用户名: 密码: 验证码:
ZnO稀磁半导体低维结构的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兼有电荷和自旋两种属性的稀磁半导体因其在自旋电子器件中的巨大潜在应用而备受关注。Dietl等人理论预测了对GaN和ZnO体系进行适量的Mn掺杂,有望获得具有室温铁磁性的稀磁半导体材料。迄今为止,对于过渡金属掺杂的GaN高温铁磁性研究相对比较完整和成熟,理论和实验方面的结果也比较统一作为另一个有望实现室温铁磁性的材料,TM掺杂ZnO体系也备受国内外许多研究小组的关注,近年来陆续有很多关于ZnO及其掺杂体系获得高居里温度的报道,但对于其磁性起源问题,一直没有一个统一的认识。作为一种具有优良光电、压电和气敏等性质的直接带隙半导体材料,ZnO在很多领域都有很广泛的应用。因此,开展ZnO体系室温铁磁性研究,对于阐明磁性起源,制备高品质、重复性好的室温铁磁性稀磁半导体材料和开发以其为基础的自旋电子器件都具有十分重要的理论和实用价值。
     目前,ZnO稀磁半导体的磁性通常认为可能来源于缺陷、过渡金属掺杂元素和磁性杂质。本论文通过以下途径开展ZnO稀磁半导体中磁学特性的研究工作:1、通过掺杂条件的变化调控样品中的金属离子掺杂浓度,研究掺杂元素对稀磁半导体磁性的影响;2、通过不同退火条件调控样品中的缺陷状态,研究不同缺陷状态下稀磁半导体磁性的变化及其依赖关系;3、通过在ZnO中掺杂不同磁学特性的离子,比较其对ZnO稀磁半导体磁性的贡献,研究不同掺杂离子及其相关化合物团簇等杂质对磁学特性的影响,探索其与磁性起源的关联。
     本论文采用水溶液化学合成方法制备一系列Mn、Ni、Cu掺杂和未掺杂ZnO样品,并对部份样品在不同气氛中进行退火处理。所制备ZnO微纳颗粒都具有(0001)优化取向的六方纤锌矿结构。较低掺杂浓度的样品结构中没有出现Mn、Ni、Cu相关杂质相,掺杂离子呈现+2价,取代Zn2+位置进入晶格结构,磁学特性测试表明,样品都呈现出了室温铁磁性。
     ZnO样品的光致发光谱在可见光区域明显存在有三个发射峰:527nm、575nm和657nm,分别对应于单电离氧空位(Vo+)、双电离氧空位(Vo++)和氧填隙(Oi)缺陷。通过室温荧光光谱测试,我们可以看到,未退火样品中的缺陷以双电离氧空位(Vo++)为主;在Ar和N2中退火后,Mn、Ni掺杂和未掺杂样品中双电离氧空位(Vo++)浓度减少,单电离氧空位(Vo+)浓度增大,其饱和磁化强度得到很大的提高。其中,在Ar气氛中热处理样品的单电离氧空位(Vo+)浓度和饱和磁化强度的增加幅度最为显著;在O2气氛中退火后,样品中氧空位得到一定补偿,其单电离氧空位浓度(Vo+)和饱和磁化强度都有一定程度的降低。对于Cu掺杂ZnO体系,虽然其不同热处理情况下缺陷状态的变化与上述三个体系略有不同,但其饱和磁化强度与单电离氧空位(Vo+)浓度的依赖关系和Mn、Ni掺杂和未掺杂体系中的是一致的。
     为寻求ZnO稀磁半导体中本征缺陷和掺杂元素对其磁学特性影响的理论解释,我们采用第一性原理分别计算了Mn (1.5%)、Ni (1%)、Cu (1%)掺杂和无掺杂ZnO样品中可能的磁性缺陷中心—不同价态的氧空位Vo(Vo0,Vo+和V++)及其与掺杂离子形成的复合体(TM-Vo, TM-Vo-TM),锌空位(VZn)和氧/锌填隙位(Oi/Zni)等的磁矩。结果表明,单个氧空位中,只有单电离氧空位(Vo+)具有磁性(约1μB);关于氧空位Vo-TM和TM-Vo-TM复合体的磁性,不同掺杂离子,结果不尽相同,氧空位与Mn的复合体,所有计算结果都有相近的磁矩(约4.99μB),氧空位与Ni的复合体的磁矩介于1-4μB。氧空位与Cu的复合体中,只有Vo+-Cu、Vo++-Cu、Cu-Vo++-Cu复合体的磁矩介于1-2μB。
     根据上述理论计算,结合荧光光谱、缺陷分析和磁学特性测试的结果,我们发现ZnO稀磁半导体中单电离氧空位Vo+是其铁磁性的一个最主要的来源,而且各个样品的饱和磁矩与样品中单电离氧空位(Vo+)的浓度具有一定的正相关。尤其是对未掺杂ZnO体系的铁磁性研究,更说明了单电离氧空位(Vo+)是ZnO体系具有铁磁性的一个主要因素。对于Mn、Ni、Cu掺杂ZnO稀磁半导体体系,其铁磁性是由单电离氧空位(Vo+)和体系中不同价态氧空位Vo与掺杂离子形成的复合体的铁磁耦合共同引起,而单电离氧空位(Vo+)在其中依然起到了一个主导作用。
     综上所述,可以看到,虽然不同掺杂体系样品的磁学特性表现出一定的差异,但有一个共同点就是,在所研究的ZnO稀磁半导体体系中,缺陷状态(主要是Vo)的变化比掺杂离子的变化对体系的磁性起到更为显著的影响。基于理论计算、光谱测试、缺陷分析和磁性测试结果,可以推断出氧空位,特别是单电离氧空位(Vo+),是ZnO稀磁半导体体系中铁磁性产生的一个主要原因。
Diluted magnetic semiconductors (DMSs) have initiated a great deal of interests in recent years because their unique manipulation of both the electron charge and spin freedom can be realized in these materials. They have been considered as very promising candidates for spintronic devices. After the theoretical prediction suggested by Dietl et al. the existence of room temperature ferromagnetism in Mn doped GaN and ZnO, transition metal (TM) doped GaN has been systemicly studied and the good results have been obtained. At the same time, ZnO system has been extensively studied. Remarkable progress has been made in the realization of TM-doped ZnO with Curie temperature at or above room temperature. However, the mechanism of intrinsic ferromagnetism in TM-doped oxides is still under debate. A diversity of theories has been proposed. As a direct wide band gap semiconductor, ZnO is widely used in many fileds due to its photoelectricity、piezoelectricity and gas-sensitivity. Therefore, the research on the origin of the ferromagnetism in ZnO DMS is valuable on theory and application.
     Recently, the origin of the ferromagnetic of ZnO DMS is widely considered to be related toTM dopants、defects and magnetic impurities. In this work, we adjusted TM dopant concentrations to investigate the effect of TM dopants on the origin of the ferromagnetism, adjusted the defects based on the annealing process to study the effect of the defects on the ferromagnetism. There is no effective method and tool to detect the magnetic impuries in the ZnO DMS. So, several metals with different magnetic properties were employed to be dopped into ZnO to investigate the effect of the magnetic impuries on the origin of the ferromagnetism.
     Mn、Ni、Cu doped and undoped ZnO nanoparticles were prepared in a simple solution route and parts of them were annealed in some different atmospheres. The structures of the prepared particles are in single hexagonal wurtzite phase, and there is no indication of extra TM-related second phases in the prepared nanorods with the low dopping contents. The dopants are in the +2 valence oxidation state and are uniformly distributed in the nanoparticles. Magnetization loops of the samples were measured and clearly show that the typical ferromagnetic saturation behavior.
     There are three peaks at visible band in the RT photoluminescence spectra, 527nm,575nm and 657nm, related to the singly ionized oxygen vacancies (Vo+), the doubly ionized oxygen vacancies(Vo++) and the intrinsic defects of oxygen interstitials (Oi), respectively. From the Photoluminescence and magnetism measurements, a clear positive correlation between the saturated magnetic moment and the intensity of Vo+ is observed. The adjustment of magnetism by the concentration of the defects are more effective that by the concentration of ion dopants.
     We theoretically studied the possible magnetic defect centers in the 1.5%Mn、1%Ni、1%Cu doped ZnO and undooed ZnO by first-principles calculations. The calculated local magnetic moment of various defect centers including a single oxygen vacancy (Vo) in 2-,1-, and neutral charge states, Zn vacancies and oxygen interstitials (Oi) and the complexes of these oxygen vacancies bound with one or two substitutional TM dopants. For the single oxygen vacancies, only the one of 1-charge state poses the magnetic moment of about 1 uB, and for the Vo-TM complexes, the results are different with the several TM ions.
     With the Combination of the defects analyses based on Photoluminescence spectra and magnetism results, we found the origin of the ferromagnetism is mostly related to the Vo+ defects. For the TM doped ZnO systems, the observed RT ferromagnetism can be explained by the direct effect of the Vo+ defects or the effect of the defects along with the ferromagnetic coupling among the TM dopants mediated by them. While in the pure ZnO, it is obviously the the Vo+ is response for the RT ferromagnetism.
     In the study of a number of TM-doped and undoped ZnO-based DMS, some different explaintions are found on the orgion of the ferromagnetism. In any sense, the present theoretic and experimental results show clearly that the Vo+ defect plays a concluded role in tuning the ferro-magnetism of the TM doped and undoped ZnO.
引文
1赵建华,邓加军,郑厚植,物理学进展27,109(2007).
    2姜寿亭,李卫,凝聚态与磁性物理,科学出版社12-16(2003).
    3夏建白,半导体纳米材料和物理,物理32,693(2003)
    4 H. Ohno, Science 281,951 (1998).
    5 Furdyna J.k., J. Appl. Phys.64,R29 (1988).
    6 M. Ferhat, A. Zaoui, and R. Ahuja, Appl. Phys. Lett.94,142502 (2009).
    7 K.-S. Ahn, T. Deutsch, Y. Yan,C.-S. Jiang, C. L. Perkins, J. Turner, and M. Al-Jassim, J. Appl. Phys.102,023517 (2007).
    8 J. Diouri, J.P. Lascaray, M.E. Amrani, Phys. Rev. B, Condens. Matter.31,7995 (1985).
    9 L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, et al. J. Alloys Compd.454,261 (2008).
    10 X. H. Liu, S. J. Chen, M.Li, X. D. Wang, Thin Solid Films 515,6744 (2007).
    11 D.U. Bartholomew, J.K. Furdyan, A.K. Ramdas, Phys. Rev. B 34,6943 (1986).
    12 O. Eunsoon, D.U. Bartholmew, A.K. Ramdas, J.K. Fuidyna, U. Debska, Phys. Rev. B 38, 13183(1988).
    13王学忠,陈辰嘉,王荣明等,半导体学报15,333(1994).
    14 Wojtowicz T., Dietl T., Sawicki M., et al., Phys. Rev. Lett.56,2419 (1986).
    15 Shapira Y., Oliveira Jr N.F., Ridgley D.H., et al., Phys. Rev. B, Condens. Matter.34,4187 (1986).
    16 Shapira Y, Oliveira Jr N.F., Becla P., et al., Phys. Rev. B, Condens. Matter.41,5931 (1990).
    17 Von Molnar S., Briggs A., Flouquet J., et al., Phys. Rev. Lett.51,706 (1983).
    18 Cohen M.H., Economou E.N., Soukoulis C.M., Phys. Rev. Lett.51,1202 (1983).
    19 T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287,1019 (2000).
    20 G.A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, K. Sato, Jpn. J. Appl. Phys. Part 239, L949 (2000).
    21 Sonoda S., Shimizu S., Sasaki T., Yamamoto, Y. & Hori H., J. Cryst. Growth 237,1358 (2002).
    22 Hashimoto M., Zhou Y. K., Kanamura M. & Asahi H., Solid State Commun.122,37 (2002).
    23 Wu S. Y. et al., Appl. Phys. Lett.82,3047 (2003).
    24 Hong N.Y H., Sakai J. & Hassini A., Appl. Phys. Lett.84,2602 (2004).
    25 Matsumoto Y et al., Science 291,854 (2001).
    26 Shinde S. R. et al.,Phys. Rev B 67,115211 (2003).
    27 Wang Z. J., Tang J. K., Tung L. D., Zhou W. L., Spinu L., J. Appl. Phys.93,7870 (2003)
    28 Coey J. M. D., Douvalis A. P., Fitzgerald C. B., Venkatesan M., Appl. Phys. Lett.84,1332 (2004).
    29 S.B. Ogale, R.J. Choudhary, J.P. Buban et al., Phys. Rev. Lett.91,077205 (2005).
    30 K. Gopinadhan, S. C. Kashyap, D. K. Pandya, S.Chaudhary, J. Appl. Phys.102,113513 (2007).
    31 A. Espinosa, C. Prieto,M. Garcia-Hernandez, et al. J. Magn. Magn. Mater.316, E207 (2007).
    32 S. C. Kashyap, K. Gopinadhan, D. K. Pandya, S. Chaudhary, J. Magn. Magn. Mater.321,957 (2009).
    33 Saeki H., Tabata H. & Kawai T., Solid State Commun.120,439 (2001).
    34 Sharma P. et al., Nature Mater.2,673(2003).
    35 Han,S. J. et al.,Appl. Phys. Lett.83,920 (2003).
    36 Ueda,K.,Tabata,H. & Kawai,T.,Appl. Phys. Lett.79,988 (2001).
    37 Radovanovic P. V. & Gamelin D. R., Phys. Rev. Lett.91,157202 (2003).
    38 Kale S. N. et al., Appl. Phys. Lett.83,2100 (2003).
    39 Yu YL, Harrington S, Yates KA, Mei M, Blamire MG, MacManus-Driscoll JL, et al., Appl. Phys. Lett.87,222108 (2005).
    40 Philip J., Theodoropolou N., Berera G, Moodera J. S. & Satpati B., Appl. Phys. Lett.85,777 (2004).
    41 He J, Xu S, Yoo Y, Xue O, Lee HC, Cheng S, et al., Appl. Phys. Lett.86,052503 (2005).
    42 Ohno H., Science 281,951 (1998).
    43 Tiwari A, Bhosle VM, Ramachandran S, Sudhakar N, Narayan J, Budak S, et al., Appl Phys Lett 88,142511 (2006).
    44 Herranz G, Ranchal R, Bibes M, Jaffre's H, Jacquet E, Maurice JL, et al., Phys. Rev. Lett.96, 027207 (2006).
    45 R. Janish, P. Gopal, N.A. Spaldin, J. Phys.:Condens. Matter 17, R657(2005).
    46 Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. chikyow, S. Koshihara, H. Koinuma, Science 291,854 (2001).
    47 Y. Matsumoto, Science 294,1003 (2001).
    48 S. A. Chambers, S. Thevuthasan, R.F.C. Farrow, R.F. Marks, J.U. Thiele, L. Folks, M.G. Samant, A J. Kellock, N. Ruzycki, D.L.Ederer, U. Diebold, Appl. Phys. Lett.79,3467(2001).
    49 N. H. Hong, J. Sakai, W. Prellier, A. Hassini, Appl. Phys. Lett.83,3129 (2003).
    50 A. Manivannan, G.GlasPell, P.Dutta, M.S. Seehra., J. Appl. Phys.97,10D325/1 (2005).
    51 K.A.Griffin, A.B.Parkhomov, C.M.Wang, S.M. Heald, K.M.Krishnan., J. Appl. Phys.97: 10D320/1 (2005).
    52 M. S. Park, S. K. Kwon, B.I.Min., Physical Reviews B 65(1):166201/1(2002).
    53 D. H. Kim, J.S.Yang, K.W. Lee, S.D. Bu, T. W. Noh, S-J,Oh,Y-W. Kin, J-S. Chung, H.Tanaka, H.Y.Lee, T.Kawai., Appl. Phys. Lett.81,2421 (2002).
    54 J.Y. Kim, J.H. Park, B.G Park, H.J. Noh, S J. Oh, J.S. Yang, D.H. Kim, S.D. Bu, T.W. Noh, H.J. Lin, H.H. Hsieh and C.T. Chen, Phys. Rev. Lett.90,017401 (2003).
    55 W. K. Park, R. J. Ortega-Hertogs, J. Moodera, A. Punnoose, M. S. Seehra., J. Appl. Phys.91, 8093 (2002).
    56 A. Punnoosea, M.S.Seehra, W.K.Park, J.S.Moodera, J. Appl. Phys.93,7867 (2003).
    57 B. S. Jeong, Y. W. Heo, D. P. Noton, A. F. Hebard, J. D. Budai, Y. D. park, Thin solid films, 488,194(2005).
    58 Z. Wang, W. Wang, J. Tang, L.D. Tung, L. Spinu, W. Zhou, Appl. Phys. Lett.83,518(2003).
    59 N.H.Hong, J.Sakai, W.Prellier, J. Magn. Magn. Mater.281,347 (2004).
    60 N.H.Hong, W.Prellier, J.Sakai, A.Hassini, Appl. Phys. Lett.84,2850 (2004).
    61 H. M. Lee, S.J.Kim, I.-B. Shim, C.S.Kim, J. Magn. Magn. Mater.272, e1565 (2004).
    62 H. M. Lee, S. J. Ksm, I.-B. shim, C. S. Kim, IEEE Transactions on magnetics,39,2788 (2003).
    63 R. Suryanarayanan, V. M. Nalk, P. Kharel, P. Talagala, R. Naik, Journal of Physics:Condensed Materials,17,755 (2005).
    64 J.-Y. Kim, S. Thevuthasan, T. Droubay, A. S. Lea, C.M. Wang, V. Shuthanandan, S.A.Chambers, R. P. Sears, B.Taylor, B.Sinkovic, Appl. Phys. Lett.84,3531 (2004).
    65 N. H. Hong, J. Sakai, A. Hassini, Appl. Phys. Lett.84,2602 (2004).
    66 N. H. Hong, A. Ruyter, F. Gervais, W. Prellier, J. Sakai, J. Appl. Phys.97,1OD323/1 (2005).
    67 N. H. Hong, J. Sakai, W. Prellier, A. Ruyter, Physies B 355,295 (2005).
    68 N.H.Hong, A.Ruyter, W.prellier, J.sakai, Appl. Phys. Lett.85,6212 (2005).
    69 Z. Wang, J.Tang, H.Zhang, V.Golub, L.SPinu, L.D.Tung, J. Appl. Phys.95,7381 (2004).
    70 T. Droubay, S.M. Heald, V. Shuthanandan, S. Thevuthasan, S.A.Chambers, J. Osterwalder, J. Appl. Phys.97,046103/1 (2005).
    71 Y Furubayashi, T. Hitosugi, Y Yamamoto, K. Inaba, G Kinoda, Y Hirose, T. Shimada, T. Hasegawa, Appl. Phys. Lett.86,252101/1 (2005).
    72 Z. Wang, J. Tang, Y. Chen, L. SPinu, W. Zhou, L. D. Tung, J. Appl. Phys.95,7384 (2004).
    73 S. Duhalde, M. F. Vignolo, F. Golmar, C. Chiliotte, C. E. Rodriguez Torres, L. A. Errico, A.F. Cabrera, M. Renteria, F. H. Sanchez, M. Weissmann, Phys. Rev. B:Condens. Matter 72,161313/1 (2005).
    74 A. Punnoose, J. Hays, V. Gopal, V. Shutthanandan, Appl. Phys. Lett.85,1559 (2004).
    75 Fitzgerald, C. B., Venkatesan, M., Dorneles, L. S., Gunning, R., Stamenov, P., Coey, J. M. D., Stampe, P. A., Kennedy, R. J., Moreira, E. C., Sias, U. S. Phys. ReV. B 74,115307 (2006).
    76 A. Bouaine, N. Brihi, Schmerber, G.Ulhaq-Bouillet, C. Colis, S. A.Dinia, J. Phys. Chem. C 111,2924(2007).
    77 X. F. Liu, R. H. Yu, J. Appl. Phys.102, (2007).
    78 X. H. Liu, S. J. Chen, M.Li, X. D. Wang, Thin Solid Films 515,6744(2007).
    79 S. C. Kashyap, K. Gopinadhan, D. K. Pandya, S. Chaudhary, J. Magn. Magn. Mater.321,957 (2009).
    80 Belghazi, Y., Schmerber, G., Colis, S., Rehspringer, J. L., Dinia, A., Berrada, A., Appl. Phys. Lett.89,122504 (2006).
    81 Abraham, D. W., Frank, M. M., Guha, S., Appl. Phys. Lett.87,052502 (2005).
    82 Y. H. Xiao, S. H. Ge, L. Xi, Y. L. Zuo, X. Y. Zhou, B. M. Zhang, L. Zhang, C. X. Li, X. F. Han, Z. C. Wen, Applied Surface Science,254,7459 (2008).
    83 Z. M. Tian, S. L. Yuan, J. H. He, P. Li, S. Q. Zhang, C. H. Wang, Y. Q. Wang, S. Y. Yin, L. Liu, J. Alloys & Compounds,466,26 (2008).
    84 J. F. Liu, M. F. Lu, P. Chai, L. Fu, Z. L. Wang, X. Q. Cao, J. Meng, J. Magn. Magn. Mater. 317,1 (2007).
    85 K. Nomura, C. A. Barrero, J. Sakuma, M. Takeda, Phys. Rev. B 75,184411(2007).
    86 J. Sakuma, K. Nomura, C. Barrero, M. Takeda, Thin Solid Films,515,8653 (2007).
    87 C. E. R. Torres, L. Errico, F. Golmar, A. M. M. Navarro, A. F. Cabrera, S. Duhalde, F. H. Sachez, M. Weissmann, J. Magn. Magn. Mater.316, E219 (2007).
    88 C. E. R. Torres, A. F. Cabrera, F. H. Sanchez, Physica B 389,176 (2007).
    89 L.C. Sanchez, A.M. Calle, J.D. Arboleda, J. Osorio, K. Nomura, C.A. Barrero, Microelectronics Journal 39,1320 (2008).
    90 Y. Wang, G. Pang, Y. Chen, S. Jiao, D. Wang, S. Feng, Journal of Solid State Chemistry 181, 217 (2008).
    91 J. Zhang, R. Skomski, L.P. Yue, Y. F. Lu and D.J. Sellmyer, J. Phys. Condens. Matter 19, 256204 (2007).
    92 P. I. Archer, D.R. Gamelin, J. Appl. Phys.99,08M107 (2006).
    93 J.M.D. Coey, J. Appl. Phys.97,10D313 (2005).
    94 J.M.D. Coey, Current Opinion in Solid State and Materials Science 10,83 (2006).
    95 G. Peleckis, X. L. Wang, S. X. Dou., J. Magn. Magn. Mater.301,308 (2006).
    96 Hong, N. H., J. Magn. Magn. Mater.303,338 (2006).
    97 N. H. Hong, J. Sakai, N. T. Huong, V. Brize, J. Magn. Magn. Mater.302,228 (2006).
    98 V. Brize, J. Sakai, Hong, N. H. Physica B 392,379 (2007).
    99 X. Li, C. T. Xia, G. Q. Pei, X. L. He, Journal of Physics and Chemistry of Solids 68,1836 (2007).
    100 X. Li, C. T. Xia, X. L. He, X. Gao, S. Liang, G. Q. Pei, Y. J. Dong, Scripta Materialia 58, 171 (2008).
    101 S. P. Raja, D. P. Joseph, C. Venkateswaran, Materials Chemistry and Physics 113,67 (2009).
    102 C. T. Meneses, J. G. S. Duque, L. G. Vivas, M. Knobel, Journal of Non-Crystalline Solids 354,4830 (2008).
    103 S. N. Kale, S. B. Ogale, S. R. Shinde, M.Sahasrabuddhe, V.N.Kulkarni, R.L.Greene, T. Venkatesan, Appl. Phys. Lett.82,2100 (2003).
    104 M. Ivill, M. E. Overberg, C. R. Abernathy, D. P. Norton, A. F. Hebard, N. Theodoropoulou, J. D. Budai, Solid-State Electronics 47,2215 (2003).
    105 M. Wei, N. Braddon, D. Zhi, P. A. Midgley, S. K. Chen, M. G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett.86,072514 (2005).
    106 Y. P. Zhang, L. Q. Pan, H. Zhu, H. M. Qiu, J. H. Yin, Y. Li, F. Zhao, X. D. Zhao, J. Q. Xiao, J. Magn. Magn. Mater.320,3303 (2008).
    107 D. P. Joseph, T. P. David, S. P. Raja, C. Venkateswaran, Short communication 59,1137 (2008).
    108 Sato K, Katayama-Yoshida H, Japan Journal of Applied physics 39, L555 (2000).
    109 S. Kolesnik, B. Dabrowski, and J. Mais, J. Appl. Phys.,95,2582 (2004).
    110 N.H. Hong, V Brize, and J. Sakai, Appl. Phys. Lett.,86,082505 (2005).
    111 M. Venkatesan et al., Phys. Rev. Lett.93,177206 (2004).
    112 S. Singh et al., J. Appl. Phys.103,07D108 (2008).
    113 X. Liu et al., Appl. Phys. Lett.88,062508 (2006).
    114 S. Ramachandran et al., Appl. Phys. Lett.87,172502(2005).
    115 M. Snure, D. Kumar, and A. Tiwari, Spintronic Materials and Devices,61,72 (2009).
    116 S. W. Jung, S.-J. An, G. Yi, C. U. Jung, S. Lee, S. Cho, Appl. Phys. Lett.80,4561 (2002).
    117 T. Fukumura, Z. u Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett.75,3366 (1999).
    118 T.Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, H. Koinuma, Appl. Phys. Lett.78,958 (2001).
    119 K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett.79,988 (2001).
    120 H-J. Lee, S.-Y. Jeong, C. R. Cho, C. H. Park, Appl. Phys. Lett.,81,4020 (2002)
    121 J. H. Park, M. G. Kim, H. nM. Jang, S.Ryu, Y. M. Kim, Appl. Phys. Lett.84,1338 (2004).
    122 T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Physics E 10,260 (2001).
    123 P. V Radovanovic, D. R. Gamelin, Phys. Rev. Lett.91(15):157202/1 (2003).
    124 X. Liu, F. Lin, L. Sun, W. Cheng, X. Ma, W. Shi, Phys. Rev. Lett.88,062508/1 (2006).
    125 GYAhn, S-1. Park, J.Kim, B.W. Lee, C.S.Kim, IEEE Transactions onmagnetics,41,2730 (2005).
    126 GYAhn, S-I. Park, S.J.Kim, I.-B. Shim, C.S.Kim, J. Magn. Magn. Mater.282,166 (2004).
    127 GYAhn, S.-1.Park, C.S.Kim, J. Magn. Magn. Mater.303, e329 (2006).
    128 S-J. Han, J. W. Song, C.-H. Yang, S.H.Park, J.-H.Park, YH.Jeong, K.W. Rhie, Appl. Phys. Lett.81,4212(2002).
    129 J.-H. Shim, T. Hwang, S. Lee, Appl. Phys. Lett.86(8):082503/1(2005).
    130 S. D. Yoon, Y. Chen, D. Heiman, A. Yang, N. Sun, C. Vittoria, V. G Harris, J. Appl. Phys.99, 08M109/1(2006).
    131 S. Ramachandran, A. Tiwari, J. Narayan, J. T. Prater, Appl. Phys. Lett.87,172502/1 (2005).
    132 N. H. Hong, J. Sakai, A. Hassini, J. Appl. Phys.97,10D312/1(2005).
    133 B. K. Roberts, A. B. Pakhomov, V.S. Shutthanandan, K. M. Krishnan, J. Appl. Phys.97, 10D310/1 (2005).
    134 D. B. Buehholz, R.P.H Chang, J. H. Song, J. B. Ketterson, Appl. Phys. Lett.87, 082504/1(2005).
    135 T. Fukumura et al., Appl. Phys. Lett.,78,958 (2001).
    136 W. Jung et al., Appl. Phys. Lett.,80,4561 (2002).
    137 P. Sati et al., Phys. Rev. Lett.,98,137204(2007).
    138 A. Tiwari et al., Solid State Communications 121,371(2002).
    139 C.N.R. Rao and F.L. Deepak, J. Mater. Chem.15,573(2005).
    140 S. Zhou et al, Vacuum 83 S13 (2009).
    141 K. Ueda, H. Tabata, and T.Kawai, Appl. Phys. Lett.79,2582(2001).
    142 S. Ramachandran, A. Tiwari, and J. Narayan, Appl. Phys. Lett.84,5255(2004).
    143 M. Venkatesan et al., Phys. Rev. Lett.93,177206 (2004).
    144 21. A.J. Behan et al., Phys. Rev. Lett.100,047206 (2006).
    145 X.H. Xu et al., New J. Phys.8,135 (2006).
    146 Wei et al.J. Appl. Phys.105,043903 (2009).
    147 K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys., Part 2 39, L555 (2000).
    148 W. Yu et al., J. Appl. Phys.,103 (2008), p.093901.
    149 T. Wakano et al., Physica E (Amsterdam) 10,260 (2001).
    150 Z. Yin et al., Solid State Commun.135,430 (2005).
    151 V. Jayaram and B.S. Rani, Mater. Sci. Eng. A 304,800 (2001).
    152 S. Zhou et al., J. Appl. Phys.100,114304 (2006).
    153 S. Zhou et al., Phys. Rev. B 77,035209 (2008).
    154 S. Zhou et al., J. Appl. Phys. Lett.103,043901 (2008).
    155 M. Snure, A. Tiwari, and D. Kumar, Appl. Phys. Lett.94,012510 (2009).
    156 F. Ran, M. Imaoka, M. Tanemura, Y. H.ayashi, T. Herng, S. Lau, Phys. Status. Solidi B 246, 1243 (2009).
    157 L.H. Ye, A.J. Freeman, and B. Delley, Phys. Rev. B 73,033203 (2006).
    158 L.M. Huang, A.L. Rosa, and R. Ahuja, Phys. Rev. B 74,075206 (2006).
    159 D.L. Hou, X.J. Ye, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, and GD. Tang, Appl. Phys. Lett.90,142502 (2007).
    160 K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys., Part 2 39, L555 (2000).
    161 M.S. Park and B.I. Min, Phys. Rev. B 68,224436 (2003).
    162 C.-H. Chien et al., J. Magn. Magn. Mater.282,275 (2004).
    163 D.B. Buchholz, R.P.H. Chang, J.H. Song, J.B, Appl. Phys. Lett.87,082504 (2005).
    164 A. Tiwari, M. Snure, D. Kumar, J.T. Abiade, Appl. Phys. Lett.92,062509 (2008).
    165 D. Chakraborti et al, J. Appl. Phys.102,113908 (2007).
    166 M. Venkatesan et al., Phys. Rev. Lett.,93,177206 (2004).
    167 B.B. Straumal, A.S. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, G Schutz, P.A.V. Aken, E. Goering and B. Baretzky, Phys. Rev. B 79,205206 (2009).
    168 S. Banerjee, M. Mandal, N. Gayathri and M. Sardar, Appl. Phys. Lett.91,182501 (2007).
    169 N.H. Hong, J. Sakai, F. gervais, J. Magn. Magn. Mater.316,214 (2007).
    170 GA. Prinz, Science 282,1660 (1998).
    171 S.A Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294,1488 (2001).
    172 T. Dietl, H. Ohno, F. Matsukura, J. Gilbert, D. Ferrand, Science 287,1019 (2000).
    173 S.W. Jung, S.J. An, G.C. Yi, Appl. Phys. Lett.80,4561(2002).
    174 C. Xu, J. Chun, D. Kim, B. Chon et al., Appl. Phys. Lett.91,153104 (2007).
    175 S. Banerjee, M. Mandal, N. Gayathri and M. Sardar, Appl. Phys. Lett.91,182501 (2007).
    176 D.Q. Gao, Z.H. Zhang, J.L. Fu, Y. Xu, J. Qi, and D.S. Xue, J. Appl. Phys.105,113928 (2009).
    177 B.B. Straumal, A.S. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, G. Schutz, P.A.V. Aken, E. Goering and B. Baretzky, Phys. Rev. B 79,205206 (2009).
    178 S.Asbrink, A.Waskowska, L.Gerward, J. Staun Olsen, E. Talik, Phys. Rev. B 60, 12651(1999).
    179 J.H. Li, D.Z. Shen, J.Y. Zhang, et al., J. Magn. Magn. Mate.302,118 (2006).
    180 Y. Liu, S.H. Yang, Y.L Zhang, D.H. Bao, J. Magn. Magn. Mate.321,3406 (2009).
    181 Cho S, Ma J, Kim H et al., Appl. Phys. Lett.75,2761 (1999).
    182 Vanheusden K, Seager C H, Warre WL et al., Appl. Phys. Lett.68,403 (1996).
    183 Look D C, Reynolds D C, Fang Z Q et al. Materials Science and Engineering B 66, 321(1996).
    184 Bagnall D M, Chen Y F, Shen M Y et al., J. Cryst. Growth.185,605 (1998).
    185 Z. Yu, X. Li, X. Long, X. Cheng, J. Wang, Y. Liu, M. Gao, F. Wang, Acta Physica Sinica 57, 4539 (2008).
    186 S. Baek, J. Song, S. Lim, Physica B 399,101 (2007).
    187 L. Li, H.Q. Yang, H. Jiao, J.Y. Zhang, Acta Chimica Sinica,66,335 (2008).
    188 C. Y. Lin, W.H. Wang. C.-S. Lee, K.W. Sun, and Y.W. Suen, Appl. Phys.Lett.94,151909 (2009).
    189 A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin.87,454 (2000).
    190 A.K. Srivastavaa, M. Deepaa, N. Bahadura, M.S. Goyat, Mater. Chem. Phys.114,194 (2009).
    191 K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68,403(1998).
    192 X.L. Wu, Z.Z. Ye, Y.J. Zeng, L.P.Zhu, B.H. Zhao, L. Jiang, J.G. Lu, H.P. He, S.B. Zhang, Appl. Phys. Lett.78,2285 (2001).
    193 Y.W.Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys.98,073502 (2005).
    194 S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys.84,2287 (1998).
    195 P. Bruno and C. Chappert, Phys. Rev. Lett.67,1602 (1991).
    196 C. Zener, Phys. Rev.82,403(1951).
    197 P.W.Anderson and H.Hasegawa, Phys. Rev.100,675(1955).
    198 H. Katayama-Yoshida, K. Sato, T. Fukushima, M. Toyoda, H. Kizaki, V.A. Dinh, and P.H. Dederichs, Phys. Stat. Sol.(a) 204,15 (2007).
    199 W.S. Yan, Z.H. Sun, Q.H. Liu, Z.R. Li, Z.Y. Pan, J. Wang, S.Q. Wei, D. Wang, Y.X. Zhou and X.Y. Zhang, Appl. Phys. Lett.91,062113 (2007).
    200 C.H. Patterson, Phys. Rev. B 74,144432 (2006).
    201 N.H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Phys. Rev. B 72,045336 (2005).
    202 En-Zuo Liu, Yan He, and J.Z. Jiang, Appl. Phys. Lett.93,132506 (2008).
    203 C.W. Zhang, S.S. Yan, J. Appl. Phys.106,063709 (2009).
    204 M. Diaconu, H. Schmidt, H.Hochmuth, et al., J. Magn. Magn. Mater.307,212 (2006).
    205 A.K. Pradhan, D.Hunter, K.Zhang, J.B. Dadson et al., Appl. Surf. Sci.252,1628 (2005).
    206 H. Wang, Y. Chen, H.Wang, C.B. Zhang, F. J.Yang, J. X.Duan, C. P. Yang, Y. M.Xu, M. Zhou, Q.J. Li, Appl. Phys. Lett.90,052505 (2007).
    207 Bagnall D M, Chen Y F, Shen M Y et al., J. Cryst. Growth.185,605 (1998).
    208 Buchholz D. B., Chang R. P. H., Song J. H., et al., Appl. Phys. Lett.,87,082504 (2005).
    209朋兴平,兰伟,谭永胜,终立国,王印月,物理学报53,2705(2003).
    210 C.H. Patterson, Phys. Rev. B 74,144432 (2006).
    211 N.H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Phys. Rev. B 72,045336 (2005).
    212 En-Zuo Liu, Yan He, and J.Z. Jiang, Appl. Phys. Lett.93,132506 (2008).
    213 C.W. Zhang, S.S. Yan, J. Appl. Phys.106,063709 (2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700