用户名: 密码: 验证码:
低开关功率非线性环共振器全光开关原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决目前通讯网络中电子开关对网络容量升级的瓶颈限制,人们开始广泛研究光开关。较早研发的电控光开关目前已有商用产品,但是这类开关不能满足未来全光网络的要求,因此光控光开关,即全光开关,始终是人们研究的重点。全光开关一般基于介质的非线性光学特性,通过控制泵浦光或者信号光本身的功率来改变信号光的输出状态。目前已研发的全光开关,一般都需要很大的开关功率,远远超过信号功率。特别是用纯石英材料制备的全光开关,由于其非线性系数极小,需要的开关功率更大。因此我们的研究围绕着如何降低全光开关的开关功率使之达到与信号功率同数量级而展开。
     本文提出用硅基的双耦合器波导(包括光纤)环腔作为1×2的全光开关。利用耦合模方程,建立了考虑环腔损耗的各个端口光电场之间关系的方程,分析发现双耦合器环共振器(DCRR)的损耗严重影响了开关的工作,甚至无法实现开关。因此我们提出将环腔的一臂用掺铒光纤(EDF)代替,在980nm泵浦光作用下形成掺铒光纤放大器(EDFA),用以补偿环腔内的损耗。并针对双耦合器环腔内的克尔(Kerr)非线性,计算得出环腔的精细度、反射率和透射率及开关功率。在补偿损耗后,环腔的精细度被大大提高,同时环材料的光学非线性也被很大地提高(约5个数量级)。因为开关功率与环腔的精细度和非线性折射率系数成反比。因此开光功率被大大降低,可低达毫瓦量级。研究含有掺稀土光放大器的低开关功率全光开关是我们的创新研究的成果之一。
     双耦合器环共振腔由于具备了非线性和反馈两个条件,所以具有光学双稳特性。我们系统研究了含EDFA的双耦合器环共振腔的反射双稳和透射双稳特性。普通光纤环腔,实现光双稳性需要的开关功率为1000瓦量级。用掺铒光纤取代普通光纤并补偿腔内损耗,用数值模拟的方法,得出EDFA-RR双稳开关的开关功率大约是60毫瓦,比普通光纤环形谐振腔(即不含EDFA的光纤环腔)双稳开关功率低5个数量级。并在放大器增益,耦合器反射率,环长及环腔初相位等多个不同参数情况下,给出了双耦合器环形共振腔的光双稳特性曲线。我们的理论分析对未来的光纤环腔双稳器件有着实际的指导意义。此器件的开关时间由环腔的寿命决定,我们计算得到的结果是低于20ns。可以通过调整980nm泵浦光功率来控制环腔的精细度,使得开关时间和开关功率得到优化。研究含光放大器的双耦合器环腔的光双稳开关特性是我们的创新成果之二。
     掺饵光纤放大器的引入固然可以降低开关功率,但是给器件结构带来了复杂化,而且掺饵光纤的吸收比普通光纤的吸收大得多。我们的研究表明,光开关的开关功率还与光波导的横截面积成正比,因此压缩光波导的横向尺寸,从微米量级减至纳米量级,也可大大降低光开关的开关功率。在这种情况下不必进行材料的掺杂,就可以使开关功率降低到瓦量级。采用100微米环直径,就可实现14瓦的开关功率。而且环形光开光器件环长的减小对于提高光开关的开关速度(降低开关时间)有利。研究具有低开关功率和高开关速度的纳米尺寸的微型环腔是我们的有创新性的研究成果之三。
     硅材料在超短脉冲(飞秒)激光的作用下,会产生双光子吸收效应,此效应可强到把产生光克尔效应的单光子吸收效应加以忽略。我们提出,将泵浦光与信号光同时进入波导双耦合器环共振腔。由于双光子吸收引起自由电子-空穴对的产生。自由载流子浓度的变化致使硅的折射率发生变化,从而环内的相移也随之变化。非线性折射率与泵浦平均功率的平方成正比。当输入泵浦平均功率低于10毫瓦,就可以使环内相移变化达到π,实现双耦合器环共振腔两输出端口间的转换。所以研究纳米波导微环光开关在飞秒脉冲作用下的双光子吸收光开关机制是我们创新性研究成果之四。
In order to break through the bottle limitation of the electronic switches to net capacity-upgrading in modern communication systems, optical switches are widely investigated. The electronic-controlling optical switches (EOS) initially studied are commercially obtained now. The switch properties do not meet the requirement of future all optical network. So the optic-controlling optical switches, ie. all optical switches (AOS), are the focus of the researchers. AOS are based on the nonlinearity of the medium. The output states of the signal are controlled by the pump power or the signal power itself. However, because of the small nonlinear coefficient of the common silica fiber, all the suggested AOS need high switch power. This dissertation is centered on how to decrease the switch power to the same level of signal power.
     Firstly, we suggest double-coupler waveguide (including fiber) as 1×2all-optics switch. According to coupler mode equation, we get the relationship of all ports electrical field with losses. From these relationships, we find the losses of DCRR seriously affect the switch work. And it can’t realize switch. So we suggest to use EDF instead of common fiber. It will form EDFA to compensate the losses when 980nm pump light is input. We calculate the finesse, reflectivity, transmission and switch power based on Kerr effect. After compensating losses, finesse and switch efficiency of RR are increased and switch power are decreased. Switch power is proportional to cross section of fiber and inverse proportional to finesse, nonlinear refraction index and length of RR. Nonlinear refraction index of EDF is 5 orders larger than the common silica fiber. So the switch power is decreased 5 orders. Switch time depends on material. It is on nanosecond order. It is the second research achievement that study all-optics switching of low switching power.
     Double-coupler ring resonator (DCRR) has optics bistability because it has the characteristics of nonlinear and feedback. We study the reflection bistability and transmission bistability of DCRR with losses. Common fiber RR needs 1000W power to gain bistability. But EDF can instead of common fiber and compensate the losses, the switch power of EDFA-RR bistability switch is decreased to 60mW. It decreased 5 orders than common fiber ring resonator. And we analyze the bistability curses of DCRR optics switch for different amplifier gain, coupler reflectivity, RR length and initial phase in the RR. Theoretical analysis has guide purpose for the experiment in the future. The switching time of this device depends on lifetime of ring cavity. The result that we calculates is lower 20ns. We can control finesse of ring resonator according to adjusting 980nm pump power and can gain optimal switching time and switching power. It is the second research achievement that studies the DCRR bistability with EDFA.
     EDFA can decrease switching power, but the device could be complicated. And EDF absorption is larger than ordinary fiber. We demonstrate that switching power of optics switches is proportional to cross section of waveguide. So it can decrease dramatically switching power of optics switches that cross section of waveguide decrease from millimeter to nanometer. In this situation, switching power of optics switches can decrease to watt when the material is not doped. It can realize switching power of 14W adopted100μm diameter ring. Decreasing length of device can improve switching speed (decreasing switching time). It is the third research achievement that study nano-size ring resonator of low switching power and high speed.
     Silicon can induce two-photon absorption (TPA) under fetosecond laser. This effect is so powerful that one-photon absorption of Kerr effect can be neglected. Pump light and signal light are input waveguide DCRR at the same time. Electron-hole pair are generated due to TPA effect. Free-carrier concentration change cause silicon refraction index change and phase shift change in the RR. Nonlinear refraction index change is proportional to square of mean pump power. When phase shift change in the RR achievedπ, the switching can be realized between two output ports. Refraction index change caused by TPA is 10-3mW. However, Refraction index change caused by Kerr effect is smaller when other parameters are the same. It is the fouth research achievement that study TPA optics switching when nano waveguide microring pump by fetosecond pulse
引文
1 I. Glesk, R. J. Runser, P. R. Prucnal. New Generation of Devices for All-Optical Communications. Acta Physcia Slovaca. 2001, 51(2): 151~162
    2罗元,张毅,黄尚廉.应用于全光网络的光开关技术研究.通信技术. 2001, (6): 54~56
    3孙志君. 2005年前的光开关市场与前景.世界电子元器件. 2002, (1): 53~54
    4刘琳.光开关技术发展及应用.光纤与电缆及其应用技术. 2002, (6): 10~13
    5 M. A. Bourouha, M. Bataineh, M. Guizani. Advances in Optical Switching and Networking: Past, Present, and Future. Proc. IEEE. 2002, Southeastcon: 405~413
    6 W. J. Tomlinson. Requirements, Architectures and Technologies for Optical Cross-Connects. Lasers and Electro-Optics Society 2000 Annual Meeting. 2000, Rio Grande: 163 ~164
    7 A. R. Moral, P. Bonenfant, S. Baroni, R. Wu. Optical Data Networking: Protocols, Technologies, and Architectures for Next Generation Optical Transport Networks and Optical Internetworks. J. of Lightwave Technol. 2000, 18(12): 1855~1870
    8 H. Zang, J. P. Jue, R. Ramamurthy, B. Mukherjee. Dynamic Lightpath Establishment in Wavelength-Routed WDM Networks. IEEE Commun. Mag. 2001, 39(9): 100~108
    9谢次琳.光网络中的分插复用技术.电脑知识与技术. 2007, 19:117~120
    10 P. J.Duthie, N. Shaw, M. J. Wale. Optical Protection Switches for Resilient Networks. IEE Colloquium on Resilience in Optical Networks. 1992, London: 1~4
    11 S. S. Dixit, P. J. Lin. Advances in Optical Switching, Routing, and Protecting. IEEE Commun. Mag. 2001, 39(11): 156
    12迪歌.光计算:电脑的未来.教书育人. 2005, (Z1):12
    13张锐,郭威,李淼.一套二进制向量-矩阵乘法运算的光计算系统.计算机技术与发展. 2007, 17 (10): 141~143
    14 M. Zirngibl. What Are the Problems We Are Solving by Optical Switching? Optical Fiber Communication Conference and Exhibit. 2002, Anahelm, California: 159~160
    15 G. I. Papadimitriou, C. Papazoglou, A. S. Pomportsis. Opticsl Switching: Switch Fabics, Techniques, and Architectures. J. of Lightwave Technol. 2003, 21(2): 384~405
    16 Waller L, Nielson GN, Takahashi S, Seneviratne D, Tuller H, Barbastathis G . Microelectromechanical wavelength-selective switching for integrated optics. Micro-Electro-Mechanical Systems. 2005, 7: 525~529
    17 Zhang Y, Luo Y, Xu XD. The fractal charactor of micromirror for metal MEMS optical switch. International Conference on Photoelectronic Detection and Imaging Beijing, PEOPLES R CHINA, SEP 09-12, 2007, 6624: 62409-62409
    18 T. W. Yeow, KLE. Law, A. Goldenberg. MEMS Optical Switches. IEEE Commun. Mag. 2001, 39(11): 158~163
    19 P. D. Dobbelaere, K. Falta, L. Fans, S. Gloeckner, S. Patra. Digital MEMS for Optical Switching. IEEE Commun. Mag. 2002, 40(3): 88~95
    20 OMM Inc. http://www.omminc.com/products/datasheet.html
    21 P. B. Chu, S.-S. Lee, S. Park. MEMS: the Path to Large Optical Cross-Connects. IEEE Commun. Mag. 2002, 40(3): 80~87
    22 L. Y. Lin, E. L. Goldstein. Opportunities and Chanllenges for MEMS in Lightwave Communications. IEEE Journal of Selected Topics in Quantum Electronics. 2002, 8(1): 163~172
    23 M. C. Wu. Micromaching for Optical and Optoelectronic Systems. Proc. of IEEE. 1997, 85(11): 1833~1856
    24 N. Anwar, C. Themistos, B. M. Azizur Rahman, Kenneth T. V. Grattan. Design Considerations for an Electrooptic Directional Coupler Modulator. J. of Lightwave Technol. 1999, 17(4): 598~605
    25 W. Y. Hwang, M. C. Oh, H. M. Lee, H. Park, J. J. Kim. Polymeric 2×2 Electrooptic Switch Consisting of Asymmetric Y Junctions and Mach-Zehnder Interferometer. IEEE Photonics Technol. Lett. 1997, 9(6): 761~763
    26 R. Chakraborty, J. C. Biswas, S. K. Lahiri. Analysis of Directional Coupler Electrooptic Switches Using Effective-Index-Based Matrix Method. Opt. Commun. 2003, 219(1-6): 157~163
    27赵秀丽.硅基二氧化硅马赫-曾德尔干涉仪型热光开关.哈尔滨工业大学博士论文. 2004: 3~11
    28 M. Hoffmann, P. Kopka, E. Voges. Thermooptical Digital Switch Arrays in Silica-on-Silicon with Defined Zero-Voltage State. J. of Lightwave Technol. 1998, 16(3): 395~400
    29 R. L. Espinola, M. C. Tsai, J. T. Yardley. Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator. IEEE Photonics Technol. Lett. 2003, 15(10): 1366~1368
    30万助军,吴亚明,李四华.基于多模干涉耦合器的集成热光开关实验研究.光学学报. 2006, 26 (8): 1187~1191
    31梁琨,陈旺,吴伯瑜,罗淑云,殷建军,叶钢.聚合物绝热分叉型数字热光开关.半导体学报. 2006, 27 (4): 747~750
    32 Yang Di, Yu Jin-zhong, Chen Shao-wu. An Improvement on 2*2 Silico-on-Insulator Mach-Zehnder Thermo-Optical Switch. ACTA Photonica Sinaca. 2008, 5 (5): 931~934
    33 B. Fracasso, J. L. D. de la Tocnaye, M. Razzak, C. Uche. Design and Performance of a Versatile Holographic Liquid-Crystal Wavelength- Selective Optical Switch. J. of Lightwave Technol. 2003, 21(10): 2405~2411
    34 E. Gros, L. Dupont. Ferroelectric Liquid Crystal Optical Waveguide Switches Using the Double-Refraction Effect. IEEE Photon. Technol. Lett. 2001, 13(2): 115~117
    35 Y. J. Liu, X. W. Sun, J. H. Liu. A Polarization Insensitive 2×2 Optical Switch Fabricated by Liquid Crystal-Polymer Composite. Appied Physics Lett. 2005, 86(041115): 1~3
    36 Xu PZ, Chigrinov V, Kwok HS. Optical analysis of a liquid-crystal switch system based on total internal reflection. Journal of the Optical Society OF America A-Optics Image Science and Vision. 2008, 25(4): 866~873
    37 J. E. Fouquet, S. Venkatesh, M. Troll, D. Chen, H. F. Wong, P. W. Barth. A Compact, Scalable Cross-Connect Switch Using Total Internal Reflectiondue to Thermally-Generated Bubbles. Lasers and Electro-Optics Society Annual Meeting, 1998, Orlando, FL, 2: 169~170
    38 M. Makihara, M. Sato, F. Shimokawa, Y. Nishida. Micromechanical Optical Switches Based on Thermocapillary Integrated in Waveguide Substrate. J. of Lightwave Technol. 1999, 17(1): 14~18
    39 S. Venkatesh, R. Haven, D. Chen, H. L. Reynolds, G. Harkins, S. Close, M. Troll, J. E. Fouquet, D. Schroeder, P. McGuire. Recent Advances in Bubble-Actuated Cross-Connect Switches. The 4th Pacific Rim Conference on Lasers and Electron-Optics. 2001, Chiba, 1: I-414~I-415
    40 F. Wehrmann, C. Harizi, H. Herrmann, U. Rust, W. Sohler, S. Westenhofer. Integrated Optical, Wavelength Selective, Acoustically Tunable 2×2 Switches (Add-Drop Multiplexers) in LiNbO3. IEEE J. of Selected Topics in Quantum Electronics. 1996, 2(2): 263~269
    41 D. A. Smith, A. Dalessandro, J. E. Baran, et al. Multiwavelength Performance of an Apodized Acousto-optic Switch. J. of Lightwave Technol. 1996, 14(9): 2044~2051
    42 J. L. Jackel, J. E. Baran, G. K. Chang, M. Z. Iqbal,G. H. Song, W. J. Tomlinson, D. Fritz, R. Ade. Multichannal Operation of AOTF Switches- Reducing Channel to Channel Interaction. IEEE Photon. Technol. Lett. 1995, 7(4): 370~372
    43 E. Almstroem. Experimental and Analystical Evaluation of Packaged 4×4 InGaAsP/InP Semicconductor Optical Amplifier Gate Switch Matrices for Optical Networks. J. of Lightwave Technol. 1996, 14(6): 996~1004
    44刘国祥,胡力,叶昆珍. 2×2全光纤声光开关的实验研究.激光技术. 2006, 30 (1): 53~55
    45陆文杰,陈振宜,郭强,沈育青.基于2×2光纤耦合器和磁流体薄膜的磁光开关理论与实验.上海大学学报(自然科学版). 2007, 6 (3):245~248
    46尚丹,武保剑.一种具有动态组播功能的新型磁光开关研究.磁性材料及期间. 2007, 38 (3): 13~16
    47翁梓华,陈智敏,朱赟,王义进,杨国光,黄元庆.高速微型1×2磁光开关.光子学报. 2006, 35 (3): 354~358
    48 T. Chien, I. Winston. Dynamical Range and Switching Speed Limitations of N×N Optical Packet Switch Based on Low-Gain Semiconductor OpticalAmplifiers. J. of Lightwave Technol. 1996, 14(4): 525~533
    49刘德明,胡晓君,徐文超,黄德修.基于SOA的有源光开关技术的研究.华中理工大学学报. 1999, 27(10): 4~6
    50 Dagenais M, Ryu G, Saini S, Toudeh-Fallah F, Gyurek R, Donner P . Semiconductor optical amplifier switch matrices for optical header recognition. Conference on Optoelectronic Integrated Circuits X San Jose, CA, JAN 21-23, 2008, 6897: U145-U157
    51刘爱明,吴重庆,王秀彦.光控光开关的发展和应用.光通信技术. 2002, 26(1): 24~27
    52陈克坚,杨爱龄,江晓清,王明华.皮秒级光控光开关研究现状.光通信技术. 2003, 27(1): 38~41
    53 S. M. Jensen. The Nonlinear Coherent Coupler. IEEE Trans. Of Microwave Theory and Techn. 1982, MTT-30(10): 1568~1571
    54 R. Tewari, K. Thyagarajan. Analysis of Tunable-Single Mode Fiber Directional Couplers Using Simple and Accurate Relations. J. of Lightewave Technol. 1986, LT-4(4): 386~390
    55 D. R. Heatley, E. M. Wright, J. Ehrlich, G. I. Stegeman. Nonlinear Directional Coupler with a Diffusive Kerr-Type Nonlinearity. Opt. Lett. 1988, 13(5): 419~421
    56 A. W. Snyder, Y. Chen. Influence of Intensity-Dependent Fields on Nonlinear Coupler. Electro. Lett. 1989, 25(8): 502~504
    57 A. W. Snyder, D. J. Mitchell, L. Poladian, D. R. Rowland, Y. Chen. Physics of Nonlinear Fiber Coupler. J. Opt. Soc. Am. B. 1991, 8(10): 2102~2118
    58 Y. Chen. Mismatched Nonlinear Coupler with Saturable nonlinearity. J. Opt. Soc. Am. B. 1991, 8(5): 986~992
    59 D. Artigas, F. Dios. Phase Space Description of Nonlinear Directional Coupler. IEEE J. of Quantum Electonics. 1994, 30(7): 1587~1595
    60 K. Yasumoto, H. Maseda, N. Mackawa. Coupled Mode Analysis of an Asymmetric Nonlinear Directional Coupler. J. of Lightwave Technol. 1996, 14(4): 628~633
    61 Y. F Wang, Z. H. Wang. Simplified Solution of Nonlinear Optical Directional Coupler.光子学报. 1999, 28(7): 617~621
    62王又法,陆永.关于非线性光波导耦合器的解.上海海运学院学报. 1999,20(2): 13~18
    63 Y. Wang, C. K. Lee, J. Kuang. Phase Jump in an Optical Directional Coupler. J. Opt. Soc. Am. B. 2001, 18(11): 1554~1562
    64 F. Farjady, M. G. F. Wilson, P. M. Radmore. Matrix Coupled Mode Theory Model of Strongly-Coupled Multiwaveguide Optical Nonlinear Directional Couplers. Optical and Quantum Electronics. 2001, 33: 173~188
    65 M. Liu, K. D. Chiang, P. Shum. Propagation of Short Pulses I an Active Nonlinear Two-Core Optical Fiber. IEEE J. of Quantum Electronics. 2004, 40(11): 1597~1602
    66 Liu ZH, Yang J, Wu ZF, Yuan LB. A novel in-fiber optical switch based on two-core optical fiber. 2nd Conference on Optoelectronic Devices and Integration Beijing, PEOPLES R CHINA, NOV 12-15, 2007, 6838: F8380-F8380
    67 Y. Wang, C. K. Lee. Effects of the Linear Mismatch and Nonlinear Asymmetry in the Nonlinear Coupler. Applied Physics B. Lasers and Optics 2001, 72: 417~424
    68 A. W. Snyder, A. Ankiewicz. Optical Fiber Couplers—Optimum Solution for Unequal Cores. J. of Lightwave Technol. 1988, 6(3): 463~474
    69 W. Samir, S. J. Garth, C. Pask. Theory of Fused-Tapered Nonlinear Optical Fiber Couplers. Applied Opt. 1993, 32(24): 4513~4516
    70 T. A. Birks, C. D. Hussey. Control of Power-Splitting Ratio in Asymmetric Fused-Tapered Singel Mode Fiber Couplers. Opt. Lett. 1988, 13(8): 681-683
    71 C. J. Setterlind, L. Thylen. Directional Coupler Switches with Optical Gain. IEEE J. of Quantum Electronics. 1986, QE-22(5): 595~602
    72 A. W. Snyder, Y. Chen. Nonlinear Fiber Coupler: Switches and Polarization Beam Splitters. Opt. Lett. 1989, 14(10):517~519
    73 C.C. Yang. All-Optical Ultrafast Logic Gates that Use Asymmetric Nonlinear Directional Couplers. Opt. Lett. 1991, 16(21): 1641~1643
    74 A. T. Pham, L. N. Binh. All-Optical Modulation and Switching Using a Nonlinear-Optical Directional Coupler. J. Opt. Soc. Am. B. 1991, 8(9): 1914~1931
    75 C. C. Yang, A. J. S. Wang. Asymmetric Nonlinear Coupling and Its Applications to Logic Functions. IEEE J. of Quantum Electronics. 1992,28(2): 479~487
    76 P. L. Chu, B. A. Malomed, G. D. Peng. Soliton Switching and Propagation in Nonlinear Fiber Couplers: Analytical Results. J. Opt. Soc. Am. B. 1993, 10(8): 1379~1385
    77 W. Samir, C. Pask, S. J. Garth. Signal Switching by a Control Beam in a Nonlinear Coupler. J. Opt. Soc. Am. B. 1994, 11(11): 2193~2205
    78 P. B. Hansen, A. Kloch, T. Aakjer, T. Rasmussen. Switching Power Reduction in Asymmetrically Designed Nonlinear Directional Coupler. Opt. Commun. 1995, 119: 178~182
    79 M. K. Davis, M. J. F. Digonnet. Switching Power Reduction Using a Pumped Nonlinear Directional Coupler. IEEE Photonics Technol. Lett. 1996, 8(10): 1328~1330
    80 S. G. Farwell, M. N. Zervas, R. I. Laming. 2×2 Fused Fiber Null Couplers with Asymmetric Waist Cross Sections for Polarization Independent (<0.01dB) Switching. J. of Lightwave Technol. 1998, 16(9): 1671~1679
    81李力,王又法.单端输入非线性波导耦合器的稳定性及其自开关效应.中国激光. 1998, A25(11): 993~997
    82王又法,王奇,鲍家善.全光数字光开关和光限幅器.光学学报. 1999, 19(5): 703~708
    83王学仁.对非线性二波导耦合器光开关的分析.量子电子学报. 2000, 17(3): 215~218
    84 W. Shin, S. Choi, K. Oh. All-Fiber Wavelength and Mode-Selective Coupler for Optical Interconnections. Opt. Lett. 2002, 27(21): 1884~1886
    85 M. J. Potasek, Y. Yang. Multiterabit-per-Second All-Optical Switching in a Nonlinear Directional Coupler. IEEE J. of Selected Topics in Quantum Electronics. 2002, 18(3): 714~721
    86 G. J. Liu, B. M. Liang, G. L. Lin, Q. Li. Switching Characteristics of Variable Coupling Coefficient Nonlinear Directional Coupler. J. of Lightwave Technol. 2004, 22(6): 1591~1597
    87 B. K. Nayer, N. Finlayson, N. J. Doran, S. T. Davey, D. L. Willianms, J. W. Arkwright. All Optical Switching in a 200m-Twin Core Fiber nonlinear M-Z Interferomenter. Opt. Lett. 1991, 16(6):408~410
    88 J. E. Heebner, R. W. Boyd. Enhanced All-Optical Switching by Use ofNonlinear Fiber Ring Resonantor. Opt. Lett. 1999, 24(12): 847~849
    89 C. F. Li, A. Bananej. Finesse-Enhanced Ring Resonator Coupled Mach-Zehnder Interferometer All-Optical Switches. Chinese Physics Lett. 2003, 21(1): 90~93
    90 A. Bananej, C. F. Li. Controllable All-Optical Switch Using an EDF-Ring Coupled M-Z Interferometer. IEEE Phonton. Technol. Lett. 2004, 16(9): 2102~2104
    91 S. Blair, J. E. Heebner, R. W. Boyd. Beyond the Absorption Limited Nonlinear Phase Shift with Microing Resonators. Opt. Lett. 2002, 27(5): 357~359
    92 A. Yariv. Critical Coupling and Its Control in Optical Waveguide Ring Resonator Systems. IEEE Photon. Technol. Lett. 2002, 14(4): 483~485
    93 Ghayour R , Taheri AN, Fathi MT. Integrated Mach-Zehnder-based 2x2 all- Optical switch using nonlinear two-mode interference waveguide. Applied Optics. 2008, 47 (5): 632-638
    94 Yupapin PP, Saeung P, Chunpang P. An alternative Optical switch using Mach Zehnder interferometer and two ring resonators. International Workshop and Conference on Photonics and Nanotechnology Pattaya, THAILAND, DEC 16-18, 2007, 6793 : P7930-P7930
    95 Minh H, Ghassemlooy Z, Ng WP. An ultrafast with high contrast ratio 1x2 all-Optical switch based on Tri-arm Mach-Zehnder employing all- Optical flip-flop. IEEE International Conference on Communications (ICC 2007) Glasgow, SCOTLAND, JUN 24-28, 2007, 1-14: 2257-2262
    96 N. J. Doran, D. Wood. Nonlinear Optical Loop Mirror. Opt. Lett. 1988, 31(1): 56~58
    97 D. B. Mortimore. Fiber Loop Reflectors. J. of Lightwave Technol. 1988, 6(7): 1217~1224
    98 M. G. Kane, W. Glesk, J. P. Sokoloff, P. R. Prucnal. Asymmetric Optical Loop Mirror: Analysis of All-Optical Switch. Applied Opt. 1994, 33(29):6833~6841
    99 D. J. Richardson, R. L. Laming, D. N. Payne. Very Low Threshold Sagnac Switch Incorporating an Erbium Doped Fiber Amplifier. Electron. Lett. 1990, 26(21): 1779~1781
    100 P. L. Chu, B. Wu. Optical Switching in Twin-Core Erbium-Doped Fibers. Opt. Lett. 1992, 17(4): 255~257
    101 Y. Imai, N. Matsuda. Nonlinear Optical Fiber Coupler by Use of Er3+ Doped Fiber. SPIE. 1993, 1983: 875
    102 R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw. Analysis of Nonlinear Optical Switching in an Erbium-Doped Fiber. J. of Lightwave Technol. 1993, 11(9): 1416~1424
    103 F. D. Pasquale, H. E. H. Figueroa. Pump Controlled All-Optical Switching by Using High-Concentration Er3+ Doped Nonlinear Coupler. Electron. Lett. 1994, 30(3): 232~233
    104 P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins. Low-Power All-Optical Broad-Band Switching Device Using Ytterbium-Doped Fiber. IEEE Photonics Technol. Lett. 1996, 3(8): 1032~1034
    105 Yi L L, Hu W S, Dong Y, Jin Y H, Guo W, Sun W Q. A polarization independe subnanosecond 2x2 multicast-capable optical switch using a Sagnac interferometer. 2008, 20 (5-8): 539-541
    106 V. R. Almeeida, C. A. Barrios, R. R. Panepucci, M. Lipson. All-Optical Control of Lighte on Silicon Chip. Nature. 2004, 431: 1081~1084
    107 J. Sarma, M. R. Green, I. Middlemst, I. Flint. Semiconductor Waveguide Optical Routing Device. AIAA-94-1110-CP: 1308~1314
    108 J. H. Lee, D. A. Wang, H. J. Chiang, D. W. Huang, S. Gurtler. Nonlinear Switching in an All Semiconductor-Optical-Amplifier Loop Device. IEEE Photonics Technol. Lett. 1999, 11(2): 236~238
    109 S. Femtosecond Switching with Semiconductor-Optical-Amplifier Based Symmetric Mach-Zehnder Type All-Optical Switch. App. Phy. Lett. 2001, 78(25): 3929~3931
    110赵旭,王明华.超高速半导体全光开关技术.光通信研究. 2001, (1): 58~62
    111 C. Schubert, J. Berger, S. Diez, H. J. Ehrke, R. Ludwig, U. Feiste, C. Schmidt, H. G. Weber, G. Toptchiyski, S. Randel, K. Petermann. Comparison of Interferometer All-Optical Switches for Demultiplexing Applications in High-Speed OTDM Systems. J. of Lightwave Technol. 2002, 20(4): 618~624
    112 H. Ju, S. Zhang, D. Lenstra, et al. SOA-Based All-Optical Switch with Subpicosecond Full Recovery. Opt. Exp. 2005, 13(3): 942~947
    113 Vilson R Almeida, Carlos A. Barrios. All-optical switching on a silicon chip Opt. Lett. 2004, 29 2867~2869
    114 Vilson R Almeida, Carlos A Barrios, Robert R Panepucci and michal Lipson All-optical control of light on a silicon chip nature, 2004, 431 1081~1084
    115 Agrawal G P 2001 Application of Nonlinear Fiber Optics (New York: Academic) pp 164~166
    116 R. A. Betts, T Tjugiarto, Y. L. Xue and P. L. Chu . Nonlinear refractive index in erbium doped optical fiber: theory and experiment IEEE J. Quantum Electron. 1991, 27 908~1013
    117 K. Wada, H. C. Luan, D. R. C. Lim and L. C. Kimerling. On-chip interconnection beyond semiconductor roadmap: silicon microphotonics Proc. SPIE 2002, 4870: 437~443
    118 T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, and Chi H. Lee All-optical switching in a laterally coupled microring resonator by carrier injection IEEE Photon. Technol. Lett. 2003, 15: 36~38
    119 V Van, T A Ibrahim, K Ritter, P P Absil, F G Johnson, R Grover, J Goldhar, and P T Ho, All-Optical Nonlinear Switching in GaAs–AlGaAs Microring Resonators. IEEE Photon. Technol. Lett. 2002, 14: 74~76
    120 T A Ibrahim, W Cao, Y Kim, J Li, J Goldhar, P T Ho, and Chi H Lee Lightwave switching in semiconductor microring devices by free carrier injection J. Lightwave Technol. 2003, 21: 2997~3003
    121 Ansheng Liu, Richard Jones and Ling Liao. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor nature, 2004, 427: 625~618
    122 Wood. J. Si nanophotonic switch brings on-chip optical networks closer. MATERIALS TODAY , 2008 , 11 (5) 10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700