用户名: 密码: 验证码:
宽带连续可调谐的中红外激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光参量振荡器是产生宽带连续可调谐的中红外激光的一种非常重要的手段,它能够将一个泵浦激光转换为相干输出的信号光和闲频光,且可以在较宽的频率范围内实现连续可调谐输出。另外,光参量振荡器除了可以实现小型化与全固化外,还具备了转换效率高、结构简单、工作可靠度高等优点。近些年来,随着一批新的优质非线性光学晶体的发明,尤其是掺氧化镁的周期极化铌酸锂晶体(MgO:PPLN)的出现,以及非线性频率变换和宽带连续可调谐激光技术的迅速发展,使得光参量振荡器这一研究领域取得了很多重要的成果。这也使得光参量振荡器在很多领域得到了广泛的应用,如相干反斯托克斯拉曼散射(CARS)谱测量、激光光谱学研究、环境监测、遥感、材料处理、激光测距、红外干扰和对抗等。光参量振荡器及其应用技术研究的发展在现代科技发展中将起着越来越重要的作用,因此它的研究前景将十分看好。
     作者进行了基于PPLN晶体和MgO:PPLN晶体的准相位匹配(QPM)宽带连续可调谐的中红外光参量振荡器的理论与实验研究工作;同时也对光参量产生器作了相关的实验研究。主要工作如下:
     (1)对国内外有关宽带连续可调谐的中红外光参量振荡器的研究现状以及发展趋势做了广泛的调研工作,且以此明确了自己研究工作的重点和方向。
     (2)分析了与宽带连续可调谐中红外光参量振荡器相关的一些基础理论,具体如光参量振荡器和产生器中的三波互作用理论、准相位匹配理论、光参量振荡器的基本理论等。尤其对光参量振荡器的增益、阈值、转换效率等特性进行了系统地分析。并且简要介绍了如何设计基于PPLN晶体和MgO:PPLN晶体的光参量振荡器
     (3)报道了宽带连续可调谐的中红外单谐振PPLN-OPO的研究工作。泵浦源为1.064μm声光调Q Nd:YAG全固态激光器,PPLN晶体的尺寸为50mm×10mm×0.5mm,极化周期分别为26.5μm、27.5μm、28.5μm、29.5μm和30.5μm,在40-200℃范围内调节PPLN晶体的温度和极化周期,获得了2.80-3.17μm、3.34-3.60μm、3.77-3.97μm、4.15-4.32μm和4.48-4.62μm的闲频光调谐输出,且在3.09μm处,获得了最大闲频光输出功率1.23W。
     (4)报道了宽带连续可调谐的中红外单谐振MgO:PPLN-OPO的研究工作。泵浦源为1.064μm声光调Q Nd:YAG全固态激光器,MgO:PPLN晶体的尺寸为50mm×10mm×1mm,极化周期分别为26.5μm、27.5μm、28.5μm、29.5μm、30.5μm和31.5μm,在50-200℃范围内调节MgO:PPLN晶体的温度和极化周期,获得了2.83-2.89μm、3.10-3.38μm、3.57-3.78μm、3.95-4.12μm、4.28-4.46μm和4.65-4.79μm的闲频光调谐输出,且在3.33μm处,获得了最大闲频光输出功率2.17W,较之PPLN-OPO的最大输出功率增加了许多。
     (5)首次报道了宽带连续可调谐的中红外单谐振双MgO:PPLN晶体串接的OPO的研究工作。泵浦源为1.064μm声光调Q Nd:YAG全固态激光器,两个MgO:PPLN晶体的尺寸均为40mm×10mm×2mm,极化周期分别为26μm、26.5μm、27μm、27.5μm、28μm、28.5μm、29μm、29.5μm、30μm、30.5μm和31μm,在40-200℃范围内调节两个MgO:PPLN晶体的温度和极化周期,获得了2.789-4.957μm的闲频光调谐输出,且在3.344μm处,获得了最大闲频光输出功率2.23W,较之MgO:PPLN-OPO的最大输出功率有所增加。
     (6)首次报道了1.342μm泵浦的宽带连续可调谐的中红外双MgO:PPLN晶体串接的OPG的研究工作。泵浦源为1.342μm高功率准连续声光调Q Nd:GdVO_4全固态激光器,两个MgO:PPLN晶体的尺寸均为40mm×10mm×2mm,极化周期分别为29μm、29.5μm、30μm、30.5μm、31μm和31.5μm,在40-200℃范围内调节两个MgO:PPLN晶体的温度和极化周期,获得了4.144-4.851μm的闲频光调谐输出,且在4.144μm处,获得了最大闲频光输出功率340mW。
Optical parametric oscillator (OPO) is one of the most important ways to get widelycontinuous-tunable mid-infrared lasers. The pump light could be converted into signal lightand idler light by this way. Meanwhile, it can generate widely tunable coherent light.Furthermore, the OPO possess the characteristics of high efficiency, simple structure, andhigh work stabilization and it could be made in small and all-solid. In recent years, with theinvention of the new nonlinear crystals, especially the invention of the periodically poledMgO-doped lithium niobate (MgO:PPLN) crystal, and the rapid development of thenonlinear frequency transformation and the technologies for the tunable laser, lots ofimportant breakthroughs have been made in the field of OPO. The OPO has been used inmany fields, such as CARS, laser spectroscopy, environmental monitoring, remote sensing,material handling, laser ranging, infrared interference and countermeasure. Therefore, theresearch on the OPO and its applications will become more and more important for thedevelopment of the modern science and technology. The perspective of the studies on OPOis bright.
     The author has done some theoretical and experimental research work onquasi-phase-matched (QPM) widely continuous-tunable mid-infrared OPO which is basedon PPLN crystal and MgO:PPLN crystal. Meanwhile, some experimental research work onoptical parametric generator (OPG) has been done, too. The main research works aresummarized as follows:
     (1) The worldwide research status at present and the developing trend in the future ofthe widely continuous-tunable mid-infrared OPO have been studied and investigated.Therefore, the important points and the direction of our own research work are clear.
     (2) The interrelated basic theories of the widely continuous-tunable mid-infrared OPOhave been analyzed and discussed. Such as the three wave interaction in the OPO or OPG,QPM theory, and the basic theory of the OPO. Furthermore, the gain, threshold value, andconversion efficiency of the OPO have been analyzed. And introduced how to design theOPO system based on PPLN and MgO:PPLN.
     (3) The research work of the widely continuous-tunable mid-infrared single resonantPPLN-OPO has been reported. The pump source is an acousto-optically Q-switchedNd:YAG laser. The dimension of the PPLN crystal is 50mm×10mm×0.5mm and the gratingperiods of the PPLN crystal are 26.5μm, 27.5μm, 28.5μm, 29.5μm, and 30.5μm. The idleroutput ranges of 2.80-3.17μm, 3.34-3.60μm, 3.77-3.97μm, 4.15-4.32μm, and 4.48-4.62μmare obtained by changing the temperature of the crystal from 40 to 200℃and the gratingperiods of the PPLN crystal. And the obtained maximum idler output power is 1.23W at3.09μm.
     (4) The research work of the widely continuous-tunable mid-infrared single resonantMgO:PPLN-OPO has been reported. The pump source is an acousto-optically Q-switchedNd:YAG laser. The dimension of the MgO:PPLN crystal is 50mm×10mm×1mm and thegrating periods of the MgO:PPLN crystal are 26.5μm, 27.5μm, 28.5μm, 29.5μm, 30.5μm,and 31.5μm. The idler output ranges of 2.83-2.89μm, 3.10-3.38μm, 3.57-3.78pμm,3.95-4.12μm, 4.28-4.46μm, and 4.65-4.79μm are obtained by changing the temperature ofthe crystal from 50 to 200℃and the grating periods of the MgO:PPLN crystal. Theobtained maximum idler output power is 2.17W at 3.33μm. And the maximum idler outputpower of the MgO:PPLN-OPO is larger than that of the PPLN-OPO.
     (5) The research work of the widely continuous-tunable mid-infrared single resonanttwin-MgO:PPLN cascaded OPO has been reported firstly. The pump source is anacousto-optically Q-switched Nd:YAG laser. The dimension of the two MgO:PPLNcrystals is 40mm×10mm×2mm and the grating periods of the MgO:PPLN crystal are 26μm,26.5μm, 27μm, 27.5μm, 28μm, 28.5μm, 29μm, 29.5gm, 30μm, 30.5μm, and 31μm. Theidler output range of 2.789-4.957μm is obtained by changing the temperature of the crystalsfrom 40 to 200℃and the grating periods of the two MgO:PPLN crystals. The obtainedmaximum idler output power is 2.23W at 3.344pm. And the maximum idler output powerof the twin-MgO:PPLN cascaded OPO is larger than that of the MgO:PPLN-OPO.
     (6) The research work of the widely continuous-tunable mid-infrared twin-MgO:PPLNcascaded OPG which based on 1.342μm pump source has been reported firstly. The pumpsource is a diode-pumped Q-switched Nd:GdVO_4 laser operated at 1.342μm. Thedimension of the two MgO:PPLN crystals is 40mm×10mm×2mm and the grating periods of the MgO:PPLN crystal are 29μm, 29.5μm, 30μm, 30.5μm,31μm, and 31.5μm. The idleroutput range of 4.144-4.851μm is obtained by changing the temperature of the crystalsfrom 40 to 200℃and the grating periods of the two MgO:PPLN crystals. The obtainedmaximum idler output power is 340m W at 4.144gm.
引文
[1] 彭江得.光电子技术基础.(第一版).北京:清华大学出版社,1988.35-41
    [2] 钱士雄,王恭明.非线性光学原理与进展.(第一版).上海:复旦大学出版社,2002.52-63
    [3] 张克从,王希敏.非线性光学晶体材料科学.(第二版).上海:科学出版社,2005.71-76
    [4] 张百钢.周期极化晶体准相位匹配倍频和光学参量转换的研究:[博士学位论文].天津:天津大学图书馆,2004
    [5] 刁述妍.全固态宽带可调谐光学参量发生器的理论与实验研究:[博士学位论文].郑州:郑州大学图书馆,2007
    [6] P. A. Franken, A. E. Hill, C. W. Peters, et al. Generation of optical harmonics. Phys. Rev. Lett., 1961, 7:118-119
    [7] J.A. Armstrong, N. Bloembergen, J. Ducuing, et al. Interaction between light wave in a nonlinear dielectric. Phys. Rev., 1962, 127:1918-1939
    [8] R.H. Kingston. Parametric amplification and oscillation of optical frequencies. Proc. IRE., 1962, 50:472-474
    [9] N.M. Kroll. Parametric amplification in spatially extended media and application to the design of tunable oscillators at optical frequencies. Phys. Rev., 1962, 127: 1207- 1211
    [10] S.A. Akhmanov, R. V. Khokhlov, Z. Eksp. Concerning one possibility of amplification of light waves. Teor. Fiz., 1962, 43:351
    [11] C.C.Wang, G. W. Racette. Measurement of parametric gain accompanying optical difference frequency generation. Appl. Phys. Lett., 1965, 6:169-171
    [12] J.A. Giordmaine, R. C. Miller. Tunable coherent parametric oscillation in LiNbO_3 at optical frequencies. Phys. Rev. Lett., 1965, 14:973-976
    [13] S. A. Akhmanov, A. I. Kovrigin, V. A. Koslolv, et al. Tunable parametric light generation with KDP crystal. JETP Lett., 1966, 3:241-245
    [14] R. G. Smith, J. E. Geusic, H. J. Levinstein, et al. Continuous optical parametric oscillator in Ba_2NaNb_5O_(15). Appl. Phys. Lett., 1968, 12(9):308-310
    [15] R.L. Byer, M. K. Oshman, J. F. Young, et al. Visible cw parametric oscillator. Appl. Phys. Lett., 1968, 13:109-111
    [16] E.O. Ammann, J. M. Yarborough, M. K. Oshman, et al. Efficient internal optical parametric oscillator. Appl. Phys. Lett., 1970, 16(8):309-312
    [17] R. C. Eckardt, Y. X. Fan, R. L. Byer, et al. Broadly tunable infrared optical parametric oscillator using AgGaSe_2. Appl. Phys. Lett., 1986, 49:608-610
    [18] Y.X. Fan, R. C. Eckardt, R. L. Byer, et al. BaB_2O_4 optical parametric oscillator. CLEO'86. San Francisco, CA, 1986. ThU41- ThU45
    [19] Y. X. Fan, R. C. Eckardt, R. L. Byer, et al. Visible BaB_2O_4 optical parametric oscillator pumped at 355 nm by a single-axial-mode pulsed source. Appl. Phys. Lett., 1988, 53:2014-2016
    [20] A. Piskarskas, V. Smil'gyavichyus, A. Umbrasas. Continuous parametric generation of picosecond light pulses. Sol. J. Quantum Electron., 1988, 18(2):155-156
    [21] W.R. Bosenberg, W. S. Pelouch, C. L. Tang. High-efficiency and narrow-linewidth operation of a two-crystal β-BaB_2O_4 optical parametric oscillator. Appl. Phys. Lett., 1989, 55(19):1952-1954
    [22] Y.P. Wang, Z. Y. Xu, D. Q. Deng, et al. Visible optical parametric oscillation in LiB_3O_5. Appl. Phys. Lett., 1991, 59(5):531-533
    [23] H. Zhou, J. Zhang, T. Chen, et al. Picosecond, narrow-band, widely tunable optical parametric oscillator using a temperature-tuned lithium borate crystal. Appl. Phys. Lett., 1993, 62:1457-1459
    [24] J.Y. Zhang, J. Y. Huang, Y. R. Shen. Picosecond optical parametric amplification in lithium triorate, Appl. Phys. Lett., 1991, 58:213-215
    [25] W.P. Risk, W. Lenth. Room-temperature, continuous-wave, 946nm Nd:YAG laser pumped by laser-diode arrays and intra-cavity frequency doubling to 473nm. Opt. Lett., 1987, 12:993-995
    [26] L. DeShazer. Vanadate crystals exploit diode-pump technology. Laser Focus World, 1994, 30:88-93
    [27] E. C. Honea, C. A. Ebbers, R. J. Beach, et al. Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100W of power at 0.532 μm. Opt. Lett., 1998, 23(15):1203-1205
    [28] S. T. Yang, R. C. Eckardt, R. L. Byer. Continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency resonantly doubled Nd:YAG laser. Opt. Lett., 1993, 18: 971-973
    [29] S. T. Yang, R. C. Echardt, R. L. Byer. 19W cw ring cavity KTP singly resonant optical parametric oscillator. Opt. Lett., 1993, 19: 475-477
    [30] W. K. Burns, W. McElhanon, L. Goldberg. Second harmonic generation in field poled quasi-phase-matched bulk LiNbO_3. IEEE Photon. Technol. Lett., 1994, 6(2): 252-254
    [31] M. H. Chou, I. Brener, M. M. Fejer, et al. 1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO_3 waveguides. IEEE Photo. Tech. Lett., 1999,11(6):653-655
    [32] K. R. Parameswaran, M. Fujimura, M. H. Chou, et al. Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN. IEEE Photonics Technology Lett., 2000, 12(6):654-656
    [33] A. M. Schober, G. Imeshev, M. M. Fejer. Tunable-chirp pulse compression in quasi-phase-matched second-harmonic generation. Opt. Lett., 2002, 27(13): 1129-1131
    [34] K. R. Parameswaran, J. R. Kurz, R. V. Roussev, et al. Observation of 99% depletion in single pass SHG in a PPLN waveguide. CLEO, 2001. 549
    [35] M. H. Chou, K. R. Parameswaran, I. Brener, et al. Optical signal processing and switching with second-order nonlinearities in waveguides. IEICE Trans. Electron., E83C, 2000. 869-874
    [36] L. E. Myers, R. C. Eckardt, M. M. Fejer, et al. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO_3. JOSA B, 1997, 12(11): 2102-2116
    [37] Yousk Mori, Lkuroda, Satoshi Nakajima. New nonlinear optical crystal: Cesium Lithium Borate. Appl. Phys. Lett., 1995, 67(13): 1818-1820
    [38] W. R. Bosenberg, A. Drobshoff, J. I. Alexander, et al. Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO_3. Opt. Lett., 1996, 21(10): 713-715
    [39] W. R. Bosenberg, A. Drobshoff, J. I. Alexander, et al. 93% pump depletion 3.5-W continuous-wave singly resonant optical parametric oscillator. Opt. Lett., 1996, 21(17): 1336-1338
    [40] D.H. Jundt. Temperature-dependent Sellmeier equation for the index of refraction n_e in congruent lithium niobate. Opt. Lett., 1997, 22(20): 1553-1555
    [41] B. Zhou, C. Q. Xu, B. Chen, et al. Efficient 1.5-μm-band MgO-doped LiNbO_3 quasi-phase-matched wavelength converters. Japanese Journal of Applied Physics, 2001, 40:796-798
    [42] C. W. Hoyt, M. Sheik-Bahae, M. Ebrahimzadeh. High-power picosecond optical parametric oscillator based on periodically poled lithium niobate. Opt. Lett., 2002, 27: 1543-1545
    [43] P. Gross, M. E. Klein, T. Walde, et al. Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator. Opt. Lett., 2002, 27(6):418-420
    [44] H. Ishizuki, I. Shoji, T. Taira. High-energy quasi-phase-matched optical parametric oscillator in a 3-mm-thick periodically poled MgO:LiNbO_3 device. Opt. Lett., 2004, 29(21): 2527-2529
    [45] C. Da-Wuu, T. S. Rose. Low noise 10-W cw OPO generation near 3μm with MgO doped PPLN. Proceedings of CLEO, 2005, 3:1829-1831
    [46] O. Paul, A. Quosig, T. Bauer, et al. Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO_3. App. Phys. B, 2007, 86(1): 111-115
    [47] T.L. Zhang, J. Q. Yao, X. Y. Zhu, et al. Widely tunable, high-repetition-rate, dual signal-wave optical parametric oscillator by using two periodically poled crystals. Opt. Commun., 2007, 272:111-115
    [48] L.Z. Xia, S. C. Ruan, H. Su. High-power, widely tunable, singly resonant optical parametric oscillator based on PPLN or MgO-doped PPLN. Proceedings of SPIE, 2009, 7276: 72760G-1-72760G-9
    [49] X.J. Li, J. Q. Yao, J. F. Zhang, et al. Numerical calculations and analyses of Mid-IR OPO based on periodically-poled lithium niobate. Journal of Shenzhen University (Science & Engineering), 2003, 20(3): 19-26
    [50] Y.P. Chen, X. F. Chen, X. L. Zeng, et al. Polarization dependence of quasi-phasematched second harmonic generation in bulk periodically poled LiNbO_3. J. Opt. A: Pure and Appl. Opt., 2002, 4:324-328
    [51] Y.C. Wu, F. Chang, P. Z. Fu, et al. High-average-power third harmonic generation at 355nm with CsB_3O_5 crystal. Chin. Phys. Lett., 2005, 22:1426-1428
    [52] B.G. Zhang, J. Q. Yao, Y. Lu, et al. High-average-power nanosecond quasi-phasematched single-pass optical parametric generator in periodically poled lithium niobate. Chin. Phys. Lett., 2005, 22: 1691-1693
    [53] 王月珠,于欣,姚宝权等.脉宽可调谐光学参量振荡器的研究.中国激光,2001,28:698-692
    [54] 姚建铨.非线性光学频率变换及激光调谐技术.(第一版).北京:科学出版社,1995.78-85
    [55] J. Hellstro|¨m, V. Pasiskevicius, H. Karlsson, et al. High-power optical parametric oscillation in large-aperture periodically poled KTiOPO_4. Opt. Lett., 2000, 25:174- 176
    [56] T.J. Edwards, G. A. Turnbull, M. H. Dunn, et al. Continuous-wave, singly-resonant, optical parametric oscillator based on periodically poled KTiOPO_4. Opt. Express, 2000, 6(3): 58-63
    [57] M. Peltz, U. Ba|¨der, A. Borsutzky, et al. Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA. Appl. Phys. B, 2001, 73:663-670
    [58] U. Stro|¨βner, A. Peters, J. Mlynek, et al. Single-frequency continuous-wave optical parametric oscillator System with an ultrawide tuning range of 550 to 2830 nm. Journal of the Optical Society of America B: Optical Physics, 2002, 19:1419-1424
    [59] A.A. Mani, Z. D. Schulta, A. A. Gewirth, et al. Picosecond laser for performance of efficient nonlinear spectroscopy frome 10 to 21 μm. Opt. Lett., 2004, 29(3): 274-276
    [60] M. Herriksson, M. Tiihonen, V. Pasiskevicius, et al. Mid-IR ZGP-OPO pumped by a bragg grating line-narrowed PPKTP-OPO. CLEO, 2006. CThO4
    [61] Y. Y. Wang, D. G. Xu, Y. H. Yu, et al. High-peak-power, high-repetition-rate intracavity optical parametric oscillator at 1.57μm. Chin. Opt. Lett., 2007, 5(2): 93- 95
    [62] C. Rahlff, Y. Tang. High-repetition-rate, mid-infrared KTA-OPO at 3.44μm. CLEO, 1996. 267-268
    [63] L.R. Marshall. Efficient multiwatt 2-5μm tunable sources. CLEO, 1996. 368-369
    [64] B. Ruffing. All-solid-state cw mode-locked picosecond KTiOAsO_4 (KTA) optical parametric oscillator. Appl. Phys. B: Lasers and Opt., 1998, 67(5):537-544
    [65] R.F. Wu. Compact mid-IR intracavity OPO. Proceedings of SPIE, 2001, V4595: 287-292
    [66] G. Vysniauskas, D. Burns, E. Bente. Development of a nanosecond high energy KTA OPO system operating 2.9μm. CLEO, 2002. 333-335
    [67] Y. Isyanova, E. Slobodtchikov, J. H. Flint. High repetition rate, rapidly tunable KTA OPO. ASSP, 2005. MB22
    [68] J.G. Miao, J. Y. Peng, B. S. Wang, et al. Compact KTA-based intracavity optical parametric oscillator driven by a passively Q-swiched Nd:GdVO_4 laser. Appl. Opt., 2008, 47(23): 4287-4291
    [69] 杨春晖,张建.新型中、远红外波段非线性光学晶体磷化锗锌.人工晶体学报,2004,33(2):141-143
    [70] H.G. Gallagher, K. M. Ward. Progress in the growth and characterization of zinc germanium phosphide crystals. IEEE Proceedings, 2002. 510-511
    [71] N.C. Fernelius, F. K. Hopkins, M. C. Ohmer. Nonlinear optical crystal development for laser wavelength shifting at AFRL materials directorate. SPIE, 1999, V3793:2-8
    [72] P. B. Phua, K. S. Lai. High-efficiency mid-infrared ZnGeP_2 optical parametric oscillator in a multimode-pumped tandem optical parametric oscillator. Appl. Opt., 1999, 38(3): 563-565
    [73] P. A. Budni, L. A. Pomeranz. Efficient mid-infrared laser using 1.9μm pumped Ho:YAG and ZnGeP_2 optical parametric oscillators. JOSA B, 2000, 17(5): 723-728
    [74] K.L. Vodopyanov, P. G. Schunemann. Broadly tunable noncritically phase-matched ZnGeP_2 optical parametric oscillator with a 2 μJ pump threshold. Opt. Lett., 2003, 28(6): 441-443
    [75] J. R. Yu. Tunable 4-10μm infrared radiation for remote sensing applications. European Space Agency, 2004, 1 (561): 195-197
    [76] K. Miramoto, K. Suizu, J. Shikata, et al. Wavelength-agile 5-10μm generation by Galvano-controlled double crystal KTP-OPO. CLEO, 2006. CTuZ2
    [77] A. Dergachev, D. Armstrong, A. Smith, et al. 3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system. Opt. Express, 2007, 25(22): 14404- 14413
    [78] B. Q. Yao, Y. L. Ju, Y. Z. Wang, et al. Performance evaluation of ZnGeP_2 optical parametric oscillator pumped by a Q-switched Tm, Ho:GdVO_4 laser. Chin. Opt. Lett., 2008, 6(1): 68-70
    [79] D. Creeden, P. A. Ketteridge, P. Budni, et al. Multi-watt Mid-IR fiber-pumped OPO. CLEO, 2008. CTuII2
    [80] V. G. Dmitriev, G. G. Grzdyan, D. N. Nikogosiyan. Handbook of nonlinear optical crystal. Berlin: Springer-Verlag, 1991. 56-72
    [81] S. Kurimura, I. Shimoya, Y. Uesu. Domain inversion by an electron-beam-induced electric field in MgO:LiNbO_3, LiNbO_3 and LiTaO_3. Jpn. J. Appl. Phys., 1996, 35: L31-L33
    [82] A. Harada, Y. Nihei. Bulk periodically poled MgO-LiNbO_3 by corona discharge methed. Appl. Phys. Lett., 1996, 69(18): 2629-2631
    [83] Y. Furukawa, K. Kitamura, S. Takekawa, et al. Stoichiometric Mg:LiNbO_ as an effective material for nonlinear optics. Opt. Lett., 1998, 23(24): 1892-1893
    [84] L. E. Myers, R. C. Eckardt, M. M. Fejer, et al. Quasi-phasematched optical parametric oscillations in bulk periodically poled LiNbO_3. J. Opt. Soc Am, 1995, B12: 2102-2116
    [85] M. L. Bortz, M. A. Arbore, M. M. Fejer. Quasi-phasematched optical parametric amplification and oscillation in periodically-poled LiNbO_3 waveguides. Opt. Lett., 1995, 20(1): 49-51
    [86] S. D. Butterworth, V. Pruneri, D. C. Hanna. Optical parametric oscillation in periodically poled lithium niobate based on continuous-wave synchronous pumping at 1047um. Opt. Lett., 1996, 21(17): 1345-1347
    [87] L. E. Myers, W. R. Bosenberg. Periodically poled lithium niobate and quasi-phasematched optical parametric oscillators. IEEE Journal of Quantum Electronics, 1997, 33(10): 1663-1672
    [88] K. C. Burr, C. L. Tang. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate. Appl. Phys. Lett., 1997, 70(25): 3341- 3343
    [89] G. B. Robert, R. W. Dennis, P. Tomas, et al. Continuous-wave 532-nm-pumpred single resonant optical parametric oscillator based on periodically poled lithium niobate. Opt. Lett., 1998, 23(3): 168-170
    [90] K.J. McEwan, J. Terry. A tandem periodically-poled lithium niobate PPLN OPO. Optics Communications, 2000, 182:423-432
    [91] M. Ebrahimzadeh, P. J. Phillips, S. Das. Low-threshold mid-infrared optical parametric oscillation in periodically poled LiNbO_3, synchronously pumped by a Ti:sapphire laser. Appl. Phys. B, 2001, 72:793-801
    [92] P. Gross, M. E. Klein, T. Walde, et al. Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator. Opt. Lett., 2002, 27(6): 418-420
    [93] K. J. McEwan, J. Kenneth. Synchronously pumped tandem OPO and OPO/DFM devices based on a single PPLN crystal. Proceedings of SPIE, 2003, V4972:1-12
    [94] W. Ruifen, N. H. Khoon. Nanosecond>4-micron PPLN OPO pumped by a Yb fiber laser. OSA, 2004. CTh34
    [95] I. Elder, D. Legge, J. Beedell, et al. Nd:YVO_4 pumped degenerate PPLN OPO. ASSP, 2006. MB20
    [96] X.B. Zhang, B. Q. Yao, Y. L. Ju, et al. A 2.048μm Tm,Ho:GdVO_4 laser pumped doubly resonant optical parametric oscillator based on periodically poled lithium LiNbO_3. Chin. Phys. Lett., 2007, 24(7): 1953-1954
    [97] Y. Hirano, S. Yamamoto, T. Tajime, et al. High-average power, room temperature operation of PPMgLN OPO. Pacific Rim Conference on Laser and Electro-Optics, 2000.671-672
    [98] H. P. Li, D. Y. Tang, S. P. Ng, et al. Temperature-tunable nanosecond optical parametric oscillator based on periodically poled MgO:LiNbO_3. Opt. & Laser Techn., 2006, 38:192-195
    [99] X.B. Zhang, B. Q. Yao, Y. Z. Wang, et al. Middle-infrared intracavity periodically poled MgO:LiNbO_3 optical parametric oscillator. Chin. Opt. Lett., 2007, 5(7): 426- 427
    [100] H. C. Guo, S. H. Tang, Z. D. Gao, et al. Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO: LiNbO_3. J. of App. Phys., 2007, 101: 113112
    [101] 纪磊.周期极化铌酸锂的制备及应用研究:[博士学位论文].天津:天津大学图书馆.2005
    [102] A. Grosard, E. Lallier, K. Polg(?)r, et al. Low Electric field periodic poling of thick stoichiometric lithium niobate. Electronics Lett., 2000, 36(72): 1043-1044
    [103] O. Y. Jeon, H. K. Kim, T. H. Kim, et al. Nonlinear optical properties of congruent and Li-compensated LiNbO_3 crystals. Journal of the Korean Phys. Society, 2001, 38(2): 138-141
    [104] J. G. Zhong, J. Jin, Z. K. Wu. Measurements of optically induced refractive-index damage of lithium niobate doped with different concentration of MgO. Proceeding of 11th International Quantum Electronic Conference IEEE, 1980, 80:631
    [105] T. R. Volk, V. I. Pryalkin, N. M. Rubinina. Optical-damage-resistant LiNbO_3:Zn crystal. Opt. Lett., 1990, 15:58
    [106] 张玥,李铭华,李斌等.掺氧化锌铌酸锂晶体的生长及光学性能研究.人工晶体学报,1994,23(3-4):273
    [107] H. Ishizuki, S. Kurimura, M. Cha, et al. Optically monitored poling characteristics of 3-mm-thick MgO:LiNbO_3 crystal. CLEO 2002, 2002, CFE2:642
    [108] L. H. Peng, Y. C. Zhang, Y. C. Lin, et al. Doping effects in polarization switching of lithium niobates. CLEO 2000, 2000. 74-75
    [109] 徐观峰,张辉荣,李斌等.掺氧化锌铌酸锂晶体的提拉法生长及其特性研究.人工晶体学报,2000,29(5):58
    [110] 邓家春,温金珂,王华馥.掺锌铌酸锂(LiNbO_3:Zn)晶体的物性测量.南开大学学报,1994,2:47-51
    [111] X. P. Zhang, J. Hebling, J. Kuhl, et al. Efficient visible light generation in a femtosecond PPLN optical parametric oscillator using an uneven poling duty cycle. CLEO 2000, 2000, CWH1: 273
    [112] S. Russell, M. J. Missey, P. Powers, et al. Periodically poled lithium niobate with a 20~0 fan angle for continuous OPG tuning. CLEO 2000, 2000. 632-633
    [113] J. P. F(?)ve, B. Boulanger, B. M(?)naert, et al. Continuously tunable optical parametric generator using a cylindrical PPLN. CLEO 2003, 2003.238-241
    [114] V. Berger. Nonlinear photonic crystals. Phys. Rev. Lett., 1998, 81 (19): 4345-4348
    [115] N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, et al. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett., 2000, 84(19): 4345-4348
    [116] R. K. Jonathan. Integrated optical-frequency mixers: [Ph.D paper]. Stanford University: Stanford University Library, 2003
    [117] Juan Capmany, C. R. Fern(?)ndez-Pousa. Distributed optical feedback and nonlinear photonic crystals based on selective etching of periodically-poled lithium niobate. LEOS 2004, 2004, 2: 877-878
    [118] A. C. Chiang, Y. Y. Lin, Y. C. Huang, et al. Distributed feedback optical parametric oscillator. CLEO 2002,1: 173-174
    [119] T. Yamada, M. Ishii, S. Mino, et al. Compact and highly efficient optical-time-division- multiplexer using low loss direct attachment with 1.5%-△PLC and PPLN waveguides. LEOS 2003,2003, 2: 744-745
    [120] Y. L. Lee, H. Suche, Y. H. Min, et al. Wavelength-and time-selective all-optical channel dropping in periodically poled Ti:LiNbO_3 channel waveguides. Photonics Techn. Lett., 2003,15(7): 978-980
    [121] R. Iwanow, R. Schiek, G. Stegeman, et al. Parametric switching and frequency conversion in PPLN directional couplers. CLEO 2004,2004, 2: CFJ4
    [122] M. Sato, P. G. R. Smith, D. C. Hanna. Contact electrode method for bulk periodically poled LiNbO_3. IEEE, 1997, TuE1: 178-179
    [123] M. Sato, P. G. R. Smith, D. C. Hanna. Contact electrode method for bulk periodically poled LiNbO_3. Electronics Lett., 1998,34(7): 660-661
    [124] V. YA. Shur, E. L. Rumyantsev, E. V. Nikolaeva, et al. Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate. Ferroelectrics, 2001,253:105-114
    [125] G. B. Robert, E. L. Ginzton. 59%-efficient cw-modelocked second harmonic generation of blue light in backswitch-poled lithium niobate. CLEO 99, 1999, CThB2: 353-355
    [126] M. L. Sundheimer, P. Baldi. New frequency standard for optical telecommunications based on difference-frequency generation on PPLN waveguides. IMOC 2003, 2003, 1:287-290
    [127] D. Lever, A. Arie. Tunable chromatic dispersion compensator. Electrical and Electronics Engineers in Israel 2004,2004. 244-246
    [128] T. Ohara, H. Takara, I. Shake, et al. 160-Gb/s optical-time-division multiplexing with PPLN hybrid integrated planar lightwavecircuit. IEEE Photonics Technology Letters, 2003,15(2): 302-304
    [129] D. Gurkan, M. C. Hauer, A. B. Sahin, et al. Demonstration of multi-wavelength all-optical header recognition using a PPLN and optical correlators. ECOC'01, 2001, 3:312-313
    [130] D. Gurkan, S. Kumar, A. E. Willner, et al. Simultaneous label swapping and wavelength conversion of multiple independent WDM channels in an all-optical MPLS network using PPLN waveguides as wavelength converters. Journal of Lightwave Technology, 2003, 21(11): 2739-2745
    [131] Z. Zhang, A. M. Weiner. Novel optical thresholder based on second harmonic generation in long periodically poled lithium niobate for ultrashort pulse optical code division multiple-access. Optical Fiber Communication Conference 2000, 2000, 3: 317-319
    [132] Z. Jiang, D. S. Seo, D. E. Leaird, et al. Low power 4×10 Gb/s O-CDMA system using a double Hadamard code based spectral phase correlator. LEOS 2004, 2004, 1: 238-239
    [133] C. Weiss, G. Torosyan, R. Wallenstein, et al. Tunable narrowband surface-emitted THz-radiation generated in periodically poled lithium niobate. CLEO'01 Technical Digest, 2001. 101-102
    [134] Y. S. Lee, Z. B. Norris. Terahertz pulse shaping and optimal waveform generation in poled ferroelectric crystals. QELS 2003, 2002. 144-145
    [135] 倪培根,马博琴,程丙英等.二维LiNbO_3非线性光子晶体.物理学报,2003, 52(8): 1925-1928
    [136] A. Bresson, X. Orlik, A. Manchon, et al. Continuous laser source for cooling Rubidium atoms using second harmonic generation from a PPLN crystal. CLEO 2004, 2004, 2: CFE6
    [137] A. Yoshizawa, R. Kaji, H. Tsuchida. Generation of polarization-entangled photon pairs at 1550nm using two PPLN waveguides. Electronics Lett., 2003, 39(7): 621-622
    [138] F. K(?)nig, E. J. Mason, F. N. C. Wong. Single-spatial mode coincidence measurement of photon pairs from a highly nondegenerate PPLN downconverter. QELS 2003, 2003. QTUB5
    [139] S. Mori, N. Namekata, S. Inoue. Generation of pulsed-correlated photon pairs in the 1550nm band using a PPLN waveguide. CLEO/Pacific Rim 2003, 2003, 2:698
    [140] A.K. Sridharan, R. Roussev, K. Urbanek, et al. Eyesafe, 1.55μm, 1μs pulse energy source for space-based remote sensing using optical parametric amplifiers in PPLN. CLEO 2004, 2004. 1-3
    [141] S. Waltman, K. P. Petrov, E. J. Dlugokencky, et al. Measurement of ~(13)CH_4/~(12)CH_4 ratios in air using diode-pumped 3.3 μm difference-frequency generation in PPLN. 1997 Digest of the IEEE/LEOS Summer Topical Meetings, 1997. 37-38
    [142] Hsiang Weiwei, Lim Chinhow, Liang Gengchiau, et al. Photoacoustic trace gas detection using pulsed grazing-incidence PPLN optical parametric oscillator. CLEO/ Pacific Rim 2001, 2001, 1:I-132-I-133
    [143] F. Muller, A. Popp, F. Kuhnemann. A cw optical parametric oscillator for sub-ppb trace gas detection in the 3μm region. CLEO/Europe 2003, 2003.244-246
    [144] 钱士雄,朱荣毅.非线性光学.(第一版).上海:复旦大学出版社,2005.55-62
    [145] 李港.激光频率的变换与扩展--实用非线性光学技术.(第一版).北京:科学出版社,2005.68-113
    [146] 姚建铨 徐德刚.全固态激光及非线性光学频率变换技术.(第一版).北京:科学出版社,2007.652-711
    [147] 任钢.中红外光参量振荡器及其应用技术的研究:[博士学位论文].成都:四川大学图书馆,2006
    [148] L. O. Hocher, C. F. Dewey Jr. Enhancement of second-harmonic generation in zinc selenide by crystal defects. Appl. Phys. Lett., 1976, 28:267-270
    [149] W.克希耐尔著.固体激光工程.(第一版).孙文译.北京:科学出版社,2002.90-96
    [150] 吕凯.铌酸锂晶体的抛光机理及工艺方法研究:[硕士学位论文].长春:长春理工大学图书馆,2007
    [151] 靳磊.铌酸锂晶体结构与光学性能的密度泛函理论计算:[硕士学位论文].哈尔滨:哈尔滨工业大学图书馆,2006
    [152] 吕巍.周期性极化铌酸锂晶体介电常数与外加微波源频率的变化关系:[硕士学位论文].长春:吉林大学图书馆,2008
    [153] D. F. Nelson, R. M. Mikulyak. Refractive indices of congruently melting lithium niobate. J. Appl. Phys., 1974, 45(8): 3688-3689
    [154] D. S. Smith, H. D. Riccius, R. P. Edwin. Refractive indices of lithium niobate. Opt. Commun., 1976, 17(3): 332-335
    [155] G. J. Edwards, M. Lawrence. A temperature dependent dispersion for congruently grown lithium niobate. Opt. Quantum Electron., 1984, 16:373-364
    [156] M. V. Hobden, J. Warner. The temperature dependence of the refractive indices of pure lithium niobate. Phys. Lett., 1966, 22:243-244
    [157] D. H. Jundt. Temperautre-dependent Sellmeier equation for the index of refraction, n_e, in congruent lithium niobate. Opt. Lett., 1997, 22(20): 1553-1555
    [158] Q. Paul, A. Quosig, T. Bauer, et al. Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO_3. Appl. Phys. B, 2007, 86:111-115
    [159] Y. S. Kim, R. T. Smith. Thermal expansion of lithium tantalite and lithium niobate single crystals. J. Appl. Phys., 1969, 40(11): 4637-4641
    [160] G. D. Miller. Periodically poled lithium niobate: [Ph.D paper]. Stanford University: Stanford University Library, 1998
    [161] P. E. Powers, T. J. Kulp, S. E. Bisson. Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design. Opt. Lett., 1998, 23(3): 159-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700