用户名: 密码: 验证码:
偏振复用光纤通信系统及微结构光纤器件的相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的工作是围绕以下项目展开的:以任晓敏教授为首席科学家的国家重点基础研究发展计划(973计划)项目“新一代通信光电子集成器件及光纤的重要工艺创新与基础研究”(项目编号:2003CB314900);教育部科学技术重大研究项目“基于微结构光纤的新一代光通信器件及系统”(项目编号:104046),国家高技术研究发展计划(863计划)项目“单结构与多结构集成式光子晶体光纤及器件”(项目编号:2003AA311010),863计划项目“光子晶体光纤及器件的研制与开发”(项目编号:2007AA032447),以及国家留学基金委资助项目(学号:2007U48018)。
     本论文主要对偏振复用光纤通信系统的传输特性以及基于微结构光纤的光通信器件进行了理论和实验研究,主要研究内容和创新点如下:
     1、对于采用光域偏振解复用技术的偏振复用直接检测系统,研究了偏振模色散和偏振相关损耗对系统性能的影响。研究结果表明:偏振模色散的影响大小很大程度上由两个偏振态上信号的相对时延与信号的频谱带宽决定,而偏振相关损耗的影响大小与相对时延和频谱带宽的相关度很小;通过采用恰当的偏振解复用设置,偏振相关损耗引起的两个偏振态之间的信号串扰可以被完全消除;同时,还研究了偏振模色散和偏振相关损耗的综合效应,发现系统中偏振模色散和偏振相关损耗交替发生作用时,各自引起的串扰并无相互增强的效应。这些结论对偏振复用系统的设计与性能评估具有重要意义。
     2、针对偏振复用直接检测系统,提出了一种新型的全自动光域偏振解复用技术,该技术使用系统接收端的一个低频电功率探测器输出的幅度信号作为控制信号。该技术基于偏振复用信号的固有特性,因此不需要在信号发送端再附加额外的标识信号。该技术的有效性在2×10 Gb/s的开关键控偏振复用系统上得到了实验验证。
     3、提出并验证了一种简单而准确的光纤Kerr非线性系数测量方法。该方法基于光信号的非线性偏振旋转,而这种旋转源于两个同时在光纤中传播的光波之间的交叉相位调制效应。利用该测量方法分别测量了标准单模光纤与TrueWave~(TM)Reduced Slope光纤的Kerr非线性系数,与已报道的测量结果吻合得很好。
     4、与他人合作,研究了非线性偏振散射对偏振复用-波分复用系统的影响。分别实验研究了10-Gbaud的差分四相相位键控、差分二进制相位键控、开关键控的偏振复用-波分复用系统。实验结果表明,通过采用两个偏振方向上的归零信号时域间插的方式,可以显著抑制非线性偏振散射,从而提高偏振复用-波分复用系统对信道间的非线性效应的容限。
     5、提出了一种用于宽带色散补偿的微结构光纤的设计方案。该光纤具有三角对称的周期性空气孔结构,空气孔直径有三种尺寸:仿真计算结果表明,这种微结构光纤可以在以1550nm为中心的100nm波长范围内,补偿其自身长度98倍的标准单模光纤的色散,色散补偿率偏离度在0.5%之内;同时,以当前的微结构光纤拉制工艺水平为参考,拉制过程中空气孔直径正常的不规则性对这种微结构光纤的宽带色散补偿能力影响很小。
     6、利用光信号在一段80m长的微结构光纤中的交叉相位调制效应实现了对10GHz时钟信号的全光波长变换,变换带宽超过30nm。该实验所使用的微结构光纤非线性系数约为11W~(-1)km~(-1),其在1530到1570nm波长范围内具有很小的正常色散和平坦的色散曲线。实验结果表明,利用这种微结构光纤可以实现结构紧凑的宽带波长变换器。
     7、与他人合作,基于四波混频原理,利用一段30m长、在超过100nm的波长范围内具有平坦的低值正色散特性的微结构光纤实现了对10-Gb/s光信号的波长变换。在以1550nm为中心的20nm波长范围内平均转换效率为-19.5dB,转换效率的起伏在±1.4dB之内;波长转换后的信号眼图具有良好的睁眼度。
     8、与他人合作,以锁模半导体激光器产生的1.6ps脉冲作为泵浦源,以一段80m的色散平坦高非线性微结构光纤作为非线性介质,在1.55μm波长区域产生了谱宽超过100nm的平坦超连续谱。实验中获得的宽带、平坦超连续谱在1503nm到1593nm宽达90nm的波长范围内,具有±2.5dB的平坦度。
     9、实验实现了一种基于微结构光纤的光纤环激光器。通过微调控制信号的频率,激光器实现了稳定的锁模状态,在C波段获得了重复频率为10GHz、宽度小于8ps的相干光脉冲输出。在该激光器中,采用了掺铒光纤放大器作为腔内增益介质,并使用了一段25m长、具有反常色散、高非线性的微结构光纤作为脉冲压缩介质。通过调整腔内的带通滤波器中心频率可以实现对工作波长的连续调谐,因此该激光器可作为波分复用系统的可调谐光源。
     10、与他人合作,利用全矢量有限元方法,对椭圆六角对称分布微结构光纤的双折射特性进行了理论分析,得到了双折射大小与结构参量、入射波长间的依赖关系。分析表明:合理设计结构参数可得到10~(-3)量级大小的双折射;微结构光纤的双折射对光波波长极其敏感,并出现随波长变化快慢轴交换的现象。采用统计的方法对双折射与微结构光纤空气孔直径随机变化的相关性进行了理论分析,计算结果表明由孔径分布不规则所产生的双折射的大小主要取决于孔径的平均值。
The research works of this dissertation are supported by the National Basic Research Program of China (973 Project, No. 2003CB314900), the Foundation for the Key Program of Ministry of Education of China (No. 104046), the National 863 High Technology Project of China (No. 2003AA311010 and No. 2007AA03Z447), and the Scholarship Program of China Scholarship Council (No. 2007U48018).
     In this dissertation, both theoretically and experimentally, transmission characteristics of polarization-division-multiplexing fiber communication systems, as well as microstructure fiber based devices for optical communication systems, are studied. The main contents and innovations are as follows.
     1、Polarization mode dispersion (PMD) and polarization dependent loss (PDL) impairments in polarization-division-multiplexing (PDM) signals with optical polarization demultiplexing and direct detection are investigated. We find that the time alignment between the bits in the two polarizations has a significant impact on the PMD impairments, and PMD impairments also depend on the bandwidth of PDM signals, whereas PDL impairments have little dependence on the relative time alignment between the two polarizations and the signal bandwidth. We show that with a proper configuration of the polarization demultiplexing, the PDL-induced crosstalk between the two polarizations can be completely eliminated. The combined effects of PMD and PDL are also studied, and we find that, in the presence of concatenated PMD and PDL, the impairment from one effect does not enhance that from the other. The conclusions are important for the design and the performance evaluation of PDM systems.
     2、A new automatic optical polarization demultiplexing scheme for polarization-division-multiplexing (PDM) signals, which uses the amplitude signal from a low frequency electrical power detector at the receiver side as a control signal, is proposed. This scheme is based on the intrinsic characteristics of PDM signals and does not need to add a special signal at a PDM transmitter. The effectiveness of this demultiplexing method is experimentally demonstrated in a 2×10 Gb/s on-off-keying (OOK) PDM transmission system.
     3、A simple and accurate method to measure the Kerr nonlinearity coefficient of optical fibres is proposed and demonstrated. The method is based on the nonlinear polarisation rotations caused by cross phase modulation between two lightwaves of different wavelengths co-propagating in fibres. The Kerr nonlinearity coefficients of standard single mode fibre and TrueWave~(TM) Reduced Slope fibre measured with this method are in good agreement with the published data.
     4、In cooperation with other researchers, the impairment of nonlinear polarization scattering on polarization- and wavelength-division-multiplexing (PDM-WDM) systems is investigate. Transmission experiments on 10-Gbaud PDM differential-quadrature-phase-shift-keying (DQPSK), differential-binary-phase-shift-keying (DBPSK) and on-off-keying (OOK) show that time interleaving return-to-zero signals in two polarizations can significantly reduce nonlinear polarization scattering in PDM-WDM systems and increase system tolerance to inter-channel nonlinearities.
     5、A microstructure fiber structure is proposed for broadband dispersion compensation. The fiber has a triangular lattice of air-holes along its length, and there are different three air-hole diameters. The dispersion of the standard single-mode fiber, which is 98 times of the length of the microstructure fiber, can be compensated over the entire 100nm wavelength range centered on 1550nm (to within 0.5%). The influence of the random imperfections of air-hole diameters is also studied for practical applications, and the sensitivity of the broadband compensation capability of the microstructure fiber to the irregularities induced during fabrication process is estimated.
     6、All optical wavelength conversion of 10-GHz clock signal is demonstrated based on cross-phase modulation of optical pluses in an 80-m long microstructure fiber, and the conversion bandwidth is over 30nm. The experimental microstructure fiber with a nonlinear coefficient of~11W~(-1)km~(-1) has small normal dispersion and it is characterized by flat dispersion curve in the 1530nm to 1570 nm range. The experimental results show that a compact wavelength converter can be realized by utilizing this microstructure fiber.
     7、In cooperation with other researchers, all-optical wavelength conversion of 10-Gb/s signal based on four-wave mixing is experimentally demonstrated in 30-m dispersion-flattened microstructure fibers with small positive dispersion. The conversion efficiency was around—19.5dB with the small fluctuation within±1.4dB, covering a conversion bandwidth of 20nm centered at 1550nm. The eye diagram of the converted signal shows good eye opening.
     8、In cooperation with other researchers, the generation of a flat supercontinuum spectrum of over 100nm in the 1.55μm region by injecting 1.6ps, 10-GHz repetition rate optical pulses into an 80m-long dispersion-flattened highly nonlinear microstructure fiber is demonstrated. The generated flat broadband supercontinuum ranging from 1503nm to 1593nm has the flatness of±2.5dB.
     9、A fiber ring laser based on microstructure fiber is presented. Through slightly adjusting the frequency of control signal, active mode-locked state is acquired and the laser can produce correlated optical pulses with a high repetition rate of 10GHz and a narrow width of less than 8ps. In this laser, erbium-doped fiber amplifier is used for optical gain, and a 25m long microstructure fiber is used for pulse compression, which has a large anomalous dispersion and a high nonlinear coefficient. The operating wavelength can be altered by changing the central wavelength of the band-pass filter in the fiber ring, thus this laser can be used as the tunable optical source for wavelength-division-multiplexing systems.
     10、In cooperation with other researchers, the birefringence in microstructure fiber with squeezed hexagonal lattice is numerical analyzed based on full-vector finite element method. The correlation between the birefringence and the structural parameters, incidence wavelength is obtained. The numerical results show that the birefringence is sensitive to wavelength, it can achieved a magnitude of 10~(-3) by proper design, and the sign of form birefringence in such microstructure fibers can be changed as the incidence wavelength changes. In the statistical analyses, the correlation between the variation of air hole diameters and the birefringence in the microstructure fiber is obtained; results show that that the birefringence depends on the mean diameter of air holes.
引文
[1] I. Jacobs, "Atlanta Fiber System Experiment: Overview," Bell Syst. Tech. J., 57(6), 1978,1717-1721.
    [2] Y. Lee, and B. Mukherjee, "Traffic engineering in next-generation optical networks," IEEE Commun. Surveys and Tutorials, 6(3), 2004, 16-33.
    
    [3] P. J. Winzer, G. Raybon, H. Song, et al, "100-Gb/s DQPSK transmission: from laboratory experiments to field trials," J. Lightwave Technol., 26(20), 2008,3388-3402.
    
    [4] H. Ishio, J. Minowa, and K. Nosu, "Review and status of wavelength-division- multiplexing technology and its application," J. Lightwave Technol., 2(4), 1984,448-463.
    [5] N. A. Olsson, J. Hegarty, R. A. Logan, et al, "68.3 km transmission with 1.37 Tb-km/s capacity using wavelength division multiplexing often single-frequency lasers at 1.5 urn," Electron. Lett., 21(3), 1985,105-106.
    [6] T. Li, "The impact of optical amplifiers on long-distance lightwave telecommunications," Proc. IEEE, 81(11), 1993,1568-1579.
    [7] A. R. Chraplyvy, J. A. Nagel, and R. W. Tkach, "Equalization in amplified WDM lightwave transmission systems," IEEE Photon. Technol. Lett, 4(8), 1992,920-922.
    [8] A. R. Chraplyvy, R. W. Tkach, K. C. Reichmann, et al, "End-to-end equalization experiments in amplified WDM lightwave systems," IEEE Photon. Technol. Lett.,5(4), 1993,428-429.
    [9] H. Toba, K. Oda, K. Nakanishi, et al, "A 100-channel optical FDM transmission/distribution at 622Mb/s over 50 km," J. Lightw. Technol., 8(9), 1990,1396-1401.
    [10]A. R. Chraplyvy, A. H. Gnauck, R. W.Tkach, et al, "8×10 Gb/s transmission through 280 km of dispersion-managed fiber," IEEE Photon. Technol. Lett., vol.5(10), 1993, 1233-1235.
    [11]A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, et al, "160Gbit/s (8×20 Gbit/sWDM) 300km transmission with 50km amplifier spacing and span-by-span dispersion reversal," Electron. Lett., 30(15), 1994, 1241-1242.
    [12]N. J. Smith, F.M. Knox, N.J. Doran, et al, "Enhanced power solitons in optical fibres with periodic dispersion management," Electron. Lett., 32(1), 1996, 54-55.
    [13]V. E. Perlin and H. G. Winful, "On distributed Raman amplification for ultrabroad-band long-haul WDM systems," J. Lightwave Technol. 20(3), 2002,409-416.
    [14]T. Mizuochi, "Recent progress in forward error correction and its interplay with transmission impairments," IEEE J. Sel. Top. Quantum Electron., 12(4), 2000,544-554.
    [15]H Bülow, "Electronic equalization of transmission impairments," Proc. OFC 2002, Anaheim, USA, paper TuE4.
    [16] P. J. Winzer and R. -J. Essiambre, "Advanced Modulation Formats for High-Capacity Optical Transport Networks," J. Lightwave Technol. 24(12), 2006,4711-4728.
    [17] A. H. Gnauck, G. Charlet, P. Tran, et al, "25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals," J. Lightwave Technol., 26(1), 2008, 79-84.
    [18]H. Masuda, A. Sano, T. Kobayashi, et al, "20.4-Tb/s (204 × 111Gb/s) transmission over 240 km using bandwidth-maximized hybrid Raman/EDFAs," Proc. OFC 2007, Anaheim, USA, paper PDP20.
    [19]S. Verdu, "On channel capacity per unit cost," IEEE Trans. Info. Theory, 36(5), 1990, 1019-1030.
    [20] C. Wree, J. Leibrich, and W. Rosenkranz, "RZ-DQPSK format with high spectral efficiency and high robustness towards fiber nonlinearities," Proc. ECOC 2002,Copenhagen, Denmark, paper 9.6.6.
    [21]M. Nakazawa, J. Hongo, K. Kasai, et al, "Polarization-multiplexed 1 Gsymbol/s, 64 QAM (12 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 2 GHz," Proc. OFC 2007, Anaheim, USA, paper PDP26.
    [22]S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, et al, "Polarization multiplexing with solitons," J. Lightwave Technol., 10(1), 1992, 28-35.
    [23] A. H. Gnauck, G. Charlet, P. Tran, et al, "25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals," Proc. OFC 2007, Anaheim, USA, paper PDP19.
    [24] C. R. S. Fludger, T. Duthel, D. van den Borne, et al., "10×111 Gbit/s, 50 GHz spaced, POLMUX-RZ-DQPSK transmission over 2375 km employing coherent equalization," Proc. OFC 2007, Anaheim, USA, paper PDP22.
    [25]G. Charlet, J. Renaudier, H. Mardoyan, et al, "12.8 Tbit/s transmission of 160 PDM-QPSK (160×2×40Gbit/s) channels with coherent detection over 2550 km," Proc. ECOC 2007, Berlin, Germany, paper PD1.6.
    [26] S. L. Jansen, I. Morita, and H. Tanaka, "16×52.5-Gb/s, 50-GHz spaced, POLMUX-CO-OFDM transmission over 4160 km of SSMF enabled by MIMO processing," Proc. ECOC 2007, Berlin, Germany, paper PD1.3.
    [27]H. Sunnerud, M. Karlsson, C. Xie, et al, "Polarization mode dispersion in high-speed fiber-optic transmission systems," J. Lightwave Technol., 20(12), 2002,2204-2219.
    [28] A. Meccozzi and M. Shtaif, "Signal-to-noise-ratio degradation caused by polarization-dependent loss and the effect of dynamic gain equalization," J. Lightwave Technol. 22(8), 2004,1856-1871.
    [29] M. Shtaif and A. Mecozzi, "Polarization-dependent loss and its effect on the signal-to-noise ratio in fiber-optic systems," IEEE Photon. Technol. Lett. 16(2),2004,671-673.
    [30] C. Xie and L. F. Mollenauer, "Performance degradation induced by polarization dependent loss in optical fiber transmission systems with and without polarization mode dispersion," J. Lightwave Technol., 21(9), 2003,1953-1957.
    [31]O. Vassilieva, T. Hoshida, X. Wang, et al, "Impact of polarization dependent loss and cross-phase modulation on polarization multiplexed DQPSK Signals," Proc. OFC 2007, San Diego, USA, paper OThU6.
    [32]M. Wu and W. I. Way, "Fiber nonlinearity limitations in ultra-dense WDM systems", J. Lightwave Technol., 22(6), 2004, 1483-1498.
    [33] D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, "Effect of fiber nonlinearity on long-distance transmission," J. Lightwave Technol., 9(1), 1991,121-128.
    [34] J. P. Gordon and L. F. Mollenauer, "Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission," J. Lightwave Technol., 9(2), 1991,170-173.
    [35] C. Xie, L. M(o|¨)ller, D. C. Kilper, "Effect of cross-phase-modulation-induced polarization scattering on optical polarization mode dispersion compensation in wavelength-division-multiplexed systems," Opt. Lett. 28(23), 2003, 2303-2305.
    [36]D.-S. Ly-Gagnon, S. Tsukamoto, et al, "Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation," J. Lightwave Technol. 24(1), 2006, 12-21.
    [37]S. J. Savory, G. Gavioli, R. I. Killey, et al, "Electronic compensation of chromatic dispersion using a digital coherent receiver," Opt. Express 15(5), 2007, 2120-2126.
    [38] J. Renaudier, G. Charlet, M. Salsi, O.B. Pardo, H. Mardoyan, P. Tran. and S. Bigo, "Linear fiber impairments mitigation of 40-Gbit/s polarization-multiplexed QPSK by digital processing in a coherent receiver," J. Lightwave Technol. 26(1),2008, 36-42.
    [39] L. E. Nelson, S. L. Woodward, S. Foo, X. Zhou, M. D. Feuer, D. Hanson, D. McGhan, H. Sun, M. Moyer, M. O. Sullivan, and P. D. Magill, "Performance of a 46-Gbps dual-polarization QPSK transceiver with real-time coherent equalization over high PMD fiber," J. Lightwave Technol. 27(3), 158-167, 2009.
    [40]C. Laperle, B. Villeneuve, Z. Zhang, D. McGhan, H. Sun, and M. O'Sullivan, "WDM performance and PMD tolerance of a coherent 40-Gbit/s dual-polarization QPSK transceiver," J. Lightwave Technol. 26(1), 2008, 168-175.
    [41]M. Shtaif, "Performance degradation in coherent polarization multiplexed systems as a result of polarization dependent loss," Opt. Express, 16(18), 2008,13918-13932.
    [42] C. Xie, "WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation," Opt. Express, 17(6), 2009, 4815-4823.
    [43] C. Xie, "Inter-channel nonlinearities in coherent polarization-division- multiplexed quadrature-phase-shiftkeying systems," IEEE Photon. Technol. Lett.21(5), 2009, 274-276.
    [44] L. E. Nelson, T. N. Nielsen and H. Kogelnik, "Observation of PMD induced coherent crosstalk in polarization-multiplexed transmission," IEEE Photon. Technol. Lett., 13(7), 2001, 738-740.
    [45] L. Nelson and H. Kogelnik, "Coherent crosstalk impairments in polarization multiplexed transmission due to polarization mode dispersion," Opt. Express,7(10), 2000, 350-36.
    [46]D. van den Borne, N. E. Hecker-Denschlag, G. D. Khoe, et al, "PMD-Induced Transmission Penalties in Polarization-Multiplexed Transmission," J. Lightwave Technol., 23(12), 2005, 4004-4015.
    [47] Z. Wang, and C. Xie, "PMD and PDL Tolerance of Polarization Division Multiplexed Signals with Direct Detection," Proc. ECOC 2008, Brussels, Belguim, 2008, paper We.3.E.2.
    [48]S. Hinz, D. Sandel, F. Wüst, et al, "PMD tolerance of polarization division multiplex transmission using return-to-zero coding," Opt. Express, 9(3), 2001,136-140.
    [49]D. van den Borne, S. L. Jansen, E. Gottwald, et al, "1.6-b/s/Hz Spectrally Efficient Transmission Over 1700 km of SSMF Using 40 × 85.6-Gb/s POLMUX-RZ-DQPSK," J. Lightwave Technol., 25(1), 2007,222-232.
    [50]Ho-Chul Ji, J. H. Lee, Hoon Kim, et al, "Effect of PDL-induced coherent crosstalk on polarization-division-multiplexed direct-detection systems," Opt. Express 17(3), 2009, 1169-1177.
    [51]Z. Wang, C. Xie, and X. Ren, "PMD and PDL impairments in polarization division multiplexing signals with direct detection," Opt. Express 17(10), 2009,7993-8004.
    [52]D. van den Borne, S. L. Jansen, S. Calabrò, et al, "Reduction of nonlinear penalties through polarization interleaving in 2 ×10Gb/s polarization- multiplexed transmission," IEEE Photon. Technol. Lett., 17(6), 2005,1337-1339.
    [53] C. Xie, S. Chandrasekhar, and X. Liu, "Impact of inter-channel nonlinearities on 10-Gbaud NRZ-DQPSK WDM transmission over Raman amplified NZDSF spans," Proc. ECOC 2007, Berlin, Germany, paper 10.4.3.
    [54]Chongjin Xie, Zinan Wang, Chandrasekhar Sethumadhavan, et al, "Nonlinear polarization scattering impairments and mitigation in 10-Gbaud polarization division multiplexed WDM systems," Proc. OFC 2009, San Diego, USA, paper OTuD6.
    [55]P. Martelli, P. Boffi, M. Ferrario, et al, "Endless Polarization Stabilizer for High Bit-rate Polarization-Division Multiplexed Optical Systems," Proc. OFC 2008, San Diego, USA, paper JWA66.
    [56]P. S. Cho, G. Harston, C. J. Kerr, et al, "Investigation of 2-b/s/Hz 40-Gb/s DWDM transmission over 4X100 km SMF-28 fiber using RZ-DQPSK and polarization multiplexing," IEEE Photon. Technol. Lett., 16(2), 2004, 656-658.
    [57]R. Noe, S. Hinz, D. Sandel, et al, "Crosstalk detection schemes for polarization division multiplex transmission," J. Lightwave Technol., 19(10), 2001,1469-1475.
    [58]N. E. Hecker, E. Gottwald, K. Kotten, et al, "Automated polarization control demonstated in a 1.28Tbit/s (16×2×40 Gbit/s) polarization multiplexed DWDM field trial," Proc. ECOC 2001, Amsterdam, Netherlands, paper Mo.L.3.1.
    [59]M. I. Hayee, M. C. Cardakli, A. B. Sahin, et al, "Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme," IEEE Photon. Technol. Lett., 13(8),2001,881-883.
    [60]X. S. Yao, L. -S. Yan, B. Zhang, et al, "All-optic scheme for automatic polarization division demultiplexing," Opt. Express, 15(12), 2007, 7407-7414.
    [61] S. Boscolo, S. K. Turitsyn, and K. J. Blow, "Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications," Opt. Fiber Technol., 14(4), 2008, 299-316.
    [62]A. M. Vengsarkar, A. E. Miller, M. Haner, et al, "Fundamental-mode dispersion-compensating fibers: Design considerations and experiments," Proc. OFC 1994, San Jose, USA, paper ThK2.
    [63] M. Vasilyev and T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30(12), 2005, 1458-1460.
    [64]C. Langrock, S. Kumar, J. E. McGeehan, et al, "All-Optical Signal Processing Using x~(2) Nonlinearities in Guided-Wave Devices," J. Lightwave Technol. 24(7),2006, 2579-2592.
    [65]K. Tamura, E. P. Ippen, H. A. Haus, et al, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18(13), 1993, 1080-1082.
    [66] J. C. Knight, T. A. Birks, P. S. J. Russell, et al, "Pure silica single-mode fiber with hexagonal photonic crystal cladding," Proc. OFC 1994, San Jose, USA, paper PD3-1.
    [67] J. C. Knight, T. A. Birks, P. S. J. Russell, et al, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett., 21(19), 1996, 1547-1549.
    [68] P. S. J. Russell, "History and future of photonic crystal fibers", Proc. OFC 2009, San Diego, USA, paper OTuCl.
    [69]A. Ferrando, E. Silvestre, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett., 25(12), 2000, 790-792.
    [70]J. C. Night, J. Arriaga, T. A. Birks, et al, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett., 12(7), 2000, 807-809.
    [71]L. P. Shen, W. P. Huang, and S. S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightwave Technol., 21(7), 2003, 1644-1651.
    [72] D. Mogilevtsev, T. A. Birks, and P. S. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23(21), 1998, 1662-1664.
    [73]K. P. Hansen, J. R. Folkenberg, C. Peucheret, et al, "Fully dispersion controlled triangular-core nonlinear photonic crystal fiber," in Proc. OFC 2003, Atlanta, USA, paper PD2-1-3.
    [74]K. Saitoh, M. Koshiba, T. Hasegawa, et al, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express, 11(8), 2003, 843-852.
    [75] F. Poli, A. Cucinotta, S. Selleri, et al, "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers," IEEE Photon. Technol. Lett. 16(4), 2004, 1065-1067.
    [76]F. Poletti, V. Finazzi, T. M. Monro, et al, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers", Opt. Express, 13(10), 2005, 3728-3736.
    [77] P. J. Roberts, B. J. Mangan, H. Sabert, et al, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep., 2(5), 2005,435-461.
    [78] J. H. Lee, Z. Yusoff, W. Belardi, "A holey fibre Raman amplifier and all-optical modulator," Proc. ECOC 2001, Amsterdam, Netherlands, paper PDA1.1.
    [79] V. V. R. Kumar, A. George, W. Reeves, et al, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10(25), 2002,1520-1525.
    [80]K. P. Hansen, J. R. Jensen, C. Jacobsen, et al, "Highly Nonlinear Photonic Crystal Fiber with Zero-Dispersion at 1.55 urn," Proc. OFC 2002, Anaheim, USA,paper PD-FA9-1.
    [81]N. G. R. Broderick, T. M. Monoro, P. J. Bennett, et al, "Nonlinearity in holey fibers: measurement and future opportunities," Opt. Lett., 24(20), 1999,1395-1397.
    [82]P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, et al, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Express 11(26),2003, 3568-3573.
    [83] J. Y. Leong, P. Petropoulos, S. Asimakis, et al, "A lead silicate holey fiber with y =1820W~(-1)km~(-1) at 1550 nm," Proc. OFC 2005, Los Angeles, USA, paper PDP22.
    
    [84]P. Roberts, F. Couny, H. Sabert, et al, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13(1), 2005,236-244.
    [85] J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25(1), 2000, 25-27.
    [86] D. G. Ouzounov, F. R. Ahmad, D. Müller, et al, "Generation of megawatt solitons in hollow-core photonic band-gap fibers," Science, 301(5640). 2003, 1702-1704.
    [87] S. Ghosh, J. E. Sharping, D. G. Ouzounov, et al., "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94(9),2005, 093902.
    [88] A. F. Fercher, W. Drexler, C. K. Hitzenberger, et al, "Optical coherence tomography: principles and applications," Rep. Prog. Phys. 66(2), 2003, 239-303.
    [89] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al., "Highly birefringent photonic crystal fibers," Opt. Lett. 25(18), 2000, 1325-1327.
    [90]J. Rarity, J. Fulconis, J. Duligall, et al., "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13(2), 2005, 534-544.
    [91] F. Benabid, J. C. Knight, G. Antonopoulos, et al, "Stimulated Raman scattering in hydrogen filled hollow-core photonic crystal fiber," Science, 298(5592), 2002, 399-402.
    [92]J. Limpert, T. Schreiber, S. Nolte, et al, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express 11(7), 2003, 818-823.
    [93] G. McConnell and E. Riis, "Ultrashort pulse compression using photonic crystal fiber," Appl. Phys. B, 78(5), 2004, 557-564.
    [94]T. Yamamoto, H. Kubota, S. Kawanishi, et al, "Supercontinuum generation at 1.55μm in a dispersion-flattened polarization-maintaining photonic crystal fiber,"Opt. Express 11(13), 2003, 1537-1540.
    [95] F. Du, Y. Q. Lu, S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett., 85(12), 2004, 2181-2183.
    [96]A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, et al, "A high-speed demultiplexer based on a nonlinear optical loop mirror with a photonic crystal fiber," IEEE Photon. Technol. Lett., 15(8), 2003, 1147-1149.
    [97] J. E Sharping, M. Fiorentino, P. Kumar, et al, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett., 14(1), 2002, 77-79.
    [98]F Poli, F Adami, M Foroni, et al, "Optical parametric amplification in all-silica triangular-core photonic crystal fibers," Appl. Phys. B, 81(2), 2005, 251-255.
    [1] A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, et al, "1 Tb/s Transmission Experiment," IEEE Photon. Technol. Lett., 8(9), 1996,1264-1266.
    [2] A. H. Gnauck, G. Charlet, P. Tran, et al, "25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals," J. Lightwave Technol., 26(1),2008,79-84.
    [3] G. Charlet, J. Renaudier, M. Salsi, et al, "Efficient mitigation of fiber impairments in an ultra-long haul transmission of 40Gbit/s polarization- multiplexed data, by digital processing in a coherent receiver," Proc. OFC 2007, Anaheim, USA, paper PDP17.
    [4] H. Sunnerud, M. Karlsson, C. Xie, et al, "Polarization mode dispersion in high-speed fiber-optic transmission systems," J. Lightwave Technol., 20(12), 2002,2204-2219.
    [5] A. Meccozzi and M. Shtaif, "Signal-to-noise-ratio degradation caused by polarization-dependent loss and the effect of dynamic gain equalization," J. Lightwave Technol., 22(8), 2004,1856-1871.
    [6] M. Shtaif and A. Mecozzi, "Polarization-dependent loss and its effect on the signal-to-noise ratio in fiber-optic systems," IEEE Photon. Technol. Lett. 16(2), 2004,671-673.
    [7] C. Xie and L. F. Mollenauer, "Performance degradation induced by polarization dependent loss in optical fiber transmission systems with and without polarization mode dispersion," J. Lightwave Technol., 21(9), 2003,1953-1957.
    [8] O. Vassilieva, T. Hoshida, X. Wang, et al, "Impact of polarization dependent loss and cross-phase modulation on polarization multiplexed DQPSK Signals," Proc. OFC 2007, San Diego, USA, paper OThU6.
    [9] J. Renaudier, G. Charlet, M. Salsi, et al, "Linear fiber impairments mitigation of 40-Gbit/s polarization-multiplexed QPSK by digital processing in a coherent receiver," J. Lightwave Technol. 26(1), 2008, 36-42.
    [10]L. E. Nelson, S. L. Woodward, S. Foo, et al, "Performance of a 46-Gbps dual-polarization QPSK transceiver with real-time coherent equalization over high PMD fiber," J. Lightwave Technol. 27(3), 2009,158-167.
    [11]C. Laperle, B. Villeneuve, Z. Zhang, et al, "WDM performance and PMD tolerance of a coherent 40-Gbit/s dual-polarization QPSK transceiver," J. Lightwave Technol. 26(1), 2008,168-175.
    [12]M.Shtaif,"Performance degradation in coherent polarization multiplexed systems as a result of polarization dependent loss," Opt.Express,16(18),2008,13918-13932.
    [13]L.E.Nelson,T.N.Nielsen and H.Kogelnik,"Observation of PMD induced coherent crosstalk in polarization-multiplexed transmission," IEEE Photon.Technol.Lett.,13(7),2001,738-740.
    [14]L.Nelson and H.Kogelnik,"Coherent crosstalk impairments in polarization multiplexed transmission due to polarization mode dispersion," Opt.Express,7(10),2000,350-361.
    [15]D.van den Borne,N.E.Hecker-Denschlag,G.D.Khoe,et al.,"PMD-Induced Transmission Penalties in Polarization-Multiplexed Transmission," J.Lightwave Technol.,23(12),2005,4004-4015.
    [16]Z.Wang,and C.Xie,"PMD and PDL Tolerance of Polarization Division Multiplexed Signals with Direct Detection," Proc.ECOC 2008,Brussels,Belguim,2008,paper We.3.E.2.
    [17]S.Hinz,D.Sandel,F.Wuest,et al.,"PMD tolerance of polarization division multiplex transmission using return-to-zero coding," Opt.Express,9(3),2001,136-140.
    [18]D.van den Borne,S.L.Jansen,E.Gottwald,et al.,"1.6-b/s/Hz Spectrally Efficient Transmission Over 1700 km of SSMF Using 40×85.6-Gb/s POLMUX-RZ-DQPSK," J.Lightwave Technol.,25(1),2007,222-232.
    [19]Ho-Chul Ji,J.H.Lee,Hoon Kim,et al.,"Effect of PDL-induced coherent crosstalk on polarization-division-multiplexed direct-detection systems," Opt.Express 17(3),2009,1169-1177.
    [20]M.Shtaif and O.Rosenberg,"Polarization-dependent loss as a waveform distorting mechanism and its effect on fiber-optic systems," J.Lightwave Technol.23(2),2005,923-930.
    [21]C.Xie,L.F.Mollenauer,and L.M(o丨¨)ller,"Pulse distortion induced by polarization-mode dispersion and polarization-dependent loss in lightwave transmission systems," IEEE Photon.Technol.Lett.15(8),2003,1073-1075.
    [22]L.Chen,Z.Zhang,and X.Bao,"Combined PMD-PDL effects on BERs in simplified optical systems:an analytical approach," Opt.Express 15(5),2007,2106-2119.
    [23]C.R.Menyuk;D.Wang,and A.N.Pilipetskii,"Repolarization of polarization- scrambled optical signals due to polarization dependent loss," IEEE Photon.Technol.Lett.,9(9),1997,1247-1249.
    [24]C.Xie,L.M(o|¨)ller,H.Haunstein,et al.,"Comparison of system tolerance to polarization-mode dispersion between different modulation formats," IEEE Photon.Technol.Lett.15(8),2003,1168-1170.
    [25]H.Kogelnik,R.M.Jopson,and L.E.Nelson,Optical Fiber Telecommunications Ⅳ-B(Academic,2002),Chap.15.
    [1]A.H.Gnauck,G.Charlet,P.Tran,et al.,"25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals," J.Lightwave Technol.,26(1),2008,79-84.
    [2]C.Xie,S.Chandrasekhar,and X.Liu,"Impact of Inter-Channel Nonlinearities on 10-Gbaud NRZ-DQPSK WDM Transmission over Raman Amplified NZDSF Spans," Proc.ECOC 2007,Berlin,Germany,paper Th.10.4.4.
    [3]G.Charlet,J.Renaudier,M.Salsi,et al.,"Efficient mitigation of fiber impairments in an ultra-long haul transmission of 40 Gbit/s polarization multiplexed data by digital processing in a coherent receiver," Proc.OFC 2007,Anaheim,USA,paper PDP17.
    [4]A.R.Chraplyvy,A.H.Gnauck,R.W.Tkach,et al.,"1 Tb/s Transmission Experiment," IEEE Photon.Technol.Lett.,8(9),1996,1264-1266.
    [5]Z.Wang,and C.Xie,"PMD and PDL Tolerance of Polarization Division Multiplexed Signals with Direct Detection," Proc.ECOC 2008,Brussels,Belguim,paper We.3.E.2.
    [6]P.Martelli,P.Boffi,M.Ferrario,et al.,"Endless Polarization Stabilizer for High Bit-rate Polarization-Division Multiplexed Optical Systems," Proc.OFC 2008,San Diego,USA,paper JWA66.
    [7]P.S.Cho,G.Harston,C.J.Kerr,et al.,"Investigation of 2-b/s/Hz 40-Gb/s DWDM transmission over 4×100 km SMF-28 fiber using RZ-DQPSK and polarization multiplexing," IEEE Photon.Technol.Lett.,16(2),2004,656-658.
    [8]R.Noe,S.Hinz,D.Sandel,et al.,"Crosstalk detection schemes for polarization division multiplex transmission," J.Lightwave Technol.,19(10),2001,1469-1475.
    [9]N.E.Hecker,E.Gottwald,K.Kotten,et al.,"Automated polarization control demonstated in a 1.28Tbit/s(16×2×40 Gbit/s) polarization multiplexed DWDM field trial," Proc.ECOC 2001,Amsterdam,Netherlands,paper Mo.L.3.1.
    [10]M.I.Hayee,M.C.Cardakli,A.B.Sahin,et al.,"Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme," IEEE Photon.Technol.Lett.,13(8),2001,881-883.
    [11]X.S.Yao,L.-S.Yan,B.Zhang,et al.,"All-optic scheme for automatic polarization division demultiplexing," Opt.Express,15(12),2007,7407-7414.
    [12]B.Milivojevic,A.F.Abas,A.Hidayat,et al.,"1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation," IEEE Photon.Technol.Lett.,17(2),2005,495-497.
    [13]H.Z.Cummins,and H.L.Swinney,"Light beating spectroscopy," Prog.Opt.,8,1970,133-200.
    [14]P.B.Gallion and G.Debarge,"Quantum phase noise and field correlation in single frequency semiconductor laser systems," IEEE J.Quantum Electron.,20(4),1984,343-349.
    [15]M.Nazarathy,W.V.Sorin,D.M.Baney,et al.,"Spectral analysis of optical mixing measurements," J.Lightwave Technol.,7(7),1989,1083-1096.
    [16]H.E.Rowe,"Signal and Noise in Communication Systems," Princeton,NJ:Van Nostrand,1965.
    [17]M.W.Fleming and A.Mooradian,"Fundamental line broadening of single-mode (GaAl) As diode lasers," Appl.Phys.Lett.,38(7),1981,511-513.
    [18]C.H.Henry,"Theory of the linewidth of semiconductors lasers," IEEE J.Quantum Electron.,18(2),1982,259-264.
    [1]M.Wu and W.I.Way,"Fiber nonlinearity limitations in ultra-dense WDM systems",J.Lightwave Technol.,22(6),2004,1483-1498.
    [2]D.Marcuse,A.R.Chraplyvy,and R.W.Tkach,"Effect of fiber nonlinearity on long-distance transmission," J.Lightwave Technol.,9(1),1991,121-128.
    [3]J.P.Gordon and L.F.Mollenauer,"Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission," J.Lightwave Technol.,9(2),1991,170-173.
    [4]S.Watanabe,"Optical signal processing using nonlinear fibers",J.Opt.Fiber Commun.Rep.,3(1),2005,1-24.
    [5]S.J.B.Yoo,"Wavelength conversion technologies for WDM network applications," J.Lightwave Technol.,14(6),1996,955-966.
    [6]J.Hansryd,P.A.Andrekson,M.Westlund,et al.,"Fiber-based optical parametric amplifiers and their applications",IEEE J.Select.Top.Quantum Electron.,8(3),2002,506-520.
    [7]S.Ryu,"Measurement of fibre nonlinearity coefficient with coherent heterodyne detection technique",Proc.ECOC 2006,Cannes,France,2006,paper We.3.P.2.
    [8]S.V.Chernikov,and J.R.Taylor,"Measurement of normalization factor of n_2 for random polarization in optical fibers",Opt.Lett.,21(19),1996,1559-1561.
    [9]L.Prigent,and J.-P.Hamaide,"Measurement of fiber nonlinear Kerr coefficient by four-wave mixing",IEEE Photon.Technol.Lett.,5(9),1993,1092-1095.
    [10]M.Artiglia,E.Ciaramella,and B.Sordo,"Using modulation instability to determine Kerr coefficient in optical fibres",Electron.Lett.,31(12),1995,1012-1013.
    [11]J.Fatome,S.Pitois,and G.Millot,"Measurement of nonlinear and chromatic dispersion parameters of optical fibers using modulation instability",Opt.Fiber.Technol.,12(3),2006,243-250.
    [12]C.J.McKinstrie,H.Kogelnik,and L.Schenato,"Four-wave mixing in a rapidly-spun fiber",Opt.Express,14(19),2006,8516-8534.
    [13]S.G.Evanglides,L.F.Mollenauer,J.P.Gordon,et al.,"Polarization multiplexing with solitons",J.Lightwave Technol.,10(1),1992,28-35.
    [14]C.J.McKinstrie,H.Kogelnik,G.G.Luther,et al.,"Stokes-space derivations of generalized Schr(o|¨)dinger equations for wave propagation in various fibers",Opt.Express,15(17),2007,10964-10983.
    [15]L.F.Mollenauer,J.P.Gordon,and F.Heismann,"Polarization scattering by soliton-soliton collisions",Opt.Lett.,20(20),1995,2060-2062.
    [16]B.C.Collings and L.Boivin,"Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems",IEEE Photon.Technol.Lett.,12(11),2000,1582-1584.
    [17]C.Xie,L.M(o|¨)ller,D.C.Kilper,et al.,"Effect of cross-phase-modulation-induced polarization scattering on optical polarization mode dispersion compensation in wavelength-division-multiplexed systems",Opt.Lett.,28(23),2003,2303-2305.
    [18]L.M(o|¨)ller,Y.Su,G.Raybon,et al.,"Polarization-mode-dispersion-supported transmission in 40-Gb/s long haul systems",IEEE Photon.Technol.Lett.,15(2),2003,335-337.
    [19]T.N.Nguyena,T.Chartiera,M.Thuala,et al.,"Simultaneous measurement of anomalous group-velocity dispersion and nonlinear coefficient in optical fibers using soliton-effect compression",Opt.Commun.,278(1),2006,60-65.
    [1]A.H.Gnauck,G.Charlet,P.Tran,et al.,"25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals," J.Lightwave Technol.,26(1),2008,79-84.
    [2]C.Laperle,B.Villeneuve,Z.Zhang,et al.,"Wavelength division multiplexing (WDM) and polarization mode dispersion(PMD) performance of a coherent 40Gbit/s dual-polarization quadrature phase shift keying(DP-QPSK)transceiver," Proc.OFC 2007,Anaheim,USA,paper PDP16.
    [3]C.Charlet,J.Renaudier,H.Mardoyan,et al.,"Transmission of 16.4 Tbit/s capacity over 2,550 km using PDM QPSK modulation format and coherent receiver," Proc.OFC 2008,San Diego,USA,paper PDP3.
    [4]D.van den Borne,S.L.Jansen,S.Calabr(?),et al.,"Reduction of nonlinear penalties through polarization interleaving in 2×10 gb/s polarization-multiplexed transmission," IEEE Photon.Technol.Lett.,17(6),2005,1337-1339.
    [5]C.Xie,S.Chandrasekhar,and X.Liu,"Impact of inter-channel nonlinearities on 10-Gbaud NRZ-DQPSK WDM transmission over Raman amplified NZDSF spans," Proc.ECOC 2007,Berlin,Germany,paper 10.4.3.
    [6]S.Chandrasekhar,and X.Liu,"Experimental investigation of system impairments in polarization multiplexed 107-Gb/s RZ-DQPSK," Proc.OFC 2008,San Diego,USA,paper OThU7.
    [7]J.-X.Cai,O.V.Sinkin,C.R.Davidson,et al.,"40-Gb/s Transmission using polarization division multiplexing(PDM) RZ-DBPSK with automatic polarization tracking," Proc.OFC 2008,San Diego,USA,paper PDP4.
    [8]C.Xie,"Inter-Channel nonlinearities in coherent Polarization-Division-Multiplexed Quadrature-Phase-Shift-Keying systems," IEEE Photon.Technol.Lett.,21(5),2009,274-276.
    [9]L.F.Mollenauer,J.P.Gordon,and F.Heismann,"Polarization scattering by soliton-soliton collisions",Opt.Lett.,20(20),1995,2060-2062.
    [10]C.Xie,L.M(o|¨)ller,D.C.Kilper,et al.,"Effect of cross-phase-modulation-induced polarization scattering on optical polarization mode dispersion compensation in wavelength-division-multiplexed systems",Opt.Lett.,28(23),2003,2303-2305.
    [1] V. Srikant, "Broadband dispersion and dispersion slope compensation in high bit rate and ultra long haul systems," Proc. OFC 2001, Anaheim, USA, paper TuHl-3.
    [2] L. Grüner-Nielsen, M. Wandel, P. Kristensen, et ai, "Dispersion-Compensating Fibers," J. Lightwave Technol., 23(11), 2005, 3566-3579.
    [3] T. A. Birks, D. Mogilevstev, J. C. Knight, et al, "Dispersion compensation using single-material fibers," IEEE Photon. Technol. Lett., 11(6), 1999, 674-676.
    [4] T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett., 22(13), 1997, 961-963.
    
    [5] P. S. J. Russell, "Photonic crystal fibers," Science, 299(5605), 2003, 358-362.
    [6] L. P. Shen, W. P. Huang, and S. S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightwave Technol., 21(7), 2003, 1644-1651.
    [7] D. Mogilevtsev, T. A. Birks, and P. S. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23(21), 1998, 1662-1664.
    [8] K. P. Hansen, J. R. Folkenberg, C. Peucheret, et ai, "Fully dispersion controlled triangular-core nonlinear photonic crystal fiber," Proc. OFC 2003, Atlanta, USA, paper PD2-1-3.
    [9] K. Saitoh, M. Koshiba, T. Hasegawa, et al, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express, 11(8), 2003, 843-852.
    [10] T. Wu, and C. Chao, "A novel ultra-flattened dispersion photonic crystal fiber," IEEE Photon. Technol. Lett., 17(1), 2005, 67-69.
    [11]F. Poli, A. Cucinotta, S. Selleri, et al, "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers," IEEE Photon. Technol. Lett., 16(4), 2004,1065-1067.
    [12]F. Poletti, V. Finazzi, T. M. Monro, et al., "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers", Opt. Express, 13(10), 2005, 3728-3736.
    [13]P. J. Roberts, B. J. Mangan, H. Sabert, et al., "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep., 2(5), 2005,435-461.
    [14]S. Yang, Y. Zhang, X. Peng, et al., "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express, 14(7), 2006, 3015-3023.
    [15]B.J.Mangan,F.Couny,L.Farr,et al.,"Slope-matched dispersion compensating photonic crystal fibre," Proc.of CLEO 2004,San Francisco,USA,1069-1070.
    [16]F.G(?)r(?)me,J.L.Auguste,and J.M.Blondy,"Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt.Lett.,29(23),2004,2725-2727.
    [17]F.Poll,A.Cucinotta,M.Fuochi,et al.,"Characterization of microstructured optical fibers for wideband dispersion compensation," J.Opt.Soc.Am.A,20(10),2003,1958-1962.
    [18]T.Fujisawa,K.Saitoh,K.Wada,et al.,"Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation," Opt.Express,14(2),2006,893-900.
    [19]Y.Ni,L.An,J.Peng,et al.,"Dual-core photonic crystal fiber for dispersion compensation," IEEE Photon.Technol.Lett.,16(6),2004,1516-1518.
    [20]L.P,Shen,W.P.Huang,and S.S.Jian,"Design and optimization of microstructure fibers for broad-band dispersion compensation," IEEE Photon.Technol.Lett.,15(4),2003,540-542.
    [21]B.Zsigri,J.Laegsgaard,and A.Bjarklev,"A novel photonic crystal fibre design for dispersion compensation," J.Opt.A:Pure Appl.Opt.,6(7),2004,717-720.
    [22]S.Yang,Y.Zhang,L.He,et al.,"Broadband dispersion-compensating photonic crystal fiber," Opt.Lett.,31(19),2004,2830-2832.
    [23]B.J.Eggleton,P.S.Westbrook,C.A.White,et al.,"Cladding mode resonances in air-silica microstructure fiber," J.Lightwave Technol.,18(8),2000,1084-1100.
    [24]G.R.Hadley,"Transparent boundary condition for the beam propagation method," IEEE J.Quantum Electron.,28(1),1992,363-370.
    [25]G.P.Agrawal,"Nonlinear Fiber Optics(2nd Ed)," New York:Academic,1995.
    [26]A.Ferrando,E.Silvestre,P.Andres,et al.,"Designing the properties of dispersion-flattened photonic crystal fiber," Opt.Express,9(13),2001,687-697.
    [27]ITU-T Recommendation G.652 2005 Characteristics of a Single-Mode Optical Fibre and Cable(Geneva:International Telecommunication Union)
    [28]C.Peucheret,N.Hanik,R.Freund,et al.,"Optimization of pre- and post-dispersion compensation schemes for 10-Gb/s NRZ links using standard and dispersion compensating fibers," IEEE Photon.Technol.Lett.,2000,12(8),992-994.
    [29]K.Saitoh,and M.Koshiba,"Empirical relations for simple design of photonic crystal fibers," Opt.Express,2005,13(1),267-274.
    [30]K.Reichenbach,and C.Xu,"The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers," Opt.Express,2005,13(8),2799-2807.
    [31]G.Zhou,L.Hou,"Study on the designed theory for the structure of photonic crystal fiber perform,",Proc.of Doctoral Forum of China 2006,Wuhan,China,012-017.
    [1]S.J.Yoo,"Wavelength conversion technologies for WDM network applications," J.Lightwave Technol.,14(6),1996,955-966.
    [2]T.Tanemura,C.S.Gob,K.Kikuchi,et al.,"Highly efficient arbitrary wavelength conversion within entire C-band based on non-degenerate fiber four-wave mixing," IEEE Photon.Technol.Lett.,16(2),2004,551-553.
    [3]Y.Jianjun,and P.Jeppesen,"80-Gb/s wavelength conversion based on cross-phase modulation in high-nonlinearity dispersion-shifted fiber and optical filtering," IEEE Photon.Technol.Lett.,13(8),2001,833-835.
    [4]C.H.Kwok,S.H.Lee,K.K.Chow,et al.,"Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM," IEEE Photon.Technol.Lett.,17(12),2005,2655-2657.
    [15]P.A.Andersen,T.Tokle,Y.Geng,et al.,"Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber," IEEE Photon.Technol.Lett.,15(3),2003,437-439.
    [6]J.C.Night,T.A.Birks,P.S.J.Russell,et al.,"All-silica single-mode optical fiber with photonic crystal cladding," Opt.Lett.,21(19),1996,1547-1549.
    [7]T.A.Birks,"Dispersion compensation using single material fibers," IEEE Photon.Technol.Lett.,11(6),1999,674-676.
    [8]A.Ferrando,E.Silvestre,"Nearly zero ultra flattened dispersion in photonic crystal fibers," Opt.Lett.,25(12),2000,790-792.
    [9]J.C.Night,J.Arriaga,T.A.Birks,et al.,"Anomalous dispersion in photonic crystal fiber," IEEE Photon.Technol.Lett.,12(7),2000,807-809.
    [10]Z.Wang,X.Ren,X.Zhang,et al.,"A novel design for broadband dispersion compensation microstructure fiber," Chinese Opt.Lett.,4(11),2006,625-627.
    [11]武劲青,薛文瑞,周国生,“方形渐变空气孔微结构光纤的色散特性分析,”光学学报,25(2),2005,174-178.
    [12]N.G.R.Broderick,T.M.Monoro,P.J.Bennett,et al.,"Nonlinearity in holey fibers:measurement and future opportunities," Opt.Lett.,24(20),1999,1395-1397.
    [13]B.Zsigri,C.Peucheret,M.D.Nielsen,et al.,"Demonstration of broadcast,transmission,and wavelength conversion functionalities using photonic crystal fibers," IEEE Photon.Technol.Lett.,18(21),2006,2290-2292.
    [14]杨广强,张霞,任晓敏 等,“基于光子晶体光纤的全光开关实验研究,”中国激光,32(12),2005,1650-1653.
    [15]M.Jinno,T.Matsumoto,"Nonlinear Sagnac interferometer switch and its applications," IEEE J.Quantum Electron.,28(4),1992,875-882.
    [16]M.Jinno,"All optical signal regularizing/regeneration using a nonlinear fiber Sagnac interferometer switch with signal-clock walk-off," J.Lightwave Technol.,12(9),1994,1648-1659.
    [17]B.E.Oisson,P.Ohlen,L.Rau,et al.,"A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon.Technol.Lett.,12(17),2000,846-848.
    [18]P.Ohlen,B.E.Olsson,D.J.Blumenthal,et al.,"Wavelength dependence and power requirements of a wavelength converter based on XPM in a dispersion-shifted optical fiber," IEEE Photon.Technol.Lett.,12(5),2000,522-524.
    [19]J.H.Lee,Z.Yusoff,W.Belardi,et al.,"A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber," IEEE Photon.Technol.Lett.,15(3),2003,437-439.
    [20]G.P.Agrawal,"Nonlinear Fiber Optics(2nd Ed)," New York:Academic,1995.
    [1]S.J.Yoo,"Wavelength conversion technologies for WDM network applications," J.Lightwave Technol.,14(6),1996,955-966.
    [2]P.V.Mamyshev,"All-optical data regeneration based on self-phase modulation effect," Proc.ECOC 1998,Madrid,Spain,475-476.
    [3]C.Joergensen,S.L.Danielsen,K.E.Stubkjaer,et al.,"All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,"IEEE J.Sel.Topics Quantum Electron.,3(5),1997,1168-1180.
    [4]K.K.Chow and C.Shu,"All-optical wavelength conversion with multicasting at 6×10 Gbit/s using electroabsorption modulator," Electron.Lett.,39(19),2003,1395-1397.
    [5]T.Sakamoto,K.K.Y.Wong,K.Uesaka,et al.,"Tunable wavelength converter using cross-gain modulation in fiber optical parametric amplifier," Proc.OFC 2002,Anaheim,USA,127-129.
    [6]L.Rau,W.Wang,S.Camatel,et al.,"All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation(XPM) in dispersion-shifted fiber," IEEE Photon.Technol.Lett.,16(11),2004,2520-2522.
    [7]G.A.Nowak,Y.H.Kao,T.J.Xia,et al.,"Low-power high-efficiency wavelength conversion based on modulational instability in high-nonlinearity fiber," Opt.Lett.23(12),1998,936-938.
    [8]J.Ma,J.Yu,C.Yu,et al.,"Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration," J.Lightwave Technol.,24(7),2006,2851-2858.
    [9]C.Yu,Z.Pan,Y.Wang,et al.,"Polarization-insensitive all-optical wavelength conversion using dispersion-shifted fiber with a fiber Bragg grating and a Faraday rotator mirror," IEEE Photon.Technol.Lett.,16(8),2004,1906-1908.
    [10]P.Russell,"Photonic crystal fibers," Science,299(5605),2003,358-362.
    [11]J.M.Dudley and J.R.Taylor,"Ten years of nonlinear optics in photonic crystal fibre," Nature Photon.,3(2),2009,85-90.
    [12]J.H.Lee,W.Belardi,K.Furusawa,et al.,"Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,"IEEE Photon.Technol.Lett.,15(3),2003,440-442.
    [13]P.A.Andersen,T.Tokle,Y.Geng,et al.,"Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber," IEEE Photonics Technol.Lett.,17(9),200(?).1908-1910.
    [14]K.K.Chow,C.Shu,C.Lin,et al.,"Polarization-insensitive widely tunab(?)wavelength converter based on four-wave mixing in a dispersion-flatten(?)nonlinear photonic crystal fiber," IEEE Photon.Technol.Lett.,17(3),200(?)624-626.
    [15]B.Batagelj,"Conversion efficiency of fiber wavelength converter based(?)degenerate FWM," Proc.ICTON 2000,Gdinsk,Poland,179-182.
    [1]J.M.Dudley,L.Provino,N.Grossard,et al.,"Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J.Opt.Soc.Am.B.,19(4),2002,765-771.
    [2]G.Genty,M.Lehtonen,and H.Ludvigsen,"Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt.Express,12(19),2004,4614-4624.
    [3]P.Yan,Y.Jia,H.Shu,et al.,"Broadband continuum generation in an irregularly multicore microstructured optical fiber," Chin.Opt.Lett.,3(6),2005,355-357.
    [4]宋学鹏,陈波,林健飞 等,“多芯微结构光纤产生超连续谱,”中国激光,33(8),2006,1066-1068.
    [5]于永芹,阮双琛,杜晨林 等,“飞秒脉冲泵浦光子晶体光纤产生1.3μm区域的光谱展宽,”光子学报,34(4),2005,481-484.
    [6]贾亚青,闫培光,吕可诚 等,“高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析,”物理学报,55(4),2006,1809-1814.
    [7]Y.Yu,S.Ruan,C.Du,et al.,"Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplied Ti:sapphire laser," Chin.Phys.Lett.,22(2),2005,384-387.
    [8]胡明列,王清月,栗岩峰 等,“飞秒激光脉冲在双折射微结构光纤中频率变换的研究,”中国激光,32(5),2005,613-616.
    [9]V.V.R.Kumar,A.K.George,W.H.Reeves,et al.,"Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt.Express,10(25),2002,1520-1525.
    [10]K.Mori,H.Takara and S.Kawanishi,"Analysis and design of supercontinuum pulse generation in a single-mode optical fiber," J.Opt.Soc.Am.B,18(12),2001,1780-1792.
    [11]Y.Xu,X.Ren,X.Zhang,et al.,"Flat supercontinuum generated in a single-mode optical fiber with a new chromatic dispersion profile," Chin.Phys.Lett.,22(8),2005,1923-1926.
    [12]高洁丽,徐文成,梁湛强等,“凹形色散分布光纤中超连续谱特性分析,”光学学报,25(12),2005,1590-1594.
    [13]Z.Yusoff,P.Petropoulos,K.Furusawa,et al.,"A 36-channel 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber," IEEE Photon.Technol.Lett.,15(12),2003,1689-1691.
    [14]T.Yamamoto,H.Kubota,and S.Kawanishi et al.,"Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber," Opt.Express,11(13),2003,1537-1540.
    [1]P.C.Peng,H.Y.Tseng,and S.Chi,"A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode," IEEE Photon.Technol.Lett.,15(5),2003,661-663.
    [2]L.Talaverano,S.Abad,S.Jarabo,et al.,"Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability," J.Lightwave Technol.,19(4),2001,553-558.
    [3]A.Bellemare,M.Karasek,M.Rochette,et al.,"Room temperature multi-frequency erbium-doped fiber lasers anchored on the ITU frequency grid,"J.Lightwave Technol.,18(6),2000,825-831.
    [4]X.P.Zhang,M.Karlsson,and P.Andrekson,"Design guidelines of actively mode-locked fiber ring lasers," IEEE Photon.Technol.Lett.,10(8),1998,1103-1105.
    [5]A.L.Zhang,H.L.Liu,M.S.Demokan,et al.,"Stable and broad bandwidth multi-wavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber," IEEE Photon.Technol.Lett.,10(8),1998,1103-1105.
    [6]B.Bakhshi,and P.A.Andrekson,"40 GHz actively modelocked,polarization maintaining erbium fiber ring laser," Electron.Lett.,36(5),2000,411-413.
    [7]E.Yoshida,N.Shimizu,and M.Nakazawa,"A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560nm," IEEE Photon.Technol.Lett.,11(12),1999,1587-1589.
    [8]K.S.Abedin,and F.Kubota,"Wavelength tunable high-repetition-rate picosecond and femtosecond pulse sources based on highly nonlinear photonic crystal fiber," IEEE J.Sel.Top.Quantum Electron.,10(5),2004,1203-1210.
    [1]N.G.R.Broderick,T.M.Monro,P.J.Bennett,et al.,"Nonlinearity in holey optical fibers:measurement and futureopportunities," Opt.Lett.,24(20),1999,1395-1397.
    [2]Y.Ni,L.Zhang,and J.-D.Peng,"Optimization of holey fiber for dispersion compensation," Chin.Opt.Lett.,1(7),2003,385-387.
    [3]M.J.Steel,T.P.White,C.M.Sterke,et al.,"Symmetry and degeneracy in microstructured optical fibers," Opt.Lett.,26(8),2001,488-490.
    [4]G.Millot,A.Sauter,J.M.Dudley,et al.,"Polarization mode dispersion and vectorial modulational instability in air silica microstructure fiber," Opt.Lett.,27(9),2002,695-697.
    [5]任国斌,娄淑琴,王智等,“等效折射率模型研究光子晶体光纤的色散特性,”光学学报,24(3),2004,319-323.
    [6]任国斌,王智,娄淑琴等,“应用等效折射率模型研究光子晶体光纤,”中国激光,31(6),2004,723-727.
    [7]A.Cucinotta,S.Selleri,L.Vincetti,et al.,"Holey fiber analysis through the finite-element method," IEEE Photon.Technol.Lett.,14(11),2002,1530-1532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700