用户名: 密码: 验证码:
顺电相钽铌酸钾锂晶体的生长及电控光折变性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年来,顺电相电光晶体由于其在光纤通讯器件、光学信息处理等方面的应用而被广泛研究。其中,顺电相钽铌酸钾锂晶体(K1-yLiyTa1-xNbxO3,KLTN)在外加电场作用下可以大幅度提升其光折变性能,具有衍射效率高、电场响应速度快(几个纳秒)、二次电光系数极大等优点,被认为是用作电控全息器件的最佳材料。但生长高光学质量的KLTN晶体十分困难,严重阻碍了其物理性质和应用的研究。本论文对顺电相KLTN晶体及其掺杂晶体的生长、电光及电控光折变性质做了系统的理论和实验研究。
     采用顶部籽晶助溶剂法生长了多种组分及掺杂的KLTN晶体。研究了适宜晶体生长的温场和工艺条件,生长态晶体组分均匀、无开裂、无生长条纹,等径部分的尺寸达到15×15×20mm3。在生长KLTN晶体的基础上,用钠代替锂元素,进行了新晶体钽铌酸钾钠的生长探索,依据固-液界面的扩散理论,讨论了部分钽铌酸钾钠晶体显兰色的原因。
     系统地研究了KLTN晶体的基本物理性质。使用X射线衍射技术,分析了不同组分KLTN晶体在室温下的结构,研究了其晶格参数随组分变化的规律。利用电桥法研究了KLTN晶体的介电性质,其介电系数随温度的变化遵守Curie-Weiss定律。依此规律判断了晶体的居里温度,给出了居里温度随组分变化的规律。利用最小偏向角法,精确地测量了KLTN晶体的折射率,得到了KLTN晶体折射率色散的塞尔迈耶尔方程。采用紫外-可见光-近红外光栅光谱仪测量了KLTN晶体的光学透过性能,确定了晶体的透光范围。根据KLTN晶体紫外吸收边的位置,计算了晶体的禁带宽度,并研究了掺杂过渡元素对晶体的禁带宽度的影响。
     使用折射率椭球法,计算了不同外加电场作用时顺电相KLTN晶体的折射率变化。分析了用Mach-Zehnder干涉法测量晶体电光系数的原理及影响实验精度的因素。设计、搭建了自动扫描Mach-Zehnder电光系数测量系统,研究了KLTN晶体的电光性质。发现KLTN晶体在居里温度附近具有很大的二次电光系数s1 1,其数值比其它电光材料高1-2个量级。根据DiDomenico和Wemple的理论,解释了KLTN晶体电光系数随温度变化的原因,并计算了晶体的极光系数。发现在误差范围内KLTN晶体的极光系数是个常量,不随温度变化。
     依据光折变效应的带输运模型,结合晶体的物性参量,模拟了顺电相KLTN晶体中的空间电荷场。研究了空间电荷场随晶体的物性参数、外加电场及光栅间距等因素变化的规律。讨论了对称透射二波耦合光路配置下,有外加电场作用时,顺电相KLTN晶体内相位光栅的衍射性质,给出了二波耦合增益系数及光栅衍射效率的表达式。
     采用二波耦合的方法,系统的研究了掺杂过渡元素对KLTN晶体光折变性能的影响。首次研究了顺电相单掺锰、铁KLTN晶体的光折变性质,由二波耦合能量转移的方向,确定了晶体的光激发载流子类型。与传统的掺铜KLTN相比,单掺锰、铁的KLTN晶体具有更高的衍射效率,更快的光折变响应时间以及更高的光折变灵敏度。尤其是掺锰的KLTN晶体,是一种很有前途的电控光折变晶体。
In recent years, paraelectric electro-optic crystals have attracted great attentions due to their potential applications in optical communication and optical information processing. Potassium lithium tantalate niobate (K1-yLiyTa1-xNbxO3, KLTN) has been considered as the best material for electroholographic applications. It exhibits enhanced photorefractive properties under external electric field, for combining the advantages of high diffraction efficiency, fast electro-optic response time (about 7 ns) and very large Kerr coefficients. However, the research on the physical properties and applications of KLTN has been hindered by the difficulty on growing high optical quality crystals. In this thesis, we investigated the growth, electro-optic and voltage controlled photorefractive properties of KLTN theoretically and experimentally.
     The top seed solution growth method was reviewed. The crystal growth system was designed and constructed according to the habits of crystal growth. The optimal growth procedure was investigated, and crystals with several compositions and dopant types were obtained. The crystals were with high composition uniformity, and no crack and striation was observed. The size of the as-grown crystal is up to 15×15×20 mm3. Basing on the experience of growing KLTN, we developed a new crystal sodium lithium tantalate niobate by substituting Na for Li. A solid/liquid interface diffusion model was introduced to explain the experimental results that some sodium lithium tantalate niobate crystals were blue.
     The physical properties of KLTN were investigated in detail. The structures of KLTN crystals were studied by using X-ray powder diffraction method. The crystals’lattice parameters were studied as a function of crystal composition. The dielectric coefficient of KLTN was studied; it changes with various temperatures obeying the Curie-Weiss law. The Curie temperatures of KLTN crystals were determined according to this law, and the relation between Curie temperature and crystal composition was obtained. The refractive indices of KLTN were measured accurately by the minimum deviation method. The Sellmeier’s equation of refractive indices for KLTN was obtained in terms of least-squares fit. The optical transmission properties were investigated by a UV-Visible-NIR spectrometer, the absorption spectra of pure and doped KLTN were determined. Energy band gap of the crystals were calculated according to the crystals’ultraviolet absorbing edge.
     The refractive index changes under different external fields were calculated by using index ellipsoid. An auto scan Mach-Zehnder interferometer has been designed and built for measuring the quadratic electro-optic (QEO) properties of paraelectric KLTN. KLTN has large QEO coefficient s1 1 which is two orders higher than that of the other electro-optic materials. The reason of that QEO coefficient of KLTN changed with temperatures was explained by using the theory proposed by DiDomenico and Wemple. The polarization-optic coefficients of KLTN were calculated, and they didn’t change with temperature within the experimental errors.
     The space-charge field of paraelectric KLTN was simulated using band transport model. The influence of the external field and grating period on the space-charge field was discussed. The diffraction behavior of volume phase grating in paraelectric KLTN was investigated under co-directional two-wave coupling configuration. The expression of two-wave coupling gain coefficient and diffraction efficiency was derived.
     The influence of transition metal dopant on photorefractive properties of KLTN was investigated using the two-wave mixing technique. The photorefractive properties of Mn doped and Fe doped KLTN were demonstrated for the first time, the dominant charge carrier was identified from the direction of two-wave coupling energy transfer. Comparing with the traditional Cu doped KLTN, Mn doped and Fe doped KLTN have higher diffraction efficiency, faster photorefractive response time and higher photorefractive sensitivity. Especially the Mn doped KLTN is a very promising voltage controlled photorefractive crystal.
引文
1陈如明.未来信息通信网络发展战略思考(上).邮电设计技术. 2007, 05: 1~8
    2 H. Soto, D. Erasue, G. Guekos. 5-Gb/s XOR Optical Gate Based on Cross-polarization Modulation in Semiconductor Optical Amplifiers. IEEE Photon. Technol. Lett. 2001, 13: 335~337
    3 K. Chan, C. K. Chan, L. K. Chen, F. Tong. Demonstration of 20-Gb/s All-optical XOR Gate by Four-wave Mixing in Semiconductor Optical Amplifier with RZ-DPSK Modulated Inputs. IEEE Photon. Technol. Lett. 2004, 16: 897~899
    4 L. Ruan, H. Luo, C. Liu. A Dynamic Routing Algorithm with Load Balancing Heuristics for Restorable Connections in WDM Networks. IEEE Journal on Selected Areas in Communications. 2004, 22(9): 1823~1829
    5 P. Saengudomlert, E. Modiano, R. Gallager. Dynamic Wavelength Assignment for WDM All-Optical Tree Networks. IEEE/ACM Transactions on Networking. 2005, 13(4): 895~905
    6 I. Kang, C. Dorrer, J. Leuthold. All-optical XOR Operation of 40Gb/s Phase-shift-keyed Data Using Four-wave Mixing in Semiconductor Optical Amplifier. Electron Lett. 2004, 40: 496~498
    7 X. Chu, B. Li. Dynamic Routing and Wavelength Assignment in the Presence of Wavelength Conversion for All-Optical Networks. IEEE/ACM Transactions on Networking. 2005, 13(3): 704~715
    8 X. Yang, B. Ramamurthy. Dynamic Routing in Translucent WDM Optical Networks: The Intradomain Case. IEEE Journal of Lightwave Technology. 2005, 23(3): 955~971
    9赵梓森. OFC’2000世界光纤通信大会概要(续).光纤通信技术. 2001, 15(9): 10~12
    10席鹏.全光开关新途径.激光与光电子学进展, 2002, 39(7): 9~12
    11胡军武,吴涛.光开关光开关阵列技术的发展研究.光通信研究. 2002, (1): 58~62
    12 A. Pierangelo, E. DelRe, A. Ciattoni, G. Biagi, E. Palange, A. Agranat. Separating Polarization Components through the Electro-optic Read-out of Photorefractive Solitons. Opt. Express. 2007, 15(21): 14283~14288
    13 E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, A. J. Agranat. Beam Shaping and Effective Guiding in the Bulk of Photorefractive Crystals through LinearBeam Dynamics. Appl. Phys. Lett. 2007, 91(8): 081105
    14 A. Agranat, L. Secundo, N. Golshani, M. Razvag. Wavelength-selective Photonic Switching in Paraelectric Potassium Lithium Tantalate Niobate. Optical Materials. 2001, 18: 195~197
    15 A. Agranat. Optical Lambda-switching at Telecom Wavelengths Based on Electroholography. Infrared holography for optical communications. 2002, 86: 129~156
    16刘思敏,郭儒,许京军.光折变非线性光学及其应用.科学出版社, 2004: 2~4
    17 A. Ashkin, G. Boyd, J. Dziedzie, R. Smith. Optically Induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett. 1968, 9: 72~74
    18 C. Gu, Y. Xu, Y. Liu, J. J. Pan, F. Zhou, H. He. Applications of Photorefractive Materials in Information Storage, Processing and Communication. Opt. Mater. 2003, 23: 219~227
    19 D. Brady, D. Psaltis. Holographic Interconnections in Photorefractive Waveguides. Appl. Opt. 1991, 30: 2324~2333
    20 D. Psaltis, F. Mok, Lihys. Nonvolatile Storage in Photorefractive Crystals. Opt. Lett. 1994, 19(3): 210~212
    21 G. W. Burr, F. H. Mok, D. Psaltis. Large Scale Volume Holographic Storage in the Long Interaction Architecture. Proc. SPIE. 1994, 2297: 402~414
    22 J. Feinberg, W. W. Hellwarth. Phase-conjugating Mirror with Continuous-wave Gain. 1980, 5: 519~521
    23 J. Feinberg. Self-pumped Continuous-wave Phase Conjugator Using Internal Reflection. Opt. Lett. 1982, 7: 486~488
    24 J. Feinberg. Interferometer with a Self-pumped Pumped Phase-conjugating Mirror. Opt. Lett. 1983, 8: 569~571
    25 G. A. Rakuljic, V. Leyva, A. Yariv. Optical Data Storage Using Orthogonal Wavelength Multiplexed Volume Holograms. Opt. Lett. 1992, 17: 1741~1743
    26 A. S. Kewitsch, G. A. Rakuljic, P. A. Willems, A. Yariv. All-fiber Zero-insertion-loss Add-drop Filter for Wavelength-division Multiplexing. Opt. Lett. 1998, 23: 106~108
    27 S. Breer, K. Buse. Wavelength Demultiplexing with Volume Phase Holograms in Photorefractive Lithium Niobate. Appl. Phys. B. 1998, 66: 339~345
    28 S. Breer, H. Voqt, I. Nee, K. Buse. Low-crosstalk WDM by Bragg Diffraction from Thermally Fixed Reflection Holograms in Lithium Niobate. Electronics Letters. 1998, 34: 2419~2421
    29 R. Muller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera. Tunning of Photorefractive Interference Filters in LiNbO3. J. Phys. D: Appl. Phys. 1994, 27:1628~1632
    30 R. James, C. Wah, K. Iizuka, H. Shimotahira. Optically Tunable Optical Filter. Appl. Opt. 1995, 34: 8230~8235
    31李铭华,杨春晖,徐玉恒.光折变晶体材料科学导论.科学出版社, 2003: 2~8
    32 A. Gumennik, H. Iian, R. Fathei, A. Israel, A. J. Agranat, I Shachar, M. Hass. Design Methodology of Refractive Index Engineering by Implantation of High-energy Particles in Electro-optic Materials. Appl. Opt. 2007, 46(19): 4132~4137
    33 A. Bitman, N. Sapiens, L. Secundo, A. J. Agranat, G. Bartal, M. Segev. Electroholographic Tunable Volume Grating in the g 44 configuration. Opt. Lett. 2006, 31(19): 2849~2851
    34 X. Wang, J. Wang, Y. Yu, H. Zhang, R. I. Boughton. Growth of Cubic KTa1-xNbxO3 Crystal by Czochralski Method. J. Cryst. Growth. 2006, 293: 398~403
    35 A.J. Agranat, M. Razvag, M. Balberg, V. Leyva. Dipolar Holographic Gratings Induced by the Photorefractive Process in Potassium Lithium Tantalate Niobate at the Paraelectric Phase. Journal of the Optical Society of America B-Optical Physics. 1997, 14(8): 2043~2048
    36 X. L. Tong, R. Hofmeister, M. Zhang, A. Yariv, A. Agranat, V. Leyva. Fixing of Volume Holograms in Ferroelectric K1-yLiyTa1-xNbxO3, Optics Letters. 1996, 21(22): 1860~1862
    37 A. J. Agranat, M. Razvag, M. Balberg. Photorefractive Hologram Fixing by a 4K Cooldown to the Phase Transition in K1-xLixTa1-yNbyO3. Appl. Phys. Lett. 1996, 68(18): 2469~2471
    38 X. L. Tong, A. Yariv, M. Zhang, A. J. Agranat, R. Hofmeister, V. Leyva. Ferroelectric Domain Gratings and Barkhausen Spikes in Potassium Lithium Tantalate Niobate. Appl. Phys. Lett. 1997, 70(17): 2241~2243
    39 V. A. Trepakov, L. Jastrabik, S. Kapphan, E. Giulotto, A. J. Agranat. Phase Transitions, Related Properties and Possible Applications of (K,Li)(Ta,Nb)O3. Opt. Mater. 2002, 19(1): 13~21
    40 R. Hofmeister. Growth and Applications of Photorefractive Postassium Lithium Tantalate Niobate (KLTN). California Institute of Technology. 1993: 6
    41 A. J. Agranat, C. E. M. de Olivera, G. Orr. Dielectric Electrooptic Grating in Potassium Lithium Tantalate Niobate. J. Non-cryst. Solids. 2007, 353: 4405~4410
    42 A. Pierangelo, E. DelRe, A. Ciattoni, G. Biagi, E. Palange, A. Agranat. Separating Polarization Components through the Electro-optic Read-out ofPhotorefractive Solitons. 2007, 15: 14283~14288
    43 H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, M. Hass. Submerged Waveguide Constructed by the Implantation of C-12 Ions in Electro-optic Crystals. 2006, 89: 241130
    44 R. Hofmeister, A. Yariv, A. Agranat. Growth and Characterization of the Perovskite K1-yLiyTa1-xNbxO3:Cu. J. Crys. Growth. 1993, 131: 486~494
    45 M. Sasaura, T. Imai, H. Kohda, S. Tohno, M. Shimokozono, H. Fushimi, K. Fujiura, S. Toyoda, K. Enbutsu, A. Tate, K. Manabe, T. Matsuura, T. Kurihra. TSSG Pulling and LPE Growth of KTa1-xNbxO3 for Optical Waveguides. J. Crys. Growth. 2005, 275: e2099~e2103
    46 de Oliveira, G. Orr, N. Axelrold, A. J. Agranat. Controlled Composition Modulation in Potassium Lithium Tantalate Niobate Crystals Grown by Off-centered TSSG Method. J. Cryst. Growth. 2004, 273: 203~207
    47 R. Ilangovan, G. Ravi, C. Subramanian, P. Ramasamy, S. Sakai. Growth and Characterization of Potassium Tantalate Niobate Single Crystals by the Step-cooling Technique. J. Crys. Grow. 2002, 237-239: 694~699
    48 V. I. Chani, K. Nagata, T. Kawaguchi, M. Imada, T. Fukuda. Segregation and Uniformity of KLiTaNbO3 Fiber Crystals Grown by Micro-pulling-down Method. J. Crys. Growth. 2004, 194: 374~378
    49楼慈波,许京军,陈志刚.光诱导光子晶格中非线性空间频谱整形和带隙孤子串的实现.激光与光电子学进展. 2008, 2: 11
    50武安华,徐家跃,陈红兵.氟化物激光晶体及其在固体激光器中的应用.功能材料信息. 2007, 5: 12
    51 X. Long, Z. Lin, Z. Hu, G. Wang. Polarized Spectral Characteristics and Energy Levels of Cr3+:LaSc3(BO3)4. Chem. Phys. Lett. 2004, 392: 192~195
    52王旭平,王继扬,于永贵,李静,张建秀,赵洪阳。提拉法生长立方相KTa1-xNbxO3。稀有金属,2006,30:841~845
    53王继扬,管庆才,魏景谦,刘耀岗,王民。立方相掺铜KTN晶体的生长和光折变性能。人工晶体学报,1992,21: 105~109
    54管庆才,王继扬,魏景谦,刘耀岗,蒋民华。Fe:KTN晶体的二波耦合特性研究。光学学报,1992,12:1049~1052
    55 H. Tian, C. He, Y. Shen, J. Xin, Z. Zhou. Growth and Characterization of Perovskite K1-yLiyTa1-xNbxO3:Ce. J. Rare Earths. 2006, 24: 261~263
    56 H. Tian, Z. Zhou, D. Gong, H. Wang, Y. Jiang, C. Hou. Photorefractive Properties of Paraelectric Potassium Lithium Tantalite Niobate Crystal Doped with Iron. Optics Communications. 2008, 281: 1720~1724
    57 H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, Y. Jiang. Growth and Optical Properties of Paraelectric K1-yNayTa1-xNbxO3 single crystals. Appl. Phys. B. 2008, 91: 75~7
    58 H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, C. Hou. Enhanced Photorefractive Properties of Parelectric Potassium Lithium Tantalite Niobate by Manganese Doping. J. Phys. D: Appl. Phys. 2008, 41: 09515
    59 T. Fukuda. Structural and Dielectric Studies of Ferroelectric K3Li2(TaxNb1-x)5O15. Jap. J. Appl. Phys. 1970, 9: 599~606
    60 S. Podlojenov, M. Burianek, M. Muhlberg. Czoehralski Growth and Constitutional Studies on Single Crystals of Potassium Lithium Niobate (KLN). Crystal Research and Technology. 2003, 38(12): 1015~1022
    61 Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, T. Fukuda. Growth and Characterization of K3Li2(TaxNb1-x)5)15. Appl. Phys. Lett. 1996, 68: 744~746
    62 Y. M. Abdulraheem, A. L. Gentile, O. M. Stafsudd. The Effects of Iron as a Dopant on the Dielectric Properties of Ferroelectric Potassium Tantalate Niobate (KTaxNb1-x)O3. J. Appl. Phys. 2006, 100: 104111
    63 M. Segev, A. Agranat. Spatial Solitons in Centrosymmetric Photorefractive Media. Opt. Lett. 1997, 22: 1299~1301
    64 E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, A. Agranat. One-dimensional Steady-state Photorefractive Spatial Solitons in Centrosymmetric Paraelectric Potassium Lithium Tantalate Niobate. Opt. Lett. 1998, 23: 421~423
    65 E. DelRe, M. Tamburini, M. Segev, E. Refaeli, A. Agranat. Two-dimensional Photorefractive Spatial Solitons in Centrosymmetric Paraelectric Potassium-lithium-Tantalate-Niobate. Appl. Phys. Lett. 1998, 73: 16~18
    66 B. Crosignani, E. DelRe, P. Porto, A. Degasperis. Self-focusing and Self-traping in Unbiased Centrosymmetric Photorefractive Media. Opt. Lett. 1998, 23: 912~914
    67 E. DelRe, M. Tamburini, M. Segev, R. D. Pergola, A. Agranat. Spontaneous Self-trapping of Optical Beams in Metastable Paraelectric Crystals. Phys. Rev. Lett. 1999, 83: 1954~1957
    68 A. Agranat, R. Hofmeister, A. Yariv. Characterization of a New Photorefractive Material: K1-yLyT1-xNx. Opt. Lett. 1992, 17: 713~715
    69 B. Pesach, E. Refeali, A. J. Agranat. Investigation of the Holographic StorageCapacity of Paraelectric K1-xLixTa1-yNbyO3. Opt. Lett. 1998, 23(8): 642~644
    70 F. H. Mok, G. W. Burr, D. Psaltis. System Metric for Holographic Memory Systems. Opt. Lett. 1996, 21: 896~898
    71 M. Balberg, M. Razvag, E. Refaeli, A. J. Agranat. Electric-field Multiplexing of Volume Holograms in Paraelectric Crystals. 1998, 37: 841~847
    72 A. J. Agranat. Electroholographic Artificial Neural Networks. Physika A. 1993, 200: 608~612
    73 A. J. Agranat. The Concept of Electroholography and Its Implementation in KLTN Crystals. Proc. of OSA Topical Meeting on Spatial Light Modulators. S. C. Esener. 1997: 11381~11383
    74 M. Balberg, M. Razvag, S. Vidro, E. Refaeli, A.J. Agranat. Electroholographic Neurons Implemented on Potassium Lithium Tantalate Niobate Crystals. Optics Letters. 1996, 21(19): 1544~1546
    75 B. Pesach, G. Bartal, E. Refaeli, A. J. Agranat. Free Space Optical Cross-connect Switch by Use of Electroholography. Appl. Opt. 2000, 29: 746~758
    76 A. J. Agranat, R. Kaner, G. Perpelitsa, Y. Garcia. Stable Electro-optic Striation Grating Produced by Programed Periodic Modulation of the Growth Temperature. Appl. Phys. Lett. 2007, 90(19): 192902
    77 H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, M. Hass. Submerged Waveguide Constructed by the Implantation of C-12 Ions in Electro-Optic Crystals. Applied Physics Letters. 2006, 89(24): 4132~4137
    78 C. Herzog, S. Reidt, G. Poberaj, P. Gunter. Electro-optic Phase Modulation in Ridge Waveguides of Epitaxial K0.95Na0.05Ta0.71Nb0.29O3 Thin Films. Opt. Express. 2007, 15: 7642~7652
    79 C. Herzog, S. Aravazhi, A. Guarino, A. Schneider, G. Poberaj, P. Gunter. Epitaxial K1-xNaxTa0.66Nb0.34 Thin Films for Optical Waveguiding Applications. J. OSA. B. 2007, 24: 829~832
    80 K. Motoo, F. Arai, T. Fukuda, M. Matsubara, K. Kikuta, T. Yamaguchi, S. Hirano. Touch Sensor for Micromanipulation with Pipette Using Lead-free (K, Na)(Nb,Ta)O3 Piezoelectric Ceramics. J. Appl. Phys. 2005, 98: 094505
    81陈春荣,赵新乐.晶体物理性质与检测.北京理工大学出版社,1995: 155
    82 A. J. Agranat, M. Razvag, M. Balberg, G. Bitton. Holographic Gratings by Spatial Modulation of the Curie-Weiss Temperature in Photorefractive K1-xLixTa1-yNbyO3:Cu, V. Phys. Rev. B. 1996, 55:12818~12821
    83 D. B. Maring, R. F. Tavlykaev, R. V. Ramaswamy. Effect of Crystal Phases on Refractive Index Profiles of Annealed Protonexchanged Waveguides in X-cut LiTaO3. Appl. Phys. Lett. 1998, 73:423~425
    84 Z. Li, C. M. Foster, D. Guo, H. Zhang, G. R. Bai, P. M. Baldo, L. E. Rehn. Growth of High Quality Single-domain Single-crystal Films of PbTiO3. Appl. Phys. Lett. 1994, 65: 1106~1108
    85 V. Marinova, S. Shurulinkov, M. Daviti, K. Paraskevopoulos, A. Anagnostopoulos. Refractive Index Measurements of Mixed HgBrxI2-x Single Crystals. Opt. Mater. 2000, 14: 95~99
    86 Y. Bing, R. Guo, A. S. Bhalla. Optical Properties of Relaxor Ferroelectric Crystal: Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3. Ferroelectrics. 2000, 242: 1~11
    87 V. Marinova, S. Shurulinkov, M. Daviti, K. Paraskevopoulos, A. Anagnostopoulos. Refractive Index Measurements of Mixed HgBrxI2-x Single Crystals. Opt. Mater. 2000, 14: 95~99
    88万新明,贺天厚,林迪,徐海清,罗豪甦 .铁电单晶0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3折射率的研究.物理学报. 2003, 52(9): 2319~2323
    89赵凯华,钟锡华.光学(下).北京大学出版社, 1982: 229
    90 J. C. Tauc. Optical Properties of Solid. Amsterdam: North-Holland, 1972: 372
    91 L. Mutter, M. Jazbinsek, C. Herzog, P. Gunter. Electro-optic and Nonlinear Optical Properties of Ion Implanted Waveguides in Organic Crystals. Opt. Express. 2008, 16: 731~739
    92 B. Cusack, B. Sheard, D. Shaddock, M. Gray, P. Lam, E. Whitcomb. Electro-optic Modulator Capable of Generating Simultaneous Amplitude and Phase Modulations. Appl. Opt. 2004, 43: 5079~5091
    93陈纲,廖理几.晶体物理学基础.科学出版社, 1992: 439
    94 C. Y. Huang, A. S. Bhalla, R. Y. Guo. Measurement of Microwave Electro-optic Coefficient in Sr0.61Ba0.39Nb2O6 Crystal Fiber. Appl. Phys. Lett. 2005, 86: 211907
    95 M. Ailerie, N. Theofanous, M. D. Fontana. Measurement of the Electro-optic Coefficients: Description and Comparison of the Experimental Techniques. Appl. Phys. B. 2000, 70: 317~333
    96 X. Wan, D. Y. Wang, X. Zhao, H. Luo, H. L. Chan, C. L. Choy. Electro-optic Characterization of Tetragonal (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 Single Crystals by a Modified Senarmont Setup. Solid State Commun. 2005, 134: 547~551
    97 C. He, W. Ge, X. Zhao, H. Xu, H. Luo, Z. Zhou. Wavelength Dependence of Electro-optic Effect in Tetragonal Lead Magnesium Niobate Lead Titanate SingleCrystals. J. Appl. Phys. 2006, 100: 113119
    98 Q. M. Zhang, S. J. Jang, L. E. Cross. High-frequency Strain Response in Ferroelectrics and Its Measurement Using a Modified Mach-Zehnder Interferometer. J. Appl. Phys. 1989, 65: 2807~2813
    99 W. Y. Pan, S. J. Jang. A Sensitive Modified Mach-Zehnder Interferometer for Studying Electro-optic Properties. Rev. Sci. Instrum. 1990, 61: 2109~2112
    100 Y. Lu, Z. Cheng, S. E. Park, S. F. Liu, Q. M. Zhang. Linear Electro-optic Effect of 0.88Pb(Zn1/3Nb2/3)O3-0.12PbTiO3 Single Crystal. Jpn. J. Appl. Phys. 2000, 39: 141~145
    101 Q. M. Zhang, W. Y. Pan, L. E. Cross. Laser Interferometer for the Study of Piezoelectric and Electrostrictive Strains. 1988, 63: 2492~2496
    102 J. H. Zhou, X. X. Deng, Z. Q. Cao, Q. S. Shen. Determination of Dc Kerr Coefficients of Polymer Films with Prism-optical Waveguide Configuration. Appl. Phys. Lett. 2006, 88: 021106
    103 M. Izdebski, W. Kucharczyk, R. E. Raab. On Relationships between Electro-optic Coefficients for Impermeability and Nonlinear Electric Susceptibilities. J. Opt. A: Pure Appl. Opt. 2004, 6: 421~424
    104 Y. Ding, H. J. Eichler. Determination of Quadratic Electro-optic (Kerr) Coefficients of InP:Fe at 1064 nm by Photorefractive Two-wave Mixing. Opt. Commun. 1996, 123: 642~648
    105 A. Ashkin, D. Boyd, J. M. Diedzic, R. G. Smith, A. A. Ballman, J. J. Levinsstein, K. Nassau. Optically-induced Refractive Index in Homogeneities in LiNbO3. Appl. Phys. Lett. 1966, 9: 72~74
    106 F. S. Chen, A Laser-induced Inhomogeneity of Refractive Indices KTN. J. Appl. Phys. 1967, 38(8): 3418~3420
    107 P. Yeh. Introduction to Photorefractive Nonlinear Optics. Wiley, New York.1993:82~84
    108 D. A. Temple, C. Warde. Anisotropic Scattering in Photorefractive Crystals. J. Opt. Soc. Am. B. 1986, 3(2): 337~341
    109 P. Yeh. Two-wave Mixing in Nonlinear Media. IEEE J. Quantum Electron. 1989, 25: 484~519
    110 Z. Xu. Growth and Photorefractive Properties of Mg: Ce: Fe: LiNbO3 Crystals. Optical Materials. 2008, 30(6): 920~923
    111 G. C. Valley, M. B. Klein. Optimal Properties of Photorefractive Materials for Optical Data Processing. Opt. Eng.1983, 22: 704~711
    112 P. Yeh. Fundamental Limit of the Speed of Photorefractive. Effect and Its Impact on Device Applications and Material. Research. Appl. Opt. 1987, 26: 602~604
    113 A. M. Glass, M. B. Klein, and G. C. Valley. Photorefractive Determination of the Sign of Photocarriers in InP:Fe and GaAs. Electron. Lett.1985, 21: 220~221
    114 G. Pauliat, G. Roosen. Theoretical and Experimental Study of Diffraction in Optically Active and Linearly Birefringent Sillenite Crystals. Ferroelectrics.1987, 75: 281~294
    115 A. Partovi, E. M. Garmire, Band-edge Photorefractivity in Semiconductors: Theory and Experiment. J. Appl. Phys. 1991, 69: 6885~6898

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700