的径向温度分布,得到了输出功率随工作温度和SrCl2蒸气压的变化曲线。测量和分析了不同激光输出功率下放电电流脉冲和各个激光脉冲的时间演化行为,以及激光束光斑模式在不同输出功率时的变化。
Diode pumped alkali vapor lasers(DPAL), as a new class of laser device which both have the advantage of solid laser and vapor laser, also have some desirable features including the high quantum efficiency, the good optical quality of gain medium(vapor) and the narrow line-width. The SrCl2 vapor laser excited by high repetition rate pulsed discharge has the characteristics of multiple laser lines with higher efficiency and higher output power, multi-mechanism, and uniformity of the heat distribution. These lasers could find many potential applications in micro-electronic technology, medical treatment, material processing, military technology, laser cooling, directional energy transmission and so on.
     A brief introduction on the develop history and applications of optically pumped alkali vapor laser and strontium vapor laser was presented. On the basis of understanding and analyzing the mechanism and technical approach of DPAL, the matching condition of the spectral bandwidth of diode pump source with that of alkali metal atom D2 absorption line was illustrated, and a physical model to describe the kinetics and laser mechanism of diode pumped Rb vapor laser was established. In reference to the parameters in experiments, the influence of parameters of the pump laser, the output coupler reflectivity, the cell length, the temperature and the buffer gases on the output power and the optical-optical efficiency were analyzed.
     A physical model to describe the kinetic and the laser amplification processes of The MOPA (Master oscillator power amplifier) system design based on DPAL was established. By means of relative experiment parameters and the numerical method, the simulation result agrees well with that of experiment, on the basis of which the influence of some parameters such as the temperature, the pump power on the output characteristics of the system were further calculated and analyzed. A set of optimized parameters was obtained for designing an efficient diode pumped alkali laser MOPA system. The physical model of Cs atom absorption spectrum simulated the absorption spectrum of Cs D1 and D2 lines considering the effects of hyperfine splitting and pressure broadening. The hyperfine splitting induces the shift of hyperfine transition wavelength from the center wavelength. The simulation results provide an instruction for matching the spectral bandwidth of diode pump source with that of Cs D2 absorption line.
     Based on our previous theoretical and experimental investigations of alkaline-earth metal vapor lasers, a novel constructive discharge tube was designed, and the characteristics of a flowing He-SrCl2 vapor laser excited by HRR pulsed discharge was experimentally investigated. The multi-line output power as a function of the working temperature and the vapor pressure of SrCl2 was presented by calculating the radial temperature distribution of the laser tube. The temporal behaviors of the discharge current pulse and each laser pulses, as well as the spot mode of the laser beams are measured and analyzed under different laser output power.
引文
[1]B. V. Zhdanov, M. K. Shaffer, W. Holmes, and R. J. Knize, "Blue laser light generation by intracavity frequency doubling of Cesium vapor laser," Optics Communications,2009,282 (23):4585-4586.
    [2]A. L. Schawlow and C. H. Townes, "INFRARED AND OPTICAL MASERS," Physical Review,1958,112(6):1940-1949.
    [3]A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, "Experimental Demonstration of Laser Oscillation without Population Inversion via Quantum Interference in Rb," Physical Review Letters,1995,75 (8):1499-1502.
    [4]R. J. Beach, "CW theory of quasi-three level end-pumped laser oscillators," Optics Communications,1996,123 (1-3):385-393.
    [5]Z. Konefal, "Observation of collision induced processes in rubidium-ethane vapour," Optics Communications,1999,164 (1-3):95-105.
    [6]S. Q. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, "Resonance transition 795-nm rubidium laser using He buffer gas," Proceedings of SPIE, Bellingham,2008,7005:523-523.
    [7]S. S. Q. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, "Hydrocarbon-free resonance transition 795-nm rubidium laser," High Energy/Average Power Lasers and Intense Beam Applications Ii,2008,6874: E8740-E8740.
    [8]B. V. Zhdanov and R. J. Knize, "Advanced diode-pumped alkali lasers," Proceedings of SPIE, Bellingham,2008,7022:J220-J220.
    [9]B. V. Zhdanov, Y. L. Lu, M. K. Shaffer, W. Miller, D. Wright, and R. J. Knize, "Frequency-doubling of a high power cesium vapor laser using a PPKTP crystal," Optics Express,2008,16 (22):17585-17590.
    [10]J. Zweiback and A. Komashko, "High-energy Transversely Pumped Alkali Vapor Laser," Proceedings of SPIE,2011,7915:791505-1.
    [11]W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, "Resonance transition 795-nm rubidium laser," Optics Letters,2003,28 (23):2336-2338.
    [12]W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, "DPAL:A new class of CW, near-infrared, high-power diode-pumped alkali (vapor) lasers," Gas and Chemical Lasers, and Applications Iii, Bellingham,2004,5334:156-167.
    [13]W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, "New class of cw high-power diode-pumped alkali lasers (DPALs)," High-Power Laser Ablation V, Pts 1 and 2, Bellingham,2004,5448:7-17.
    [14]R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, "Multimode-diode-pumped gas (alkali-vapor) laser," Optics Letters,2006,31 (3):353-355.
    [15]Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, "Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array," Applied Physics Letters,2006,88 (14):141112-1.
    [16]B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, "Highly efficient optically pumped cesium vapor laser," Optics Communications,2006,260 (2): 696-698.
    [17]S. B. Bayram and R. W. Coons, "Operation of a frequency-narrowed high-beam quality broad-area laser by a passively stabilized external cavity technique," Review of Scientific Instruments,2007,78 (11).
    [18]M. A. Rosenberry, J. P. Reyes, D. Tupa, and T. J. Gay, "Radiation trapping in rubidium optical pumping at low buffer-gas pressures," Physical Review A, 2007,75 (2):023401-1.
    [19]Y. Wang, M. Niigaki, H. Fukuoka, Y. J. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, "Approaches of output improvement for a cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array," Physics Letters A,2007,360 (4-5):659-663.
    [20]Y. B. Wang, B. N. Mao, L. Chen, L. M. Wang, and B. L. Pan, "Analysis of the spectral structure of CuBr laser lines," Optics Communications,2007,278 (1):138-141.
    [21]B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, "Optically pumped potassium laser," Optics Communications,2007,270 (2):353-355.
    [22]B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, "A laser diode array pumped cesium vapor laser-art. no.64540M," Proceedings of SPIE,2007,6454: M4540-M4540.
    [23]B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, "Optically pumped caesium-Freon laser," Electronics Letters,2008,44 (12):735-736.
    [24]J. Zweiback and B. Krupke, "High power diode pumped alkali vapor lasers," Proceedings of SPIE, Bellingham,2008,7005:525-525.
    [25]M. K. Shaffer, B. V. Zhdanov, J. Sell, R. J. Knize, and Ieee, "Cesium Laser with Transverse Diode Laser Pumping," 2009 Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference,2009: 2739-2740.
    [26]B. V. Zhdanov and R. J. Knize, "Alkali lasers for magnetic resonance imaging," Central European Journal of Physics,2010,8 (2):184-193.
    [27]J. Zweiback, A. Komashko, and W. F. Krupke, "Alkali vapor lasers," Proceedings of SPIE,2010,7581.
    [28]T. A. Perschbacher, D. A. Hostutler, and T. M. Shay, "High-efficiency diode-pumped rubidium laser:Experimental results," XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, Pts 1 and 2, Bellingham,2007,6346:34607.
    [29]B. Zhdanov and R. J. Knize, "Diode-pumped 10 W continuous wave cesium laser," Optics Letters,2007,32 (15):2167-2169.
    [30]B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, "Laser diode array pumped continuous wave rubidium vapor laser," Optics Express, 2008,16 (2):748-751.
    [31]B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, "Rubidium vapor laser pumped by two laser diode arrays," Optics Letters,2008,33 (5): 414-415.
    [32]J. Zweiback and W. F. Krupke, "28W average power hydrocarbon-free rubidium diode pumped alkali laser," Optics Express,2010,18 (2): 1444-1449.
    [33]D. A. Hostutler and W. L. Klennert, "Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier," Optics Express,2008,16 (11): 8050-8053.
    [34]Z. N. Yang, H. Y. Wang, Q. S. Lu, W. H. Hua, and X. J. Xu, "Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission," Optics Express,2011,19 (23):23118-23131.
    [35]杨子宁,王红岩,华卫红,陆启生,肖楠,许晓军,陈金宝,”半导体泵浦铷蒸气激光器国内首次出光,”强激光与粒子束2011, 23(9):2273-2274.
    [36]B. V. Zhdanov, J. Sell, and R. J. Knize, "Multiple laser diode array pumped Cs laser with 48 W output power," Electronics Letters,2008,44 (9):582-583.
    [37]B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, "Transverse pumped Cs vapor laser," Proceedings of SPIE-The International Society for Optical Engineering,2009,7196:71960F-1.
    [38]B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, "Cs laser with unstable cavity transversely pumped by multiple diode lasers," Optics Express,2009,17 (17): 14767-14770.
    [39]B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, "Tunable single frequency cesium laser," Optics Communications,2007,280 (1):161-164.
    [40]余建华,祝强,谢武,郑伟,唐淳,”高功率半导体激光抽运碱金属蒸气激光器,”激光与光电子学进展,2006,43(7):46-51.
    [41]A. B. Petersen and R. J. Lane, "A diode-pumped Rb laser at 398 nm," Solid State Lasers Xvii:Technology and Devices, Bellingham,2008,6871:Q8711.
    [42]杨子宁,王红岩,陆启生,郭少锋,许晓军,"半导体抽运碱金属蒸气激光器研究进展,”旋光与光电子学进展,2010, 47(05):10-18.
    [43]W. T. Walter, N. Solimene, M. Piltch, and G. Gould, "EFFICIENT PULSED GAS DISCHARGE LASERS," Ieee Journal of Quantum Electronics,1966, QE 2 (9):474.
    [44]J. S. Deech and J. H. Sanders, "NEW SELF-TERMINATING LASER TRANSITIONS IN CALCIUM AND STRONTIUM," Ieee Journal of Quantum Electronics,1968, QE 4 (7):474.
    [45]P. Cahuzac, "INFRARED LASER LINES IN RARE EARTH AND IN ALKALINE EARTH VAPORS," Journal De Physique,1971,32 (7):499.
    [46]P. A. Bokhan and V. D. Burlakov, "MECHANISM OF LASER ACTION DUE TO 4D3D1,2-5P3P02 TRANSITIONS IN A STRONTIUM ATOM," Kvantovaya Elektronika,1979,6 (3):623-625.
    [47]A. V. Platonov, A. N. Soldatov, and A. G. Filonov, "STRONTIUM-VAPOR PULSED LASER," Kvantovaya Elektronika,1978,5 (1):198-201.
    [48]C. W. McLucas and A. I. McIntosh, "DISCHARGE HEATED LONGITUDINAL SR+RECOMBINATION LASER," Journal of Physics D-Applied Physics,1986,19 (7):1189-1195.
    [49]D. G. Loveland, D. A. Orchard, A. F. Zerrouk, and C. E. Webb, "DESIGN OF A 1.7-W STABLE LONG-LIVED STRONTIUM VAPOR LASER," Measurement Science & Technology,1991,2 (11):1083-1087.
    [50]E. L. Latush, G. D. Chebotarev, and M. F. Sem, "Small-scale recombination He-Sr+(Ca+) lasers," Quantum Electronics,2000,30 (6):471-478.
    [51]B. N. Mao, B. L. Pan, L. Chen, and Y. J. Wang, "Spectral structure of 510.6 and 578.2 nm lines in a CuBr vapor laser," Applied Physics B-Lasers and Optics,2009,94 (3):513-516.
    [52]K. A. Temelkov, N. K. Vuchkov, B. N. Mao, E. P. Atanassov, L. Lyutov, and N. V. Sabotinov, "High-Power Sr Atom Laser Excited in Nanosecond Pulsed Longitudinal He-SrBr(2) Discharge," Ieee Journal of Quantum Electronics, 2009,45 (3):278-281.
    [53]Y. J. Wang, B. L. Pan, L. Chen, and B. N. Mao, "Output characteristics of a cataphoresis He-Sr+recombination laser," Optics Communications,2008, 281 (21):5405-5408.
    [54]Y. J. Wang, B. L. Pan, L. Chen, Q. Zhu, J. Yang, and X. Y. Zhang, "Characteristics of a flowing He-SrCl2 vapor laser," Optics Communications, 2010,283 (13):2724-2727.
    [55]C. Li, M. BangNing, W. Yubo, W. LiMing, and P. BaiLiang, "A kinetic model for alternate oscillation of self-terminating and recombination lasers in strontium ions," Optics Communications,2008,281 (5):1211-1216.
    [56]L. Chen, B. L. Pan, Y. J. Wang, K. A. Temelkov, and N. K. Vuchkov, "He-SrCl2 vapor laser excited by Blumlein discharge circuit," Optics Communications,2009,282 (19):3953-3956.
    [57]L. Chen, B. L. Pan, Y. J. Wang, Q. Zhu, and X. Y. Zhang, "Characteristics of laser and current pulses in a He-SrCl(2) vapor laser," Applied Physics B-Lasers and Optics,2010,98 (2-3):507-510.
    [1]W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, "Resonance transition 795-nm rubidium laser," Optics Letters,2003,28 (23):2336-2338.
    [2]W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, "DPAL:A new class of CW, near-infrared, high-power diode-pumped alkali (vapor) lasers," Gas and Chemical Lasers, and Applications Iii, Bellingham,2004,5334:156-167.
    [3]R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, "Multimode-diode-pumped gas (alkali-vapor) laser," Optics Letters,2006,31 (3):353-355.
    [4]B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, "Highly efficient optically pumped cesium vapor laser," Optics Communications,2006,260 (2): 696-698.
    [5]B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, "Optically pumped potassium laser," Optics Communications,2007,270 (2):353-355.
    [6]D. A. Hostutler and W. L. Klennert, "Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier," Optics Express,2008,16 (11): 8050-8053.
    [7]W. F. Krupke, "Diode pumped alkali lasers (DPALs)-An overview," High-Power Laser Ablation Vii, Pts 1-2, Bellingham,2008,7005:521-521.
    [8]C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, "A pulsed, optically-pumped rubidium laser at high pump intensity," Optics Communications,2010,283 (21):4328-4332.
    [9]J. Zweiback and A. Komashko, "High-energy Transversely Pumped Alkali Vapor Laser," Proceedings of SPIE,2011,7915:791505-1.
    [10]J. T. Kare, "Laser power beaming infrastructure for space power and propulsion," Sensors for Propulsion Measurement Applications,2006,6222: W2220-W2220.
    [11]T. A. Perschbacher, D. A. Hostutler, and T. M. Shay, "High-efficiency diode-pumped rubidium laser:Experimental results," XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, Pts 1 and 2, Bellingham,2007,6346:34607.
    [12]B. V. Zhdanov and R. J. Knize, "Alkali lasers for magnetic resonance imaging," Central European Journal of Physics,2010,8 (2):184-193.
    [13]Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, "Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array," Applied Physics Letters,2006,88 (14):141112-1.
    [14]S. B. Bayram and R. W. Coons, "Operation of a frequency-narrowed high-beam quality broad-area laser by a passively stabilized external cavity technique," Review of Scientific Instruments,2007,78 (11).
    [15]Y. B. Wang, B. N. Mao, L. Chen, L. M. Wang, and B. L. Pan, "Analysis of the spectral structure of CuBr laser lines," Optics Communications,2007,278 (1):138-141.
    [16]B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, "A laser diode array pumped cesium vapor laser-art. no.64540M," Proceedings of SPIE,2007,6454: M4540-M4540.
    [17]A. B. Petersen and R. J. Lane, "A diode-pumped Rb laser at 398 nm," Solid State Lasers Xvii:Technology and Devices, Bellingham,2008,6871:Q8711.
    [18]S. S. Q. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, "Hydrocarbon-free resonance transition 795-nm rubidium laser," High Energy/Average Power Lasers and Intense Beam Applications Ii,2008,6874: E8740-E8740.
    [19]B. V. Zhdanov and R. J. Knize, "Progress in Alkali lasers development," Proceedings of SPIE, Bellingham,2008,6874:F8740-F8740.
    [20]B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, "Optically pumped caesium-Freon laser," Electronics Letters,2008,44 (12):735-736.
    [21]J. Zweiback and B. Krupke, "High power diode pumped alkali vapor lasers," Proceedings of SPIE, Bellingham,2008,7005:525-525.
    [22]M. K. Shaffer, B. V. Zhdanov, J. Sell, R. J. Knize, and Ieee, "Cesium Laser with Transverse Diode Laser Pumping," 2009 Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference,2009: 2739-2740.
    [23]J. Zweiback, A. Komashko, and W. F. Krupke, "Alkali vapor lasers," Proceedings of SPIE,2010,7581.
    [24]B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, "Laser diode array pumped continuous wave rubidium vapor laser," Optics Express, 2008,16(2):748-751.
    [25]B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, "Rubidium vapor laser pumped by two laser diode arrays," Optics Letters,2008,33 (5): 414-415.
    [26]J. Zweiback and W. F. Krupke, "28W average power hydrocarbon-free rubidium diode pumped alkali laser," Optics Express,2010,18 (2): 1444-1449.
    [27]J. Zweiback, G. Hager, and W. F. Krupke, "High efficiency hydrocarbon-free resonance transition potassium laser," Optics Communications,2009,282 (9): 1871-1873.
    [28]Q. Zhu, B. L. Pan, L. Chen, Y. J. Wang, and X. Y. Zhang, "Analysis of temperature distributions in diode-pumped alkali vapor lasers," Optics Communications,2010,283 (11):2406-2410.
    [29]Q. Zhu, B. L. Pan, L. Chen, Y. J. Wang, and X. Y. Zhang, "A kinetic model for optically pumped cesium vapor laser," Acta Physica Sinica,2010,59 (3): 1797-1801.
    [30]Y. J. Wang, B. L. Pan, Q. Zhu, and J. Yang, "A kinetic model for diode pumped Rubidium vapor laser," Optics Communications,2011,284 (16-17): 4045-4048.
    [31]Z. N. Yang, H. Y. Wang, Q. S. Lu, W. H. Hua, and X. J. Xu, "Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission," Optics Express,2011,19 (23):23118-23131.
    [32]A. M. Komashko and J. Zweiback, "Modeling laser performance of scalable side pumped alkali laser," Proc. SPIE, San Francisco, California, USA 2010 7581:75810H-1.
    [33]H. Shu, Y. Chen, M. Bass, J. F. Monjardin, and J. Deile, "Numerical modeling of alkali vapor lasers," Optics Express,2011,19 (21):19875-19885.
    [34]D. A. Hostuder, G. D. Hager, and M. C. Heaven, "Collisional quenching and radiation trapping kinetics for Rb(5p) in the presence of ethane," High-Power Laser Ablation Vii, Pts 1-2, Bellingham,2008,7005:522-522.
    [35]B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, "Narrowband external cavity laser diode array," Electronics Letters,2007,43 (4):221-222.
    [36]杨静,潘佰良,王亚娟,”光泵碱金属蒸气激光泵浦光源线宽压缩的分析,’旋。光与红外,2011,41(04):407-411.
    [37]E. Babcock, B. Chann, I. A. Nelson, and T. G. Walker, "Frequency-narrowed diode array bar," Applied Optics,2005,44 (15):3098-3104.
    [38]B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, "Optically pumped alkali lasers," Saratov Fall Meeting 2006:Laser Physics and Photonics, Spectroscopy and Molecular Modeling VII, Bellingham,2007,6537:53702.
    [39]Y. Wang, M. Niigaki, H. Fukuoka, Y. J. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, "Approaches of output improvement for a cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array," Physics Letters A,2007,360 (4-5):659-663.
    [40]R. J. Beach, W. E. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, "End-pumped continuous-wave alkali vapor lasers:experiment, model, and power scaling," Journal of the Optical Society of America B-Optical Physics,2004,21 (12):2151-2163.
    [41]D. A. Steck. "Rubidium 87 D Line Data," [Online]. http://steck.us/alkalidata (revision 2.1.2,12 August 2009).
    [42]M. V. Romalis, E. Miron, and G. D. Gates, "Pressure broadening of the Rb D1 and D2 lines by 3He,4He, N2, and Xe:line cores and near wings," Phys. Rev. A,1997,56:4569-4578.
    [43]B. V. Zhdanov and R. J. Knize, "Alkali lasers development at the Laser and Optics Research Center of the US Air Force Academy," Proceedings of SPIE, Bellingham,2008,7005:700524-1-15.
    [44]N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, "A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence," Journal of Physics B-Atomic Molecular and Optical Physics,2009,42 (24):245401.
    [1]B. V. Zhdanov, J. Sell, and R. J. Knize, "Multiple laser diode array pumped Cs laser with 48 W output power," Electronics Letters,2008,44 (9):582-583.
    [2]E. Babcock, B. Chann, I. A. Nelson, and T. G. Walker, "Frequency-narrowed diode array bar," Applied Optics,2005,44 (15):3098-3104.
    [3]C. L. Talbot, M. E. J. Friese, D. Wang,I. Brereton, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Linewidth reduction in a large-smile laser diode array," Applied Optics,2005,44 (29):6264-6268.
    [4]B. Zhdanov and R. J. Knize, "Diode-pumped 10 W continuous wave cesium laser," Optics Letters,2007,32 (15):2167-2169.
    [5]B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, "Narrowband external cavity laser diode array," Electronics Letters,2007,43 (4):221-222.
    [6]B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, R. J. Knize, and Ieee, "17 Watts Continuous Wave Rubidium Laser," 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vols 1-9,2008:292-293.
    [7]S. J. Seltzer and M. V. Romalis, "High-temperature alkali vapor cells with antirelaxation surface coatings," Journal of Applied Physics,2009,106(11): 114905-1.
    [8]M. K. Shaffer, B. V. Zhdanov, J. Sell, R. J. Knize, and Ieee, "Cesium Laser with Transverse Diode Laser Pumping," 2009 Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference,2009: 2739-2740.
    [9]B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, "Cs laser with unstable cavity transversely pumped by multiple diode lasers," Optics Express,2009,17(17): 14767-14770.
    [10]J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. Mehuys, and S. Sanders, "Grating-tuned semiconductor MOPA lasers for precision spectroscopy," Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring,1996,2834:34-40.
    [11]S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, "Diode arrays, crystals, and thermal management for solid-state lasers," Ieee Journal of Selected Topics in Quantum Electronics, 1997,3(1):71-81.
    [12]Z. Y. Cui, J. Nie, W. L. Chen, X. Chen, H. B. Huang, and W. P. Liu, "Design and implementation of programmable semiconductor pulse seed laser used in MOP A," Proceedings of SPIE,2011,7987.
    [13]X. P. Yan, Q. Liu, X. Fu, D. S. Wang, and M. L. Gong, "Gain guiding effect in end-pumped Nd:YVO(4) MOPA lasers," Journal of the Optical Society of America B-Optical Physics,2010,27 (6):1286-1290.
    [14]D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, "High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm," Proceedings of SPIE, 2010,7583.
    [15]D. A. Hostutler and W. L. Klennert, "Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier," Optics Express,2008,16 (11): 8050-8053.
    [16]B. V. Zhdanov and R. J. Knize, "Efficient diode pumped cesium vapor amplifier," Optics Communications,2008,281 (15-16):4068-4070.
    [17]B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, "Scaling of diode-pumped Cs laser:transverse pump, unstable cavity, MOPA," Proc. SPIE,2010,7581: 7581OF.
    [18]J. F. Li, H. Chen, Y. Chen, M. Chen, Y. Yang, X. B. Jin, Z. Y. Dai, and Y. Liu, "Theoretical and optimized design of low-repetition-rate high-energy pulse amplification in multi-stage MOPA systems," Journal of Optics,2010,12 (11):115710-1.
    [19]B. L. Pan, Y. J. Wang, Q. Zhu, and J. Yang, "Modeling of an alkali vapor laser MOPA system," Optics Communications,2011,284 (7):1963-1966.
    [20]R. J. Beach, W. E. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, "End-pumped continuous-wave alkali vapor lasers:experiment, model, and power scaling," Journal of the Optical Society of America B-Optical Physics,2004,21 (12):2151-2163.
    [1]B. V. Zhdanov and R. J. Knize, "Advanced diode-pumped alkali lasers," Proceedings of SPIE, Bellingham,2008,7022:J220-J220.
    [2]J. F. Sell, W. Miller, D. Wright, B. V. Zhdanov, and R. J. Knize, "Frequency narrowing of a 25 W broad area diode laser," Applied Physics Letters,2009, 94 (5).
    [3]E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, "Diode laser based in situ detection of alkali atoms:development of a new method for determination of residence-time distribution in combustion plants," Applied Physics B-Lasers and Optics,2002,75 (2-3):237-247.
    [4]B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, "Narrowband external cavity laser diode array," Electronics Letters,2007,43 (4):221-222.
    [5]D. A. Hostuder, G. D. Hager, and M. C. Heaven, "Collisional quenching and radiation trapping kinetics for Rb(5p) in the presence of ethane," High-Power Laser Ablation Vii, Pts 1-2, Bellingham,2008,7005:522-522.
    [6]R. J. Beach, W. E. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, "End-pumped continuous-wave alkali vapor lasers:experiment, model, and power scaling," Journal of the Optical Society of America B-Optical Physics,2004,21 (12):2151-2163.
    [7]M. A. Rosenberry, J. P. Reyes, D. Tupa, and T. J. Gay, "Radiation trapping in rubidium optical pumping at low buffer-gas pressures," Physical Review A, 2007,75 (2):023401-1.
    [8]S. Q. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, "Resonance transition 795-nm rubidium laser using He buffer gas," Proceedings of SPIE, Bellingham,2008,7005:523-523.
    [9]J. Zweiback, G. Hager, and W. F. Krupke, "High efficiency hydrocarbon-free resonance transition potassium laser," Optics Communications,2009,282 (9): 1871-1873.
    [10]A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L, Velichansky, and H. G. Robinson, "Experimental Demonstration of Laser Oscillation without Population Inversion via Quantum Interference in Rb," Physical Review Letters,1995,75 (8):1499-1502.
    [11]Z. Konefal, "Observation of collision induced processes in rubidium-ethane vapour," Optics Communications,1999,164 (1-3):95-105.
    [12]B. Chann, I. Nelson, and T. G. Walker, "Frequency-narrowed external-cavity diode-laser-array bar," Optics Letters,2000,25 (18):1352-1354.
    [13]E. Babcock, B. Chann, I. A. Nelson, and T. G. Walker, "Frequency-narrowed diode array bar," Applied Optics,2005,44 (15):3098-3104.
    [14]Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, "Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array," Applied Physics Letters,2006,88 (14):141112-1.
    [15]S. B. Bayram and R. W. Coons, "Operation of a frequency-narrowed high-beam quality broad-area laser by a passively stabilized external cavity technique," Review of Scientific Instruments,2007,78 (11).
    [16]D. Das and V. Natarajan, "High-precision measurement of hyperfine structure in the D lines of alkali atoms," Journal of Physics B-Atomic Molecular and Optical Physics,2008,41 (3):035001.
    [17]J. M. Gagne, C. K. Assi, and K. Le Bris, "Measurement of the atomic Cs 6(2)P(3/2)(F-e=5) hyperfine level effective decay rate near a metallic film with diode laser retrofluorescence spectroscopy," Journal of the Optical Society of America B-Optical Physics,2005,22 (10):2242-2249.
    [18]V. Gerginov, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, "Optical frequency measurements of 6s S-2(1/2)-6p P-2(3/2) transition in a Cs-133 atomic beam using a femtosecond laser frequency comb," Physical Review A, 2004,70 (4):042505-1.
    [19]E. Arimondo, M. Inguscio, and P. Violino, "Experimental determinations of the hyperfine structure in the alkali atoms," Reviews of Modern Physics,1977, 49(1):31-75.
    [20]C. E. Tanner and C. Wieman, "Precision measurement of the hyperfine structure of the 133Cs 6P3/2 state," Physical Review A,1988,38 (3): 1616-1617.
    [21]A. Andalkar and R. B. Warrington, "High-resolution measurement of the pressure broadening and shift of the Cs D1 and D2 lines by N2 and He buffer gases," Physical Review A,2002,65 (3):032708.
    [22]D. A. Steck. "Cesium D Line Data" [Online].http://steck.us/alkalidata (revision 2.1.2,12 August 2009).
    [23]V. Gerginov, A. Derevianko, and C. E. Tanner, "Observation of the Nuclear Magnetic Octupole Moment of 133Cs," Physical Review Letters,2003,91 (7): 072501.
    [24]G. A. Pitz and G. P. Perram, "Pressure broadening of the Dl and D2 lines in diode pumped alkali lasers," High-Power Laser Ablation Vii, Pts 1-2,2008, 7005:526-526.
    [1]J. S. Deech and J. H. Sanders, "NEW SELF-TERMINATING LASER TRANSITIONS IN CALCIUM AND STRONTIUM," Ieee Journal of Quantum Electronics,1968, QE 4 (7):474.
    [2]P. Cahuzac, "INFRARED LASER LINES IN RARE EARTH AND IN ALKALINE EARTH VAPORS," Journal De Physique,1971,32 (7):499.
    [3]A. V. Platonov, A. N. Soldatov, and A. G. Filonov, "STRONTIUM-VAPOR PULSED LASER," Kvantovaya Elektronika,1978,5 (1):198-201.
    [4]S. M. Babenko and S. I. Yakovlenko, "POSSIBILITY OF NUCLEAR PUMPING OF A HE-SR LASER," Physics Letters A,1980,76 (3-4): 237-239.
    [5]C. W. McLucas and A. I. McIntosh, "DISCHARGE HEATED LONGITUDINAL SR+RECOMBINATION LASER," Journal of Physics D-Applied Physics,1986,19 (7):1189-1195.
    [6]R. J. Carman, "A SELF-CONSISTENT MODEL FOR A LONGITUDINAL DISCHARGE EXCITED HE-SR RECOMBINATION LASER," Ieee Journal of Quantum Electronics,1990,26 (9):1588-1608.
    [7]R. J. Carman, "A TIME-DEPENDENT 2 ELECTRON GROUP MODEL FOR A DISCHARGE EXCITED HE-SR RECOMBINATION LASER," Journal of Physics D-Applied Physics,1991,24 (10):1803-1810.
    [8]S. N. Atamas, E. L. Latush, and M. F. Sem, "HE-SR RECOMBINATION LASER WITH HELIUM PRESSURE UP TO 5 ATM," Journal of Russian Laser Research,1994,15 (1):66-68.
    [9]N. K. Vuchkov and D. N. Astadjov, "IC-excited strontium recombination laser," Optics and Laser Technology,1995,27 (6):407-408.
    [10]E. L. Latush, G. D. Chebotarev, and A. V. Vasilchenko, "Strontium and cadmium pulsed cataphoretic lasers," Proceedings of SPIE,1998,3403: 141-144.
    [11]G. D. Chebotarev and E. L. Latush, "Optimal scaling of He-Sr+(Ca+) recombination lasers," Quantum Electronics,2000,30 (5):393-398.
    [12]E. L. Latush, G. D. Chebotarev, and M. F. Sem, "Small-scale efficient He-Sr+(Ca+) recombination lasers," Proceedings of SPIE,2000,4071: 119-127.
    [13]Y. Moriwaki, Y. Matsuo, and N. Morita, "Laser spectroscopic measurements of fine-structure changing cross sections of Ca+and Sr+ions in collisions with He atoms," Journal of Physics B-Atomic Molecular and Optical Physics,2000, 33 (22):5099-5108.
    [14]方本民,姚志欣,潘佰良,陈星, 陈钢,”碱土金属蒸气中两种不同机理的高重复率脉冲激光交替振荡现象,” 物理学报,2000,49(8):1652-1655.
    [15]陈钢,姚志欣,潘佰良,方本民,陈坤,”锶蒸气中原子激光与离子激光的同时振荡,”物理学报,2001,50(7):1294-1297.
    [16]潘佰良,陈坤,陈钢,姚志欣,”锶离子R—-M 跃迂激光和复合激光的参量研究,”物理学报,2004,53(2):445-449.
    [17]C. Li, M. BangNing, W. Yubo, W. LiMing, and P. BaiLiang, "A kinetic model for alternate oscillation of self-terminating and recombination lasers in strontium ions," Optics Communications,2008,281 (5):1211-1216.
    [18]G. Chen, J. Feng, B. L. Pan, and Z. X. Yao, "A kinetics model for metastable-metastable transition laser in Sr atom vapor," Acta Physica Sinica, 2005,54 (7):3149-3153.
    [19]G. D. Chebotarev, E. L. Latush, and A. A. Fesenko, "Kinetics of the active medium of a He-Sr(+) recombination laser:2. Achievable energy characteristics," Quantum Electronics,2008,38 (4):309-318.
    [20]E. L. Latush, G. D. Chebotarev, and M. F. Sem, "Small-scale recombination He-Sr+(Ca+) lasers," Quantum Electronics,2000,30 (6):471-478.
    [21]G. D. Chebotarev, O. O. Prutsakov, and E. L. Latush, "Mathematical modeling of ion recombination strontium vapor laser," Proceedings of SPIE,2004,5483: 83-103.
    [22]B. L. Pan, G. Chen, X. Chen, and Z. X. Yao, "Numerical and experimental investigation on self-terminating and recombination lasers in univalent ions of calcium and strontium," Journal of Applied Physics,2004,96 (1):34-39.
    [23]A. N. Soldatov and Y. P. Polunin, "Scaling of strontium-vapor laser active volume-art. no.69380N," Proceedings of SPIE,2008,6938:N9380-N9380.
    [24]Y. J. Wang, B. L. Pan, L. Chen, and B. N. Mao, "Output characteristics of a cataphoresis He-Sr+recombination laser," Optics Communications,2008, 281 (21):5405-5408.
    [25]姚志欣,潘佰良,陈钢,方本民,陈星,陈坤,”锶蒸气M-M跃迁激光,”物理学报,2001,50(6):1070-1074.
    [26]王煜博,毛邦宁,陈立,王丽敏,潘佰良,”电泳式He-Sr-+复合激光特性研究,”物理学报,2008,57(1):219-222.
    [27]姚志欣,潘佰良,陈钢,方本民,陈星,”卤化锶激光器的实验研究,”中国激光2002,29(2):110-112.
    [28]K. A. Temelkov, N. K. Vuchkov, B. N. Mao, E. P. Atanassov, L. Lyutov, and N. V. Sabotinov, "High-Power Sr Atom Laser Excited in Nanosecond Pulsed Longitudinal He-SrBr(2) Discharge," Ieee Journal of Quantum Electronics, 2009,45 (3):278-281.
    [29]L. Chen, B. L. Pan, Y. J. Wang, K. A. Temelkov, and N. K. Vuchkov, "He-SrCl2 vapor laser excited by Blumlein discharge circuit," Optics Communications,2009,282 (19):3953-3956.
    [30]L. Chen, B. L. Pan, Y. J. Wang, Q. Zhu, and X. Y. Zhang, "Characteristics of laser and current pulses in a He-SrCl(2) vapor laser," Applied Physics B-Lasers and Optics,2010,98 (2-3):507-510.
    [31]Y. J. Wang, B. L. Pan, L. Chen, Q. Zhu, J. Yang, and X. Y. Zhang, "Characteristics of a flowing He-SrCl2 vapor laser," Optics Communications, 2010,283 (13):2724-2727.
    [32]L. Chen, B. L. Pan, Y. J. Wang, K. A. Temelkov, and N. K. Vuchkov, "He-SrCl(2) vapor laser excited by Blumlein discharge circuit," Optics Communications,2009,282 (19):3953-3956.
    [33]L. Chen, B. L. Pan, Y. J. Wang, Q. Zhu, and X. Y. Zhang, "Characteristics of laser and current pulses in a He-SrCl2 vapor laser," Applied Physics B-Lasers and Optics,2010,98 (2-3):507-510.
    [34]W. T. Walter, N. Solimene, M. Piltch, and G. Gould, "EFFICIENT PULSED GAS DISCHARGE LASERS," Ieee Journal of Quantum Electronics,1966, QE 2 (9):474.
    [35]潘佰良,陈钢,姚志欣,戚奇凡,”金属蒸气激光脉冲放电电路的模拟比较,”光电子·激光,2002,13(7):667-670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700