用户名: 密码: 验证码:
基于PZT的主动锁模光纤激光器腔长控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主动锁模光纤激光器是目前OTDM系统中应用最为广泛的超短光脉冲源。但是,关于主动锁模光纤激光器的稳定性技术难题始终没有得到完全解决。要想保证主动锁模光纤激光器长时间稳定工作,如何稳定激光器腔长是一个必须解决的问题,具有重要的研究价值。
     本文在深入研究了主动锁模光纤激光器的结构组成与基本原理的基础上,提出了利用PZT控制主动锁模光纤激光器腔长变化,实现主动锁模光纤激光器稳定工作的方案。进行了Mach-Zehnder光纤干涉仪相位测量的实验研究,分析了Mach-Zehnder光纤干涉仪相位测量的温度特性,提出了Mach-Zehnder光纤干涉仪两臂相位差变化量和温度变化量的理论关系式,并进行了实验研究。完成了适合应用于光纤应力调节,具有良好动态响应特性的PZT驱动电路。分析综合了压电陶瓷微位移的测量方法。研究了利用PZT控制光纤长度的基本理论,并应用微分Sagnac干涉仪结构,实验研究了缠绕在PZT上的光纤对加在PZT上的输入控制信号的响应特性。
     论文的理论研究和实验分析对控制补偿主动锁模光纤激光器腔长漂移,实现主动锁模光纤激光器稳定工作具有重要的指导意义。
Nowadays, People's increasing demand for information exchange to improve the exchange of richer content. The fiber communications technology has emerged because of the invention of lasers. This has brought a revolution for communication in the field, and the large-capacity communications, high-speed have become possible. The so-called fiber communication technology is to use light as a carrier, optical fiber as a transmission medium to achieve information transmission, and to achieve the purpose of a communications technology. Fiber lasers in optical fiber communication systems as a promising light source has been a promising light source, a lot of research has emerged in this field in recent years. It Applies to existing communications systems to support higher transmission speeds, and it is the basis for the DWDM systems and the future of the coherent optical communications.
     The generation technology of the ultrashort optical pulses is very important for the high-speed OTDM communications systems. The OTDM communication system overall performance dependent on the ultrashort optical pulses source. Mode-locking technique is a main method for generating the ultrashort optical pulses. Because the actively mode-locked fiber laser using mode-locking technique can generate high repetition rate, broadband tunable, ps pulse width, non-chirped optical pulse of transform-limited, and has easy-synchronized, high peak power of output pulse characteristics, so the actively mode-locked fiber laser using mode-locking technique has been used as the ideal optical source in the future long-distance communication systems. But the stability technique problem of the actively mode-locked fiber laser is not solved. So there is a distance of the practical application of actively mode-locked fiber laser. The prerequisite of actively mode-locked fiber laser stable work is that the modulation signal frequency must be the integral multiple to the cavity resonance frequency. Because the cavity of the actively mode-locked fiber laser has the long fiber (usually several dozens to several hundred meters). Fiber lasers are very sensitive to environmental perturbations such as temperature fluctuations and mechanical vibrations due to their relatively long cavity length when the external environment changing . The cavity length drift producing the phase noise and amplitude noise, this can cause the output pulse unstably. When this is serious, the fiber laser will lost the mode-lock. For the modulation frequency and the cavity are very difficult to maintain matching, so it is difficult to guarantee the long time steady work of actively mode-locked fiber laser. It is a problem which must be solved that how to keep the actively mode-locked fiber laser working stably for long time. So it is very valuable to study on it.
     According to the information can be found in the literature, we think the key to solve the stability of the actively mode-locked fiber laser is controlling and compensating the cavity drifting which generate by environment such as temperature. There are two methods to solve this problem. One is controlling optical delay line to compensate the cavity of laser according to the error signal; the other is controlling PZT to compensate cavity drifting by this error signal. The response rate of optical delay line is slow, so we believe that using PZT is more effective.
     This paper’s main work is based on state National Nature Science Foundation of China fund project (No.60372061)“The study on the real-selfstart and stability of the ultrafast actively mode-locked fiber laser”and Science and Technology Development Planning project of Jilin Province ((2004) technology number (No.1271)) "The study on the mode control and stability of the ultrafast actively mode-locked fiber laser ". In this paper, we study the stability of the actively mode-locked fiber laser theoretically and based on it we study further the compensation technology of the actively mode-locked fiber laser by using PZT. The main contents and achievement of this paper including:
     (1) Summarizing the purpose and significance of thesis work. Including the development of optical communication techniques and fiber laser’s outline, the development and applications of mode-locked fiber laser. The classification, manifestations and reasons of the actively mode-locked fiber laser’s stability problem.
     (2) Studied the elementary theory and structure of the actively mode-locked fiber laser. Mainly includes the typical structure of actively mode-locked fiber laser. We analyze the work principle of the EDFA and the LiNbO_3 modulator briefly. This two parts is the main devices of the actively mode-locked fiber laser. We analyze the principle of mode-locked, and the establishment process of actively mode-locked. We explain the work principle of actively mode-locked fiber laser, and proposed a solution of the stability problem of actively mode-locked fiber laser.
     (3) We analyse the basic principle of Mach-Zehnder fiber interferometer. We finished the constant temperature system applied to the phase measurement in Mach-Zehnder fiber interferometer. By the experimental study, we can know the temperature control precision of this constant temperature that is 0.1℃; the short term stability is±2.6×10~(-3)℃, the long term stability is±0.024℃. It is suit for the phase measurement in Mach-Zehnder fiber interferometer, and it can improve the experimental precision greatly.
     We calculate the initial phase difference of the Mach-Zehnder fiber interferometer by measuring the interference photocurrent and the photocurrents from the two fiber arms on a temperature control system. This method is very easy to operate without any traditional mechanic phase shifter, and calculate the initial phase difference by measuring the photocurrent directly. We only calculate the phase difference of the fiber interferometer by measuring the stable interference photocurrent and the photocurrents from the two fiber arms at a set temperature. This method is cost lowly, calculating without computer’help, easy to operate, the experiment data are repeatable, and the measurement precision is about 0.04°. Also the fiber is very sensitive to the variation of temperature, so it is necessary to study the temperature characteristics in the phase measurement of Mach-Zehnder fiber interferometer. By the experimental study of this paper, we can know that the phase difference between the two arms of the interferometer varied 1.856°per temperature degree, which means that the variation of the phase difference of the two fiber arms is proportional to the variation of the temperature. This conclusion agrees well with the theory analysis. By studying the temperature characteristics of the phase measurement in Mach-Zehnder fiber interferometer, the coherence of the experiment and the theory shows that this research method is practical and valuable in estimating and compensating the variation of the temperature influence to the phase measurement in Mach-Zehnder fiber interferometer.
     (4) Completed the PZT driver circuit applied to fiber stress control. By theoretical analysis and experimental argumentation, we can know that this PZT driver circuit has good dynamic response characteristics, the frequency response range of this circuit is wide, the speed of the response is microsecond-level. So it is suit for adjusting fiber stress, and solve the stability of the actively mode-locked fiber laser influenced by the environmental variation especially the variation of temperature, since fiber is very sensitive to those variation.
     We study the measurement method of piezoelectric ceramic micro-displacement The method used the interferometer to make the PZT displacement transfer into the value of phase change of interference fringes. The phase change value of interference fringes can be retrieved by using Fourier Transform. So we can detected the displacement of PZT. This method can measure the displacement of PZT accurately. It is very important for controlling and compensating the cavity of the actively mode-locked fiber laser by PZT.
     We discuss the basic theory of controlling the fiber length used by PZT. We can see that PZT can control the fiber length effectively in theory, so we can use PZT to compensate the cavity length of fiber laser, and remain the cavity length of laser stably.
     In order to study response characteristics of the fiber wounded on PZT to the driving signals added to PZT, We set up a Mach-Zehnder fiber interferometer structure. Because the Mach-Zehnder fiber interferometer has limitations, so we chose an alternative structure—differential Sagnac fiber interferometer structure to measure the response characteristics of the fiber wounded on PZT to the driving signals added to PZT. In differential Sagnac interferometer structure, the system need not work in orthogonal state, there is no need to use polarization controller. As the two coherent light beams propagate in the same path, the system can work stably with the temperature, stress and other environmental factors’disturbance. From the theory analysis and experiment results we can know that the variation of the fiber length wounded on PZT can response successfully to the driving signals added to PZT when the frequency of the driving signals is no more than 2000Hz. For the cavity variation of the actively mode-locked fiber laser is usually induced by the slow environment fluctuation such as temperature’s turbulence, stress etc, so it is efficient to use PZT to compensate the cavity variation of the actively mode-locked fiber laser.
     The fundamental research and the experiment analyses of this paper have great meaning for controlling and compensating the cavity length drift of the actively mode-locked fiber laser. Also these analyses have great significance for the stability of the actively mode-locked fiber laser.
引文
[1] J P Ryan.WDM: North American deployment trends [J].IEEE Communications Magazine, 1998, 26(2): 40-44.
    [2] M J O’Mahony.Optical multiplexing in fiber network: progress in WDM and OTDM [J].IEEE Communications Magazine, 1995, 33(12):82-88.
    [3]张欣.光通信系统中掺铒光纤激光器的研究[D].甘肃:兰州大学,2007.
    [4]刘德明,向清,黄德修.光纤技术及其应用[M] .成都:电子科大出版社,1994.
    [5]郭玉彬,霍佳雨.光纤激光器及其应用[M] .北京:科学出版社,2008.
    [6]徐保强,杨秀峰,夏秀兰.光纤通信及网络技术[M] .北京:北京航空航天大学出社,1999.
    [7]许鸥,鲁韶华,简水生.用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究[J] .物理学报,2008,57(10):6404-6411.
    [8]申人升,张玉书,杜国同.光纤激光器研究进展[J] .半导体光电,2009,30(1):1-5.
    [9]杨青,俞立本等.光纤激光器的发展现状[J].光电子技术与信息,2002, 15(5): 13-18.
    [10]白燕.可调谐掺铒光纤激光器的研究[M] .陕西:西安电子科技大学,2007.
    [11] H Takara, S Kawanishi, and M Saruwatari.Stabilization of a mode-locked Er-doped fiber laser by suppression the relaxation oscillation frequency component [J]. Electron Lett, 1995, 31(4): 292-293.
    [12] M nakazawa, E Yoshida, K Tamura.10GHz 2ps regeneratively and harmonically mode-locked erbium fibre ring laser [J].Electron. Lett., 1996,32(14):1285-1287.
    [13] Z Hhmed, N Onodera.High repletion rate optical pulse generation by frequencymultiplication in actively mode-locked fiber ring lasers [J].Electron. Lett., 1996,32 (5):455-457.
    [14] X Shan, and D M Split. Novel method to suppress noise in harmonically mode-locked erbium fiber lasers [J].Electron Lett, 1997, 29(11): 979-981.
    [15] X Shan, T Widdowson, S D Ellis and A S Siddiqui.Very simple method to stabilize mode-locked erbium fiber lasers [J].Electron Lett, 1996, 32(11): 1015-1016.
    [16] M Nakazawa, K Tamura and E Yoshida. Supermode noise suppression in a harmonically mode-locked fiber laser by selfphase modulation and spectral filtering[J].Electron Lett 29th, 1996, 32(5): 461-463.
    [17] Kristin, M Spaulding, et al. Nonlinear dynamics of mode-locked optical fiber ring lasers[J]. J. Opt. Soc. Am. B, 2002, 19(5):1045-1054.
    [18] F X Kartner, D Kopf, and U Keller.Solitary-pulse stabilization and shortening in actively mode-locked lasers[J].J. Opt. Soc. Am. B, 1995, 12 (3), 486-496.
    [19] E Yoshida, M Nakazawa. Low-threshold 115GHz continuous wave modulational-instability erbium-doped fiber laser [J]. Opt.Lett., 1997, 22(18):1409-1411.
    [20] S Kawanishi, H Takara. 1.4Tbit/s(200Gbit/s×7channelWDM) 50km optical transmission experiment[J].Electron.Lett., 1997, 33 (20):1716.
    [21] S Kawanishi. 3Tbit/s ( 160Gbit/s×19channel ) optical TDM and WDM transmission experiment[J].Electron.Lett., 1999, 35 (10):826-827.
    [22] E Snitzer. Optical Maser action of a Nd+3 in a Barium crown glass[J].Phys.Rev.Lett. 1961, 7, 444-446.
    [23] M I Dzhibladze, Z G. Esiashvili, E S Teplitskii, et al. Mode locking in a fiber laser[J].Kvant. Elektron, 1983, 10, 432-434.
    [24] L F Mollenauer and R H Stolen.The Soliton Laser[J].Opt.Lett, 1984, 9, 13-15.
    [25] K J Blow and D Wood.Mode-locked lasers with nonlinear external cavities[J].J. Opt. Soc. Am B: Optical Physics, 1988, 5(3): 629-632.
    [26] J Mark, L Liu, K Hall, H Haus, and E Ippen.Femtosecond pulse generation in a laser with a nonlinear external resonator[J].Opt. Lett, 1989, 14: 48-50.
    [27] E Ippen, H Haus, and L Liu.Additive pulse mode locking[J].J. Opt. Soc. Am B, 1989, 6: 1736-1745.
    [28]G. Geister and R Ulrich.Neodymium-fiber laser with integrated-optic mode locker [J].Opt. Commun, 1988, 68: 187-189.
    [29] M W Phillips, A I Ferguson, and D C Hanna.Frequency-modulation mode locking of a Nd3+-doped fiber laser[J].Opt. Lett, 1989, 14: 219-221.
    [30] J D Kafka, T Baer, and D W Hall.Mode-locked erbium-doped fiber laser with soliton pulse shaping[J].Opt. Lett. 1989, 15: 1269-1271.
    [31] G T Harvey and L F Mollenauer.Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission [J].Opt. Lett., 1993, 18(2): 107-109.
    [32]岳丛建.主动锁模光纤激光器.山西师范大学学报[J], 2005, 19(2):111-112.
    [33]何理,杨伯君,张茹.主动锁模光纤环形激光器的新进展[J].光通信研究, 2005, 132(6):63-66.
    [34]蓝信钜等.激光技术[M].北京:科学出版社, 2000, 104-143.
    [35] A Zeitouny, M Horowitz. Experimental Study of Pulse Recovery From Dropout in an Actively Mode-Locked Fiber Laser [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24(10): 3671-3676.
    [36]王芬,陈达如,秦山等.基于PCF实现稳定输出的主动锁模光纤激光器[J] .光电子·激光,2007,18(9):1052-1054.
    [37]岳丛建.被动锁模光纤激光器[J].长治学院学报, 2006, 23(2), 20-21.
    [38]林宏奂,隋展,李明中等.被动锁模Yb3+光纤环形腔激光器的研究[J].强激光与粒子束, 2006, 18(5):825-828.
    [39]叶辉,徐文成,罗智超等.利用光纤激光器光谱边带效应测量光纤色散[J] .光学学报,2008,28(7):1323-1326.
    [40]况庆强.主被动有理数谐波锁模掺铒光纤激光器的研究[M] .江西:江西师范大学,2005.
    [41]王彦,崔一平.光纤激光器技术[J].电子器件, 2004, 27(2):342-347.
    [42]贾玉磊,令维军.声光锁模全固态皮秒激光器的实验研究[J] .科学技术与工程,2009,9(8):2189-2191.
    [43] J M Mcmahon. Fiber lasers: A future space technology [J].IEEE Aerospace and Electronic Systems Magazine, 2008, 23(8): 32-37.
    [44] P Sprangle, A Ting, J Penano, R Fischer, B Hafizi. Incoherent Combining and Atmospheric Propagation of High-Power Fiber Lasers for Directed-Energy Applications [J]. Quantum Electronics, 2009, 45(2): 138-148.
    [45] S Pan, C Lou. Analysis of Gain Competition Suppression in Multiwavelength Actively Mode-Locked Erbium-Doped Fiber Lasers Incorporating a Highly Nonlinear Fiber [J].Quantum Electronics, 2008, 44(3): 245-253.
    [46]江光裕.基于SOA非线性偏振旋转效应谐波锁模光纤激光器的数值研究[J] .量子电子学报,2008,25(5):553-558.
    [47]习聪玲.一种可调谐掺铒光纤激光器的研究[J] .光通信研究,2009(2):61-63.
    [48]李喆,赵卫,张伟等.锁模脉冲波长连续可调谐光纤激光器[J] .光子学报,2009,38(1):1-4.
    [49]曹玲,杨玲珍,郭雄英等.非线性光纤环形镜掺铒光纤激光器的实验研究[J] .激光技术,2007,31(6):613-619.
    [50]郭雄英,杨玲珍,贺虎成等.8字形腔波长可调谐锁模脉冲光纤激光器[J] .光子学报,2008,37(2):212-215.
    [51]司立彬,付圣贵,贾秀杰等.大功率多波长可转换双包层光纤激光器[J] .光子学报,2008,37(2):209-211.
    [52] Liu Y, Chen Y, Xu L, et al. Mutual injection-locking of two individual double-clad fiber lasers [J]. Electronics Letters, 2009, 45(8): 399-400.
    [53] Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-Doped Fiber Lasers: Fundamentals and Power Scaling [J]. IEEE Selected Topics in Quantum Electronics, 2009, 15(1): 85-92.
    [54]张明,陈淑芬,付雷等.掺铒光纤激光器线宽压缩技术的研究[J] .北京理工大学学报,2008,28(10):894-897.
    [55] W Shi, M A Leigh, J Zong, et al. High-Power All-Fiber-Based Narrow-Linewidth Single-Mode Fiber Laser Pulses in the C-Band and Frequency Conversion to THz Generation [J]. IEEE Selected Topics in Quantum Electronics, 2009, 15(2): 377-384.
    [56]宋方,徐文成,申民常等.主动锁模飞秒光纤激光器[J] .中国激光,2008,35(3):347-350.
    [57] M Ding, P K Cheo. Analysis of erbium-Doped fiber laser stability by suppressing relaxation oscillation [J]. IEEE Photonics Technology Letters, 1996, 8(9): 1151-1153.
    [58] S Namiki, E P Ippen, H A Haus, et al.Relaxation oscillation behavior in polarization additive pulse mode-locked fiber ring lasers[J] .Applied Physics Letters, 1996, 69(26):3969-3971.
    [59]李玉华,娄采云,刘军等.非线性偏振旋转效应对主动锁模光纤激光器的脉冲形成及稳定性的影响[J].中国激光,1998, 25(12):1057-1060.
    [60] X Shan, D Cleland, A Ellis. Stabilizing Er fiber solution laser with pulse phaselocking[J]. Electron.Lett.,1992, 28 (2):182-183.
    [61] W A Pender, T Widdowson, A D Ellis. Error free operation of a 40Gbit/s all-optical regenerator.Electron[J] .Lett.,1996,32 (6):567-569.
    [62]刘军,李玉华,娄采云,高以智.抑制相位噪声实现主动锁模光纤激光器稳定工作[J].光学学报,1998,18(7):956-959.
    [63]光学仪器设计手册(上)[M].北京:国防工业出版社,1971, 512-514.
    [64]红外光学材料手册[M].北京玻璃所技术情报组译,1965, 146.
    [65]东伟.EDFA光纤通信发展中的里程碑[J].现代通信,2003(9):8-9.
    [66]杨祥林.光放大器及其应用[M].北京:电子工业出版社,2000.
    [67]陈福梁.集成电光调制器理论与技术[M].北京:电子工业出版社,1995, 26-52.
    [68]梁锉庭.物理光学[M].北京:高等教育出版社,1987, 276-279.
    [69]张晓光.非线性光学(上册) [M].北京:北京邮电大学出版社,2004, 24-30.
    [70] H A Haus, K Tamura, L E Nelson, et al. Streched-pulse additive pulse mode-locking in fiber ring laser: Theory and experiment[J]. IEEE,J.QE, 1995,31(3):591-598.
    [71] D J Kuizenga and A E Siegman. FM and AM mode locking[J]. IEEE, J.QE, 1975,11(7):323-330.
    [72] H A Haus.A theory of forced mode locking[J].IEEE, J.QE, 1975,11(7):323-330.
    [73] S Namiki and H A Haus. Noise of the stretched pulse fiber laser: PartI-Theory[J].IEEE, J.QE,1997,33(5):649-659.
    [74] C X Yu, S Namiki and H A Haus. Noise of the stretched pulse fiber laser: PartI-Theory[J]. IEEE, J.QE,1997, 33(5):660-668.
    [75]周炳琨,高以智,陈倜嵘等.激光原理[M].北京:北京国防工业出版社,2000.
    [76]张涛。色散补偿光孤子和主动锁模光纤环激光器的研究[M] .北京:北京邮电大学,2000.
    [77] X Shan and D M Spirit.Novel method to suppress noise in harmonically mode-locked erbium fiber lasers [J]. Electron. Lett,1993, 29(11): 979-981.
    [78] G.T Harvey, L F Molienauer. Harmonically modelocked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission[J].Opt.Lett.,1993,18:107-109.
    [79] M Nakaazawa, K Tamura and E Yoshida.Supermode noise suppression in a harmonically modelocked fiber laser by selfphase modulation and spectral filtering [J]. Elec. Lett. ,1996, 32(5):461-463.
    [80] N Onoera. Supermode beat suppression in harmonically mode-locked erbium-doped fibre ring lasers with composite cavity structure [J]. Electron Letters, 1997,33(11): 962-963.
    [81] Takara et al. Generation of highly stable 20GHz transform limited optical pulses from actively mode locked Er3+-doped fiber lasers with an all-polarization maintaining ring cavity [J]. Electron.Lett., 1994, 30(16):1303-1305.
    [82] M Nakazawa, E Yoshida and Y Kimura.Ultrastable harmonically and regeneratively modelocked polarization maintaining erbium fiber ring laser [J]. Electron.Lett., 1994, 3: 1603-1605.
    [83]冯晓光,赵万生,栗岩,狄士春.压电陶瓷微位移器驱动电源及减小其纹波的方法[J] .压电与声光,1997,19(1):35-38.
    [84]尹德芹,颜国正,颜德田,林良明.压电陶瓷动态应用的新型驱动电源研究[J] .压电与声光,2000,22(2):86-89.
    [85]冯晓光,赵万生,栗岩,刘晋春,管淑娟.减小压电陶瓷驱动电源纹波的一种有效方法[J] .哈尔滨工业大学学报,1997,29(5):108-111.
    [86]王宏,钟朝位,张树人.压电陶瓷驱动器线性动态驱动电源的研制[J] .压电与声光,2004,26(3):189-191.
    [87]赵建伟,孙徐仁,田莳.低频压电陶瓷驱动器驱动电源研制[J] .压电与声光,2002,24(2):107-110.
    [88]周亮,姚英学,张宏志.低纹波度快速响应压电陶瓷驱动电源的研制[J] .压电与声光,2000,22(4):237-239.
    [89]肖嘉,赵建伟,田莳.压电陶瓷驱动器三角波频率特性[J] .压电与声光,2003,25(3):203-206.
    [90]汝长海,荣伟彬,孙立宁,曲东升.基于电荷控制压电陶瓷驱动方法的研究进展[J] .压电与声光,2004,26(1):83-86.
    [91]周洁敏,陶云刚.压电陶瓷驱动器功率放大器研制[J] .压电与声光,1998,20(5):304-307.
    [92]刘分良,田莳,张跃.压电陶瓷驱动器动态非线性建模与实验分析[J] .压电与声光,2001,23(1):30-32.
    [93]吴戈.高稳定性恒温控制平台的设计与制作[M].吉林大学:电子科学与工程学院,2006.
    [94] Bruning J H, Herriott R, Gallagher J E, et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses[J]. Applied Optics, 1974, 13: 2693.
    [95]Farrell C T, Player M A Player. Phase-step insensitive algorithms for phase-shifting interferometry [J]. Meas.Sci.Technol, 1994, 5: 648-652.
    [96]Lin Y and Pan C L. Precision displacement measurement by active laser homodyne interferometry [J]. Applied Optics, 1991, 30(13): 1648-1652.
    [97]Abhijit P, Rajesh L, Pramod R. An integral approach to phase shifting interferometry using a super-resolution frequency estimation method [J]. Optics Express, 2004, 12(20): 4681-4697.
    [98]Chen X, Gramaglia M, Yeazell J A. Phase-shifting interferometry with uncalibrated phase shifts [J]. Applied Optics, 2000, 39: 585-591.
    [99]James M, Neal B, John H, et al. Modern approach in phase measuring metrology[J]. Proc. SPIE, 2005, 5856: 14-22.
    [100]Luo H E, Tian X J, Gao B, et al. A novel method to calculate the initial phase difference between the two fiber arms of laser homodyne interferometer[J]. Chin.Phys.lett., 2007, 24(1): 101-103.
    [101]李文卓,颜国正,蔡彬等.一种新型压电陶瓷驱动器电源设计[J] .航空精密制造技术,2005,41(4):33—34.
    [102] ]潘策,陈晓南,杨培林.压电陶瓷驱动器动态特性的实验研究[J] .压电与声光,2004,27(2):203-206.
    [103]李瀚荪.电路分析基础(中册)[M] .高等教育出版社,1997,57-71.
    [104]朱煜.高精度PZT微位移装置及FTIR技术原理研究[D].南京:南京理工大学电子工程与光电技术学院,1999.
    [105]吴新民,陈进榜,朱日宏,程丽君,王青,朱应时.用干涉法测量压电陶瓷的动态频率响应特性[J] .红外与激光工程,2002,31(3):257-260.
    [106]朱煜,陈进榜,朱日宏,王青,陈磊.压电陶瓷微位移特性的电脑接触式干涉测量法[J] .压电与声光,1998,20(4):283-286.
    [107]朱日宏,王青,陈磊,陈进榜.压电晶体位移特性曲线自动测量方法[J] .光子学报,1998,27(2):180-184.
    [108]刘晖,朱日宏,陈进榜.压电晶体微位移器位移精度及测试的理论分析[J].压电与声光,1999,21(6):507-509.
    [109]朱煜,陈进榜,朱日宏,陈磊,肖玉玲.干涉仪移相器相位移π2标定方法的研究[J] .光子学报,1999,28(10):951-954.
    [110]刘晖,朱日宏,陈进榜.改善PZT微位移线性的一种方法[J] .光电工程,1998,23(5):66-69.
    [111]朱煜,陈进榜,朱日宏,高志山.由三个压电陶瓷堆组成的干涉仪移相器的校正与标定[J] .光学学报,2001,21(4):468-471.
    [112]吴栋,朱日宏,陈磊,何勇,王青,高志山.抗振型移相干涉仪中PZT移相器的改进[J] .光学精密工程,2003,11(6):567-571.
    [113]吴新民.光干涉测试中的抗振技术研究[D] .南京:南京理工大学电子工程与光电技术学院,2001.
    [114]赵新秋,郑绳楦.相位压缩技术在光纤应变传感器中的应用[J] .光电子·激光,2004,15(4):505-506.
    [115]王廷云,孙圣和,郑绳楦等.用Fabry-Perot建立的光纤电流传感器[J] .传感技术学报,1997,(3):17-21.
    [116]王廷云,孙圣和,郑绳楦,刘成斌等.光纤干涉仪的相位压缩原理及在电流传感器中的应用[J] .光子学报,1997,26(8):698-701.
    [117] S J Spammer and P L Swart. Differentiating optical-fiber Mach-Zehnder interferometer [J]. Applied Optics, 1995,34(13):2350-2353.
    [118] T Wang, C Luo, S Zheng. A fiber-optic current sensor based on differentiating Sagnac interferometer [J]. IEEE Trans. On Instrumentation and Measurement, 2001,50(3):705-708.
    [119] T Wang, S Sun, and D Chang.Fiber-optical differential Mach-Zednder interferometer for sensing electronical current [J].Proc.SPIE, 1996, 2895:327-333.
    [120]孟克.光纤干涉测量技术[M].哈尔滨:哈尔滨工程大学出版社,2004:67-89.
    [121] C M DePriest, T Yilmaz. Ultralow noise and supermode suppression in an actively mode-locked external-cavity semiconductor diode ring laser. Optics Letters, 2002, 27(9):719-721.
    [122]鲁波,余昺鲲,汪绳武.干涉型光纤陀螺和相位调制[J].上海大学学报(自然科学版),2003,9(2):172-176.
    [123]金杰,王玉琴.光纤陀螺研究综述[J].光纤与电缆及其应用技术,2003(6):4-7.
    [124]高博.主动锁模光纤激光器腔长补偿技术研究[M].长春:吉林大学电子学院,2006.
    [125]罗红娥.超高速主动锁模光纤激光器的稳定性研究[D].长春:吉林大学电子学院,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700