用户名: 密码: 验证码:
有机—无机杂化纳米线:从合成、表征到金属氧化物/碳化物纳米结构的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来,随着纳米科学技术的发展,纳米材料的制备和应用成为了众多自然科学领域,如物理学、化学、材料和生物医学等的研究热点。结构新颖、性质丰富的各种纳米材料在各领域中展示了优于块体材料的优良性能,具有广阔的开发前景。其中,有机-无机杂化纳米线是纳米材料和纳米科学中的新热点。该类型材料指的拥有一维纳米形貌的有机-无机杂化物,它具有一维纳米材料形貌规整、一维传输特性和容易组装等特点;同时作为有机-无机杂化物,它的晶体结构方便可调、物化性质丰富,因此在光学、电子学、光电电子学、传感、储能等领域有巨大的开发潜力。
     然而,目前该材料的研究存在种类有限、生长机理不明确等问题,而且对于利用有机-无机杂化结构设计其它纳米材料的领域仍然存在空白。这严重限制了有机-无机杂化纳米线的发展和应用开发。因此,丰富有机-无机杂化纳米线的种类,研究纳米形貌和杂化结构的形成机制,探索杂化结构对设计更多纳米材料的意义,是进一步完善该材料的合成方法论的关键,也满足为纳米材料的应用提供足够的选择资源和材料设计思想的需求。
     本论文工作以“有机-无机杂化纳米线”为主线,针对上述存在的问题,从“合成表征”、“利用杂化物制备金属氧化物一维纳米结构”和“基于杂化物设计金属碳化物催化剂”三方面入手。讨论了新型有机-无机杂化纳米线如GeOx/ethylenediamine和MoOx/amine等的合成和表征,通过对合成规律的细致考察,提出了新的生长机理。通过对杂化结构的不断认识,发现其有机、无机成分紧密接触的特点有助于在金属氧化物/碳化物材料合成中发挥独特作用,因此通过相应的实验,得到金属氧化物的一维纳米结构(如GeO2、MoO2/C纳米线等)以及一系列碳化钼催化剂(Mo2C纳米线、Mo2C/CNT和Co-Mo2C/CNT等)。在上述工作中,即拓展了有机-无机杂化纳米线的物种,丰富了现有的合成理论和机理,还成功利用该杂化材料设计合成多种氧化物/碳化物功能纳米材料,这些材料在催化以及电化学中都表现出突出的性能,为功能纳米材料的设计合成提供了新的思路。论文对上述研究工作将分六个章节进行讨论:
     第三章讨论GeOx/ethylenediamine纳米线的合成与结构表征。利用氧化铁辅助的水热法首次合成了GeOx/ethylenediamine纳米线,方法操作简单,成本低廉,具有量产的前景。通过系统表征,发现该纳米线具有全新的晶体结构和有机-无机杂化成分,GeOx与乙二胺之间通过弱相互作用形成了周期性亚纳米结构。该特征性的亚纳米结构可以导致强的量子效应,体现为紫外吸收光谱中的蓝移现象,而且该杂化纳米具有光致荧光性质,在光学、光电纳米器件等领域具有广阔的应用前景。
     第四章探索了GeOx/ethylenediamine纳米线的生长规律。细致考察了不同实验条件对纳米线生长的影响,如反应时间、温度、有机胺种类以及金属氧化物助剂等,优化了实验条件,提炼了规律。在此基础上,通过综合分析之后提出了“氧化铁诱导的界面-溶液-固体”机理,即Fe2O3诱导了乙二胺分子与GeOx在氧化铁表面产生GeOx/EDA杂化单元,再通过界面生长的限制,形成了一维方向的生长。拓展合成体系,获得了MoO2/ethylenediamine纳米片等新颖结构,验证了所提机理。
     第五章介绍了MoOx/anine一维纳米结构的合成。提出了“利用钼酸根一维生长特性合成MoOx/amine纳米线”的策略,即在钼酸根与有机胺离子结合的同时保持钼酸根的生长特性。通过共沉淀方法,得到了一系列的MoOx/amine纳米线,例如Mo3O10(C6H8N)2·2H2O、MoOx/1,6-hexanediamine和MoOx/imidazole等,研究了纳米线的形成规律,优化了实验条件。同时,利用Mo3O10(C6H8N)2·2H2O为前驱体,通过原位聚合方法,可控合成了MoOx/polyaniline纳米线/管。这部分工作对氧化钼杂化纳米线进行深化研究,提出更加简单的合成方法,不但丰富了该类型材料的种类,也为后面钼相关功能纳米材料的设计提供了选择和调变空间。
     第六章介绍利用有机-无机杂化纳米线制备金属氧化物一维纳米结构的方法。针对不具备各向异性生长的金属氧化物,一维结构难以合成的问题,提出“基于有机-无机杂化纳米线设计一维纳米氧化物”的策略。利用有机-无机杂化纳米线为前驱体,通过简单的后处理(如焙烧)等,可以获得相应的氧化物纳米结构,方法简单、安全易控;同时,其中的有机成分可以在惰性气氛中高温碳化,形成碳杂化结构,提高材料的某些应用。例如,在空气氛中焙烧GeOx/ethylenediamine纳米线,可得到具有光致荧光性质的α-GeO2纳米线。同时,利用MoOx/amine纳米线,经惰性气氛焙烧,获得MoO2/C纳米线,细致表征了纳米线结构,研究了转变规律。由于其一维形貌和碳杂化结构,MoO2/C纳米线应用于锂离子电池负极材料,表现了高的可逆容量和良好的循环性,特别是倍率性能突出,符合了对新能源高能量密度、高功率密度的需求。
     第七章探讨“利用有机-无机杂化纳米线合成多孔一维碳化钼”的新策略。金属碳化物具有类贵金属催化性质,在许多催化反应中应用,但传统的程序升温还原方法由于涉及气-固相界面反应,反应不充分,容易造成表面积碳,产量受限。本工作提出“利用有机-无机杂化纳米线合成多孔一维碳化钼”的策略,利用MoOx/amine中有机-无机成分紧密接触的特点,通过高温条件下贯穿整体的均匀反应,获得多孔的Mo2C纳米线。产品由纳米颗粒组成纳米线形貌,具有大比表面和丰富孔性,而且表面积碳较少。利用甲醇分解制氢气的探针反应,发现本方法所得的Mo2C纳米线具有类贵金属的催化性质,且具有比程序升温还原法所得催化剂长的催化寿命和高的氢气产率。本章工作不但证明了该方法对碳化钼纳米结构合成的普适性和可调性,而且进一步展示了相对TPRe方法的优越性,包括简单操作和优良的产品特征。
     第八章将“基于有机-无机杂化结构制备碳化物”的策略进一步拓展到负载型碳化钼催化剂的合成。通过浸渍负载、烘干、焙烧等步骤,可以获得一系列负载型的Mo2C催化剂,如Mo2C/CNT、Co-Mo2C/CNT和Co-Mo2C/AC等。通过结构表征证明催化剂组分在载体上以纳米颗粒分散,且不同催化剂之间相互独立,不以合金等形式存在。研究发现有机-无机杂化物前驱体是形成碳化钼的关键,这样的合成与传统方法比较具有操作简单安全、产品表面积碳少等优点。在甲醇分解制氢气的表征反应中,负载型催化剂表现出优于非负载型催化剂的性能,其中Co-Mo2C/CNT最为突出,展现了作为该反应高效催化剂的潜力。探讨Co金属修饰对Mo2C催化剂的作用,认为Co能过够将Mo2C表面积碳转化为碳纳米管,释放了活性表面,提高了催化剂的寿命。负载型Mo2C催化剂的突出性能预示其作为贵金属催化剂廉价替代品的前景,同时也为其它反应的催化剂设计提供了新的思路。
     综上所述,本论文以“有机-无机杂化纳米线”为主线,通过水热、共沉淀等方法构建了有机-无机杂化纳米线合成体系,同时,基于杂化结构设计合成了多种金属氧化物/碳化物纳米结构,探讨了它们在锂离子电池、甲醇催化制氢气中的应用。在获得一系列新颖结构的功能纳米材料的同时,通过系统研究,还提出了“氧化铁诱导的界面-溶液-固体”生长机理和“基于有机-无机杂化纳米线设计氧化物/碳化物”的策略,为新材料开发与设计提供了方法学上的借鉴意义。
In this decade, the synthesis and application of nanomateials have attracted much attention in the fields of physics, chemistry, material science, biology and etc., with the development of nanoscience and nanotechnology. The superior performance of various nanomaterials than bulky counterparts has been demonstrated in many fields, indicating the potential application in the future. Among them, organic-inorganic hybrid nanowires have become a new highlight because of the uniform 1D morphology, anisotropic transport, easy assembly, tunable structures and functional properties.
     However, there are still challenges in the urgent research on organic-inorganic hybrid nanowires. Firstly, the kind of organic-inorganic hybrid nanowires is limited; secondly, the growth mechanism of such materials is obscure; and thirdly, the employment of organic-inorganic nanowires to fabricate other nanostructures has been ignored in the previous work. These factors limit seriously the development of such materials. Therefore, the research dealing with synthesis and growth mechanism of novel organic-inorganic hybrid nanowires, as well as designing other nanostructures based on the hybrids, has been expected to promote the development and application of such nanomaterials.
     This dissertation focus on organic-inorganic hybrid nanowires, with the deep investigation into three parts including "synthesis and characterization", "fabricating 1D metal-oxides from organic-inorganic nanowires" and "designing metal-carbide catalysts based on organic-inorganic hybrids". To explore more hybrid nanowires, a series of GeOx/ethylenediamine and MoOx/amine nanowires were originally developed and well characterized. New growth mechanisms were proposed on the basis of systematic study about their synthesis. Meanwhile,the subnanometer contact between organic and inorganic components in the hybrids was found significant for preparing the nanostructures of metal oxides and carbides, and thus several 1D metal oxides (e.g. GeO2 and MoO2/C nanowires) and carbide catalysts (e.g. Mo2C nanowires, Mo2C/CNT and Co-Mo2C/CNT) were successfully achieved, which exhibit high performance in electrochemistry and catalysis, respectively. Besides, due to the facile process, low cost and novel product structures, the synthetic strategies proposed in this work will open opportunities for the synthesis and design of functional materials. The details of each chapter are list below.
     In chapter 3, GeOx/ethylenediamine nanowires were firstly synthesized via Fe2O3-assited hydrothermal method, which is possible to large-scale preparation for the low cost and easy control. Through the systematic characterization, the novel crystalline structure and hybrid components are well confirmed, in which the GeOx units are connected by ethylenediamine through hydrogen bonding, forming the subnanometer structure. Strong quantum confinement effect can be considerably leaded by this subnanometer structure, reflected by the blue shift in UV spectra. Furthermore, the bright blue light can be emitted by such as-obtained nanowire, suggesting the potential application in future integrated optical nanodevices.
     In chapter 4, the growth of GeOx/ethylenediamine nanowires was discussed in detail. Several factors in the synthesis process, such as reacting time, temperature, amines and metal-oxide assisting agents, are systematically analyzed, and thus the growth mechanism of Fe2O3-assisted Surface-Solution-Solid was proposed. Herein, Fe2O3 leads to the formation of GeOx/ethylenediamine hybrid units on the surface, which is followed by an anisotropic growth induced by the solid-liquid interface reactions. Meanwhile, another novel structure of MoO2/ethylenediamine nanosheets was obtained through the similar growth process, indicating the potential of this mechanism as a new route to fabricating organic-inorganic hybrid nanomaterials.
     In chapter 5, a series of MoOx/amine nanowires were fabricate based on the anisotropic growth of molybdate crystals, including Mo3O10(C6H8N)2·2H2O、MoOx/1,6-hexanediamine and MoOx/imidazole. Detailed study was carried out on the formation of such nanowires, and the synthesis was well optimized. Furthermore, employing Mo3O10(C6H8N)2·2H2O as precursors, the controllable synthesis of MoOx/polyaniline nanowires/tubes can be realized through in-situ polymerization. The work in this chapter, not only furthers the research into organic-inorganic hybrid nanowires of MoOx, but also proposes easy strategies to enrich the system of such hybrid nanostructures, aiming the following design of functional Mo-based oxides and carbides.
     In chapter 6, an easy strategy was proposed to fabricate 1D oxides from organic-inorganic hybrid nanowires, regarding that the 1D nanostructures of oxides without anisotropic growth were difficult to obtain. After the calcination in air or inert flow, nanowires of oxides or carbon-hybrid metal-oxides can be easily achieved, respectively. Especially, the carbon-hybrid structures in such nanowires may enhance and improve some application in electrochemistry. For example,α-GeO2 nanowires with photoluminescence properties were obtained through calcining GeOx/ethylenediamine in air flow. Meanwhile, novel MoO2/C nanowires were successfully fabricated via the calcination of MoOx/amine nanowires under inert flow, which exhibited the high rate capability even under high current density as anode materials for Li ion battery. The potential of the synthetic strategy in design functional nanomaterials is well revealed by the universality for various nanostructures and high performance for energy-storage.
     In chapter 7, we proposed a novel strategy to synthesize nanostructures of carbides based on organic-inorganic hybrid composites with subnanometer periodic structures. By employing the uniform reactions between subnanometer-contacting organic and inorganic components throughout the whole hybrids, this strategy successfully avoids the disadvantages in traditional temperature-program-reduction (TPRe) method using solid-gas interface reactions. Nanoporous Mo2C nanowires can be well obtained via calcining MoOx/amine nanowires under Ar flow, which are composed of Mo2C nanoparticles and possesses large surface with little depositing carbon. These nanowires display higher H2 yield and longer lifetime than bulky Mo2C obtained by TPRe method in the probe reaction of producing H2 from methanol decomposition. Thus, the significance of synthetic strategy for fabricating carbides from organic-inorganic nanocomposites is well demonstrated.
     In chapter 8, the strategy of fabricating carbides from organic-inorganic nanocomposites was further extended to design of supported Mo2C catalysts, such as Mo2C/CNT, Co-Mo2C/CNT and Co-Mo2C/AC. The physical characterization shows that the active composites present individually as highly dispersive nanoparticles on the surface of support, and no alloy phase can be observed. The formation of Mo2C can be attributed to the organic-inorganic hybrid precursors, and thus this process is significant for the advantages discussed in chapter 7,such as easy control, safety and little depositing carbon on surface. In the catalytic reaction of producing H2 from methanol decomposition, supported Mo2C catalysts show the higher performance than unsupported catalysts. Significantly, the Co-Mo2C/CNT displays ultrahigh activity, selectivity and stability in such reaction, indicating the potential as efficient substitutes for the high-price noble-metal catalysts. Furthermore, the research into the effect of metallic Co during catalytic process shows that Co transfers the coke to format carbon nanotubes, improving remarkably the stability. This mechanism may benefit the design other carbide catalysts for relevant reactions.
     To sum up, this dissertation focus on organic-inorganic hybrid nanowires, and the organic-inorganic hybrid nanowires system of GeOx and MoOx have been established through facile hydrothermal and co-precipitation methods. Furthermore, various nanostructures of molybdenum oxides and carbides have been also realized based on the organic-inorganic hybrid nanowires, whose performance in Li ion battery and producing H2 from methanol decomposition are discussed. Besides the novel nanostructures with functional properties, several mechanism and synthetic strategies have been proposed in this work, which will open up opportunities for the synthesis and design of new nanomaterials.
引文
[1]Y. Wu, J. Xiang, C. Yang, W. Lu, C. M. Lieber. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures [J]. Nature,2004,430(6995): 61-65.
    [2]D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature,2009,458(7240):872-876.
    [3]Z. Y. Tang, Z. L. Zhang, Y. Wang, S. C. Glotzer, N. A. Kotov. Self-assembly of CdTe nanocrystals into free-floating sheets [J]. Science,2006,314(5797): 274-278.
    [4]王中林.纳米线和纳米带——材料,性能和器件,卷Ⅰ:金属和半导体纳米线[M].北京:清华大学出版社,2004.
    [5]王中林.纳米线和纳米带——材料,性能和器件,卷Ⅱ:功能材料的纳米线和纳米带[M].北京:清华大学出版社,2004.
    [6]J. H. Ahn, H. S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. G. Sun, R. G. Nuzzo, J. A. Rogers. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials [J]. Science,2006,314(5806):1754-1757.
    [7]J. A. Van Dam, Y. V. Nazarov, E. P. A. M. Bakkers, S. De Franceschi, L. P. Kouwenhoven. Supercurrent reversal in quantum dots [J]. Nature,2006, 442(7103):667-670.
    [8]G. A. Ozin, L. Cademartiri. Nanochemistry:What Is Next [J]. Small,2009,5(11): 1240.
    [9]A. D. Yoffe. Low-dimensional systems:quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems [J]. Advances in Physics,1993,42(2): 173-262.
    [10]C. Suryanarayana, F. H. Froes. The structure and mechanical-properties of metallic nanocrystals [J]. Metall. Trans. A,1992,23(4):1071-1081.
    [11]R. W. Siegel, G E. Fougere. Mechanical properties of nanophase metals [J]. Nanostruct. Mater.,1995,6(1):205-216.
    [12]H. W. Kroto. C-60-Buckminsterfullerene [J]. Nature,1985,318(6042):62-63.
    [13]C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj. Graphene:The New Two-Dimensional Nanomaterial [J]. Angew. Chem. Int. Ed.,2009,48(42): 7777.
    [14]刘吉平,廖莉玲.无机纳米材料[M].北京:科学出版社,2003.
    [15]Y. Wang, N. Herron. Nanometer-sized semiconductor clusters-materials synthesis, quantum size effects, and photophysical properties [J]. J Phys. Chem., 1991,95(2):525-532.
    [16]A. Hagfelda, M. Gratzel. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev.,1995,95(1):49-68.
    [17]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan. One-dimensional nanostructures:Synthesis, characterization, and applications [J]. Adv. Mater.,2003,15(5):353-389.
    [18]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [19]林元华.纳米技术-人类的又一次产业革命[J].国外科技动态,2000,366(1):11-18.
    [20]A. Henglein. Small-particle research-physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem. Rev.,1989,89(8): 1861-1873.
    [21]许并社.纳米材料及应用技术[M].北京:化学工业出版社,2004.
    [22]李凤生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002.
    [23]王永康,王立.纳米材料科学与技术[M].杭州:浙江大学出版社,2002.
    [24]王春雷,马丁,包信和.碳纳米材料及其在多相催化中的应用[J].化学进展,2009,21(09):1705-1721.
    [25]余兴龙,董永贵,王东生.纳米技术与传感器结合成为新热点[J].国际学术动态,2006,3(1):16-18.
    [26]姜利英,姚菲菲,任景英,张法全,贺振东,崔光照.纳米材料在生物传感器中的应用[J].传感器与微系统,2009,28(5):4-7.
    [27]M. A. Fox, M. T. Dulay. Heterogeneous photocatalysis [J]. Chem. Rev.,1993, 93(1):341-357.
    [28]S. Iijima. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348): 56-58.
    [29]刘海峰,彭同江,孙红娟,马国华,段涛.一维纳米功能材料研究新进展[J].化工新型材料,2007,35(4):1-3.
    [30]张莹.银系填料的形貌对导电胶复合材料的电性能的影响[D].上海:复旦大学,2009.
    [31]陈海澜.一维纳米材料的光电性能研究[J].基础及前沿研究,2009,15(1):10-12.
    [32]Z. Yao, H. W. C. Postma, L. Balents, C. Dekker. Carbon nanotube intramolecular junctions [J]. Nature,1999,402(6759):273-276.
    [33]H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker. Carbon nanotube single-electron transistors at room temperature [J]. Science,2001,293(5527): 76-79.
    [34]L. B. Fan, H. W. Song, H. F. Zhao, G. H. Pan, H. Q. Yu, X. Bai, S. W. Li, Y.Q. Lei, Q. L. Dai, R. F. Qin, T. Wang, B. Dong, Z. H. Zheng, X. G Ren. Solvothermal synthesis and photoluminescent properties of ZnS/cyclohexylamine: Inorganic-organic hybrid semiconductor nanowires [J]. J. Phys. Chem. B,2006, 110(26):12948-12953.
    [35]Y. Zhang, G. M. Dalpian, B. Fluegel, S. H. Wei, A. Mascarenhas, X. Y. Huang, J. Li, L. W. Wang. Novel approach to tuning the physical properties of organic-inorganic hybrid semiconductors [J]. Phys. Rev. Lett.,2006,96(2): 026405.
    [36]Y. D. Li, H. W. Liao, Y. Ding, Y. Fan, Y. Zhang, Y. T. Qian. Solvothermal elemental direct reaction to CdE (E=S, Se, Te) semiconductor nanorod [J]. Inorg. Chem.,1999,38(7):1382-1387.
    [37]Y. D. Li, H. W. Liao, Y. Ding, Y. T. Qian, L. Yang, G E. Zhou. Nonaqueous synthesis of CdS nanorod semiconductor [J]. Chem. Mater.,1998,10(9): 2301-2303.
    [38]P. Nguyen, H. T. Ng, M. Meyyappan. Growth of individual vertical germanium nanowires [J]. Adv. Mater.,2005,17(5):549-553.
    [39]M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001,292(5523):1897-1899.
    [40]H. Kind, H. Yan, M. Law, B. Messar, P. Yang. Nanowire ultraviolet photodetectors and optical switches [J]. Adv. Mater.,2002,14(2):158-160.
    [41]徐小勇,胡学兵,施卫国,向芸.一维纳米材料的合成与应用[J].硅酸盐通报,2008,27(6):1195-1198.
    [42]J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, H. J. Dai. Nanotube molecular wires as chemical sensors [J]. Science,2001,287(5453): 622-625.
    [43]P. G. Collins, K. Bradley, M. Ishigami, A. Zettl. Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J]. Science,2000,287(5459): 1801-1804.
    [44]Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science, 2001,293(5533):1289-1292.
    [45]Y. L. Wang, X. C. Jiang, Y. N. Xia. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions [J]. J. Am. Chem. Soc.,2003,125(52):16176-16177.
    [46]M. Law, H. Kind, B. Messer, F. Kim, P. D. Yang. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature [J]. Angew. Chem. Int. Ed.,2002,41(13):2405-2408.
    [47]张海林,韩相明,王焕新,徐甲强.一维纳米材料在锂离子蓄电池中的应用进展[J].电源技术,2008,32(1):63-66.
    [48]P. G. Bruce, B. Scrosati, J. M. Tarascon. Nanomaterials for rechargeable lithium batteries [J]. Angew. Chem. Int. Ed.,2008,47(16):2930-2946.
    [49]A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, P. G. Bruce. Lithium-ion intercalation into TiO2-B nanowires [J]. Adv. Mater.,2005,17(7):862-865.
    [50]J. Chen, F. Y. Cheng. Combination of Lightweight Elements and Nanostructured Materials for Batteries [J]. Acc. Chem. Res.,2009,42(6):713-723.
    [51]P. Christopher, S. Linic. Engineering selectivity in heterogeneous catalysis:Ag nanowires as selective ethylene epoxidation catalysts [J]. J. Am. Chem. Soc., 2008,130(34):11264-11265.
    [52]X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen. Low-temperature oxidation of CO catalysed by Co3O4 nanorods [J]. Nature,2009,458(7239):746-749.
    [53]Z. L. Wang, J. H. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science,2006,312(5771):242-246.
    [54]X. D. Wang, J. H. Song, J. Liu, Z. L. Wang. Direct-current nanogenerator driven by ultrasonic waves [J]. Science,2007,316(5821):102-105.
    [55]Y. Qin, X. D. Wang, Z. L. Wang. Microfibre-nanowire hybrid structure for energy scavenging [J]. Nature,2008,451(7180):809-813.
    [56]B. Gates, B. Mayers, A. Grossman, Y. N. Xia. A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports [J]. Adv. Mater.,2002,14(23):1749-1752.
    [57]M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, Y. Qian. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater.,
    2002,14(22):1658-1622.
    [58]I. Boschen, B. Krebs. Crystalline structure of white molybdanic acid alpha-MoO3·H2O [J]. Acta Crystallogr.,1974, B30(15):1795-1800.
    [59]T. A. Xia, Q. Li, X. D. Liu, J. Meng, X. Q. Cao. Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide [J]. J. Phys. Chem. B,2006,110(5):2006-2012.
    [60]X. L. Li, J. F. Liu, Y. D. Li. Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts [J]. Appl. Phys. Lett.,2002, 81(25):4832-4834.
    [61]S. Hu, X. Wang. Single-walled MoO3 nanotubes [J]. J. Am. Chem. Soc.,2008, 130(26):8126-8127.
    [62]X. J. Cui, S. H. Yu, L. L. Li, L. Biao, H. B. Li, M. S. Mo, X. M. Liu. Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process [J]. Chem. Eur. J.,2004,10(1):218-223.
    [63]B. Messer, J. H. Song, M. Huang, Y. Wu, F. Kim, P. Yang. Surfactant-induced mesoscopic assemblies of inorganic molecular chains [J]. Adv. Mater.,2000, 12(20):1526-1528.
    [64]J. H. Song, Y. Wu, B. Messer, H. Kind, P. Yang. Metal nanowire formation using Mo3Se3-as reducing and sacrificing templates [J]. J. Am. Chem. Soc.,2001, 123(42):10397-10398.
    [65]Q. S. Gao, C. X. Zhang, S. H. Xie, W. M. Hua, Y. H. Zhang, N. Ren, H. L. Xu, Y. Tang. Synthesis of Nanoporous Molybdenum Carbide Nanowires Based on Organic-Inorganic Hybrid Nanocomposites with Sub-Nanometer Periodic Structures [J]. Chem. Mater.,2009,20(23):5560-5562.
    [66]X. Y. Kong, Y. Ding, R. S. Yang, Z. L. Wang. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts [J]. Science,2004,303(5662): 1348-1351.
    [67]L. Vayssieres, M. Graetzel. Highly ordered SnO2 nanorod-arrays from controlled aqueous growth [J]. Angew. Chem. Int. Ed.,2004,43(28):3666-3670.
    [68]X. Wang, Y. D. Li. Solution-based routes to transition-metal oxide one-dimensional nanostructures [J]. Pure Appl. Chem.,2006,78(1):45-64.
    [69]X. Wang, Y. D. Li. Selected control hydrothermal synthesis of alpha and beta MnO2 nanowires [J]. J. Am. Chem. Soc.,2002,124(12):2880-2881.
    [70]D. V. Bavykin, J. M. Friedrich, F. C. Walsh, Protonated Titanates and TiO2 Nanostructured Materials:Synthesis, Properties, and Applications [J]. Adv. Mater., 2006,18(21):2807-2824.
    [71]H. H. Ou, S. L. Lo. Review of titania nanotubes synthesized via the hydrothermal treatment:Fabrication,modification,and application [J]. Sep. Purif. Technol.,2007, 58(1):179-191.
    [72]J. M. Song, Y. Z. Lin, H. B. Yao, F. J. Fan, X. G Li, S. H. Yu. Superlong beta-AgVO3 Nanoribbons:High-Yield Synthesis by a Pyridine-Assisted Solution Approach, Their Stability, Electrical and Electrochemical Properties [J]. ACS Nano,2009,3(3):653-660.
    [73]B.C. Satishkumar, A. Govindaraj, M. Nath, C.N. R. Rao. Synthesis of metal oxide nanorods using carbon nanotubes as templates [J]. J. Mater. Chem.,2000, 10(9):2115-2119.
    [74]B. Hu, L. Q Mai, W. Chen, F. Yang. From MoO3 Nanobelts to MoO2 Nanorods: Structure Transformation and Electrical Transport [J]. ACS Nano,2009, 3(2):478-482.
    [75]R. S. Wagner, W. C. Ellis. Vapor-liquid-solid mechanism of single crystal growth [J]. Appl. Phys. Lett.,1964,4(5):89-90.
    [76]W. Lu, C. M. Lieber, Semiconductor Nanowires [J]. J. Phys. D:Appl. Phys.,2006, 39(21):R387-R406.
    [77]Y. Wu, P. Yang. Direct observation of vapor-liquid-solid nanowire growth [J]. J. Am. Chem. Soc.2001,123(13):3165-3166.
    [78]Y. Wu, P. Yang. Germanium nanowire growth via simple vapor transport [J]. Chem. Mater.,2000,12(3):605-607.
    [79]T. Henry, K. Kim, Z. Ren, C. Yerino, J. Han, H. X. Tang. Directed growth of horizontally aligned gallium nitride nanowires for nanoelectromechanical resonator arrays [J]. Nano Lett.,2007,7(11):3315-3319.
    [80]X. Duan, C. M. Lieber. General synthesis of compound semiconductor nanowires [J]. Adv. Mater.,2000,12(4):298-302.
    [81]M. H. Huang, Y. Wu, H. Feick, E. Weber, P. Yang. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Adv. Mater.,2001,13(2):113-116.
    [82]T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro. Solution-liquid-solid growth of crystalline III-V semiconductors-an analogy to vapor-liquid-solid growth [J]. Science,1995,270(5243):1791-1794.
    [83]J. Sun, L. W. Wang, W. E. Buhro, Synthesis of cadmium telluride quantum wires
    and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots [J]. J. Am. Chem. Soc.,2008,130(25):7997-8005.
    [84]A. G Dong, H. Yu, F. D. Wang, W. E. Buhro. Colloidal GaAs Qauntum Wires: Solution-Liquid-Solid Synthesis and Quantum-Confinement Studies [J]. J. Am. Chem. Soc.,2008,130(18):5954-5961.
    [85]J. W. Sun, W. E. Buhro. The use of single-source precursors for the solution-liquid-solid growth of metal sulfide semiconductor nanowires [J]. Angew. Chem. Int. Ed.2008,47(17):3215-3218.
    [86]C. R. Martin. Template synthesis of electronically conductive polymer nanostructures [J]. Acc. Chem. Res.1995,28(2):61-68.
    [87]C. R. Martin. Nanomaterials-a membrane-based synthetic approach [J]. Science 1994,266(5193):1961-1966.
    [88]P. Hoyer. Semiconductor Nanotube Formation by a Two-Step Template Process [J]. Adv. Mater.1996,8(10):857-859.
    [89]Y. Li, X. Li, Z. X. Deng, B. Zhou, S. Fan, J. Wang, X. Sun. From Surfactant-Inorganic Mesostructures to Tungsten Nanowires [J]. Angew. Chem. Int. Ed.2002,41(2),333-335.
    [90]Y. G. Sun, B. Gates, B. Mayers, Y. N. Xia. Crystalline silver nanowires by soft solution processing [J]. Nano Lett.,2002,2(2):165-168.
    [91]Y. G. Sun, Y. N. Xia. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process [J]. Adv. Mater.,2002,14(11):833-837.
    [92]Y. G. Sun, B. Mayers, T. Herricks, Y. N. Xia. Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence [J]. Nano Lett.,2003,3(7):955-960.
    [93]B. Wiley, Y. G. Sun, Y. N. Xia. Synthesis of Silver Nanostructures with Controlled Shapes and Properties [J]. Acc. Chem. Res.,2007,40(10):1067-1076.
    [94]X. C. Jiang, Y. L. Wang, T. Herricks, Y. N. Xia. Ethylene glycol-mediated synthesis of metal oxide nanowires [J]. J. Mater. Chem.,2004,14(4):695-703.
    [95]Y. D. Li, M. Sui, Y. Ding, G. H. Zhang, J. Zhuang, C. Wang. Preparation of Mg(OH)2 nanorods [J]. Adv. Mater.,2000,12(11):818-821.
    [96]Y. D. Li, Z. Y. Wang, Y. Ding. Room temperature synthesis of metal chalcogenides in ethylenediamine [J]. Inorg. Chem.,1999,38(21):4737-4740.
    [97]W. J. Zhang, Y. Liu, R. G. Cao, Z. H. Li, Y. H. Zhang, Y. Tang, K. N. Fan. Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals [J]. J. Am. Chem. Soc.,2008,130(46): 15581-15588.
    [98]L. Isaacs, D. N. Chin, N. Bowden, Y. Xia, G. M. Whitesides. In supermolecular Technology (ED:D. N. Reinhoudt) [M]. New York:John Wiley& Sons,1999: 1-46.
    [99]Y. Yin, Y. Lu, B. Gates, Y. Xia. Template-assisted self-assembly:A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures [J]. J. Am. Chem. Soc.,2001,123(36):8718-8729.
    [100]Y. Yin, Y. Xia. Self-assembly of spherical colloids into helical chains with well-controlled handedness [J]. J. Am. Chem. Soc.,2003,125(8):2048-2049.
    [101]Y. Yin, B. Gates, Y. Xia. A soft lithography approach to the fabrication of nanostructures of single crystalline silicon with well-defined dimensions and shapes [J]. Adv. Mater.2000,12(19):1426-1430.
    [102]M. D. Wei, H. Sugihara, I. Honma, M. Ichihara, H. S. Zhou. A new metastable phase of crystallized V2O4 center dot 0.25 H2O nanowires:synthesis and electrochemical measurements [J]. Adv. Mater.2005,17(24):2964-2969.
    [103]李响.有机/无机复合微纳米结构功能材料的构筑与介电及光电性质研究[D].长春:吉林大学,2009.
    [104]张志强,马琦,张宝柱,张智敏.有机-无机杂化材料的制备技术和应用前景[J].应用化工,2005,34(7):389-393.
    [105]E. Holder, N. Tessler, A. L. Rogach. Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices [J]. J. Mater. Chem.,2008,18(10):1064-1078.
    [106]C. N. R. Rao, A. K. Cheetham, A. Thirumurugan. Hybrid inorganic-organic materials:a new family in condensed matter physics [J]. J. Phys. Condens. Matter.,2008,20(8):083202.
    [107]C. Soundrapandian, B. Sa, S. Datta. Organic-Inorganic Composites for Bone Drug Delivery [J]. Aaps Pharmscitech,2009,10(4):1158-1171.
    [108]W. S. Han, H. Y. Lee, S. H. Jung, S. J. Lee, J. H. Jung. Silica-based chromogenic and fluorogenic hybrid chemosensor materials [J]. Chem. Soc. Res., 2009,38(7):1904-1915.
    [109]L. Pan, X. Y. Huang, H. N. Phan, T. J. Emge, J. Li, X. T. Wang.1-D infinite array of metal loporphyrin cages [J]. Inorg. Chem.,2004,43(22):6878-6880.
    [110]郭军,雷坚志.有机-无机杂化材料研究新进展[J].湖南科技学院学报,2005,
    26(11):89-93.
    [111]X. H. Yan, G. J. Liu, F. T. Liu, B. Z. Tang, H. Peng, A. B. Pakhomov, C. Y. Wong. Superparamagnetic triblock copolymer/Fe2O3 hybrid nanofibers [J]. Angew. Chem., Int. Ed.2001,40(19):3593-3596.
    [112]X. Y. Huang, J. Li, Y. Zhang, A. Mascarenhas. From 1D chain to 3D network: Tuning hybrid II-VI nanostructures and their optical properties [J]. J. Am. Chem. Soc.,2003,125(23):7049-7055.
    [113]徐金锁,唐颐,张华,高滋.层状磷酸盐在有机胺溶液中的胶体化和稳定性研究[J].高等学校化学学报,1997,18(1):93-98.
    [114]A. Kerr, H. Wu, L. F. Nazar. Concurrent polymerization and insertion of aniline in molybdenum trioxide:Formation and properties of a [poly(aniline)]o.24Mo03 nanocomposite [J]. Chem. Mater.,1996,8(8):2005-2015.
    [115]X. Wei, L. F. Jiao, J. L. Sun, S. C. Liu, H. T. Yuan. Synthesis, electrochemical, and gas sensitivity performance of polyaniline/MoO3 hybrid materials [J]. J. Solid State Electrochem.,2010,14(2):197-202.
    [116]J. Z. Wang, I. Matsubara, N. Murayama, S. Woosuck, N. Izu. The preparation of polyaniline intercalated MoO3 thin film and its sensitivity to volatile organic compounds [J]. Thin Solid Films,2006,514(1-2):329-333.
    [117]A. V. Murugan, A. K. Viswanath, C. S. Gopinath, K. Vijayamohanan. Highly efficient organic-inorganic poly(3,4-ethylenedioxythiophene)-molybdenum trioxide nanocomposite electrodes for electrochemical supercapacitor [J]. J. Appl. Phys.,2006,100(7):074319.
    [118]X. Y. Huang, M. Roushan, T. J. Emge, W. H. Bi, S. Thiagarajan, J. H. Cheng, R. G Yang, J. Li. Flexible Hybrid Semiconductors with Low Thermal Conductivity: The Role of Organic Diamines [J]. Angew. Chem., Int. Ed.2009,48(42): 7871-7874.
    [119]J. Li, W. H. Bi, W. Ki, X. Y. Huang, S. Reddy. Nanostructured crystals:Unique hybrid semiconductors exhibiting nearly zero and tunable uniaxial thermal expansion behavior [J]. J. Am. Chem. Soc.,2007,129(46):14140-14141.
    [120]Y. Zhang, Z. Islam, Y. Ren, P. A. Parilla, S. P. Ahrenkiel, P. L. Lee, A. Mascarenhas, M. J. McNevin, I. Naumov. Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal [J]. Phys. Rev. Lett.,2007, 99(21):215901.
    [121]S. H. Yu, M. Yoshimura. Shape and phase control of ZnS nanocrystals: Template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS-(NH2 CH2CH2NH2)0.5 [J]. Adv. Mater.,2002,14(4):296-300.
    [122]X. Y. Huang, J. Li, H. X. Fu. The first covalent organic-inorganic networks of hybrid chalcogenides:Structures that may lead to a new type of quantum wells [J]. J. Am. Chem. Soc.,2000,122(36):8789-8790.
    [123]X. Y. Huang, H. R. Heulings IV, V. Le, J. Li. Inorganic-organic hybrid composites containing MQ (II-VI) slabs:A new class of nanostructures with strong quantum confinement and periodic arrangement [J]. Chem. Mater.,2001, 13(10):3754-3759.
    [124]H. R. Heulings IV, X. Y. Huang, J. Li, T. Yuen, C. L. Lin. Mn-substituted inorganic-organic hybrid materials based on ZnSe:Nanostructures that may lead to magnetic semiconductors with a strong quantum confinement effect [J]. Nano. Lett.,2001,1(10):521-525.
    [125]Z. X. Deng, L. B. Li, Y. D. Li. Novel inorganic-organic-layered structures: Crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E= S, Se, Te) nanorods in ethylenediamine [J]. Inorg. Chem.,2003,42(7):2331-2341.
    [126]X. Y. Huang, J. Li. From single to multiple atomic layers:A unique approach to the systematic tuning of structures and properties of inorganic-organic hybrid nanostructured semiconductors [J]. J. Am. Chem. Soc.,2007,129(11): 3157-3160.
    [127]X. L. Li, Y. D. Li. Synthesis of scroll-type composite microtubes of Mo2C/MoCO by controlled pyrolysis MO(CO)6 [J]. Chem. Eur. J.,2004,10(2): 433-439.
    [128]P. Afanasiev. New single source route to the molybdenum nitride Mo2N [J]. Inorg. Chem.,2002,41(21):5317-5319.
    [129]W. T. Yao, S. H. Yu, X. Y. Huang, J. Jiang, L. Q. Zhao, L. Pan, J. Li. Nanocrystals of an inorganic-organic hybrid semiconductor:Formation of uniform nanobelts of [ZnSe](diethylenetriamine)0.5 in a ternary solution [J]. Adv. Mater.,2005,17(23):2799-2802.
    [130]W. T. Yao, S. H. Yu, L. Pan, J. Li, Q. S. Wu, L. Zhang, J. Jiang. Flexible wurtzite-type ZnS nanobelts with quantum-size effects:a diethylenetriamine-assisted solvothermal approach [J]. Small,2005,1(3):320-325.
    [131]B. Deng, C. C. Wang, Q. G. Li, A. W. Xu. Highly ordered lamellar mesostructure of nanocrystalline PbSO4 prepared by hydrothermal treatment [J]. J. Phys. Chem. C,2009,113(43):18473-18479.
    [132]W. T. Yao, S. H. Yu, Q. S. Wu. From mesostructured wurtzite ZnS-nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects:A mild-solution chemistry approach [J]. Adv. Funct. Mater.,2007,17(4): 623-631.
    [133]Q. S. Gao, P. Chen, Y. H. Zhang, Y. Tang. Synthesis and characterization of organic-inorganic hybrid GeOx/ethylenediamine nanowires [J]. Adv. Mater.,2008, 20(10):1837-1842.
    [134]Z. A. Zang, H. B. Yao, Y. X. Zhou, W. T. Yao, S. H. Yu. Synthesis and magnetic properties of new [Fe18S25](TETAH)14 (TETAH equals protonated triethylenetetramine) nanoribbons:An efficient precursor to Fe7S8 nanowires and porous Fe2O3 nanorods [J]. Chem. Mater.,2008,20(14):4749-4755.
    [135]Y. J. Dong, Q. Peng, Y. D. Li. Semiconductor zinc chalcogenides nanofibers from 1-D molecular precursors [J]. Inorg. Chem. Comm.,2004,7(3):370-373.
    [136]M. Nath, A. Choudhury, A. Kundu, C. N. R. Rao. Synthesis and characterization of magnetic iron sulfide nanowires [J]. Adv. Mater.,2003,15(24): 2098-2101.
    [137]M. R. Gao, W. T. Yao, H. B. Yao, S. H. Yu. Synthesis of Unique Ultrathin Lamellar Mesostructured CoSe2-Amine (Protonated) Nanobelts in a Binary Solution [J]. J. Am. Chem. Soc.,2009,131(22):7486-7487.
    [138]M. H. Cao, I. Djerdj, Z. Jaglicic, M. Antonietti, M. Biederberger. Layered hybrid organic-inorganic nanobelts exhibiting a field-induced magnetic transition [J]. Phys. Chem. Chem. Phys.,2009,11(29):6166-6172.
    [139]S. Park, S. W. Chung, C. A. Mirkin. Hybrid organic-inorganic, rod-shaped nanoresistors and diodes [J]. J. Am. Chem. Soc.2004,126(38):11772-11773.
    [140]Y. B. Guo, Q. X. Tang, H. B. Liu, Y. J. Zhang, Y. L. Li, W. P. Hu, S. Wang, D. B. Zhu. Light-controlled organic/inorganic P-N junction nanowires [J]. J. Am. Chem. Soc.2008,130(29):9198-9199.
    [141]J. Polleux, N. Pinna, M. Antonietti, M. Niederberger. Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation [J]. J. Am. Chem. Soc.,2005,127(44):,15595-15601.
    [142]J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti, M. Niederberger. Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties [J]. Angew. Chem. Int. Ed.,2006, 45(2):261-265.
    [143]M. D. Shirsat, M. A. Bangar, M. A. Deshusses, N. V. Myung, A. Mulchandani. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor [J]. Appl. Phys. Lett.,2009,94(8):083502.
    [144]H. Tong, Y. J. Zhu, L. X. Yang, L. Li, L. Zhang. Lead chalcogenide nanotubes synthesized by biomolecule-assisted self-assembly of nanocrystals at room temperature [J]. Angew. Chem. Int. Ed.,2006,45(46):7739-7742.
    [145]X. F. Shen, X. P. Yan. Facile shape-controlled synthesis of well-aligned nanowire architectures in binary aqueous solution [J]. Angew. Chem. Int. Ed., 2007,46(40):7659-7663.
    [146]Y. L. Wang, X. C. Jiang, Y. N. Xia. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions [J]. J. Am. Chem. Soc.,2003,125(52):16176-16177.
    [147]M. Niederberger, F. Krumeich, H. J. Muhr, M. Muller, R. Nesper. Synthesis and characterization of novel nanoscopic molybdenum oxide fibers [J]. J. Mater. Chem.,2001,11(7):1941-1945.
    [148]W. T. Yao, S. H. Yu. Synthesis of semiconducting functional materials in solution:from ii-vi semiconductor to inorganic-organic hybrid semiconductor nanomaterials [J]. Adv. Funct. Mater.,2008,18(21):3357-3366.
    [149]X. F. Liu, Y. L. Li. One-dimensional hybrid nanostructures with light-controlled properties [J]. Dalton Trans.,2009(33):6447-6457.
    [150]Y. B. Guo, H. B. Liu, Y. J. Li, G. X. Li, Y. J. Zhao, Y. L. Song, Y. L. Li. Controlled core-shell structure for efficiently enhancing field-emission properties of organic-inorganic hybrid nanorods [J]. J. Phys. Chem. C,2009,113(29), 12669-12673.
    [151]G. Garnweitner, M. Niederberger. Organic chemistry in inorganic nanomaterials synthesis [J]. J. Mater. Chem.,2008,18(11),1171-1182.
    [152]N. Pinna, M. Niederberger. Surfactant-free nonaqueous synthesis of metal oxide nanostructures [J]. Angew. Chem. Int. Ed.,2008,47(29):5292-5304.
    [153]M. Niederberger, G. Garnweitner. Organic reaction pathway in the nonaqueous synthesis of metal oxide nanoparticles [J]. Chem. Eur. J.,2006,12(28): 7282-7302.
    [154]M. Niederberger. Nonaqueous sol-gel routes to metal oxide nanoparticles [J]. Acc. Chem. Res.,2007,40(9):793-800.
    [155]J. Polleux, M. Antonietti, M. Niederberger. Ligand and solvent effects in the nonaqueous synthesis of highly ordered anisotropic tungsten oxide nanostructures [J]. J. Mater. Chem.,2006,16(40):3969-3975.
    [156]X. C. Jiang, Y. L. Wang, T. Herricks, Y. N. Xia, Ethylene glycol-mediated synthesis of metal oxide nanowires [J]. J. Mater. Chem.,2004,14(4):695-703.
    [157]A. Clearfield, B. D. Roberts. Pillaring of layered zirconium and titanium phosphates [J]. Inorg. Chem.,1988,27(18),3237-3240.
    [158]X. J. Guo, W. H. Hou, J. Chen, A. R. Xu. Intercalation behavior of long-chain n-alkylamine and chiral Ti[(OC2H4)3N][OCH(CH3)2] in layered V2O5 [J]. Acta Chimica Sinica,2006,64(17):1170-1174.
    [159]H. Hata, S. Kubo, Y. Kobayashi, T. E. Mallouk. Intercalation of well-dispersed gold nanoparticles into layered oxide nanosheets through intercalation of a polyamine [J]. J. Am. Chem. Soc.,2007,129(11):3064-3065.
    [160]L. Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C. S. Lao, R. S. Yang, Y. Dai, Z. L. Wang. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries [J]. Adv. Mater.,2007,19(21):3712-3716.
    [161]D. L. Chen, Y. Sugahara. Tungstate-based inorganic-organic hybrid nanobelts/nanotubes with lamellar mesostructures:Synthesis, characterization, and formation mechanism [J]. Chem. Mater.,2007,19(7):1808-1815.
    [162]D. L. Chen, L. Gao, A. Yasumori, K. Kuroda, Y. Sugahara. Size-and shape-controlled conversion of tungstate-based inorganic-organic hybrid belts to WO3 nanoplates with high specific surface areas [J]. Small,2008,4(10): 1813-1822.
    [163]F. Zuo, S. Yan, B. Zhang, Y. Zhao, Y Xie. L-cysteine-assisted synthesis of PbS nanocube-based pagoda-like hierarchical architectures [J]. J. Phys. Chem. C, 2008,112(8):2831-2835.
    [164]X. F. Shen, X. P. Yan. Environmentally benign and cost-effective synthesis of well-aligned nanoporous PbS nanowire architectures [J]. J. Mater. Chem.,2008, 18(39):4631-4635.
    [165]B. Zhang, X. C. Ye, W. Y Hou, Y. Zhao, Y. Xie. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods [J]. J. Phys. Chem. B,2006,110(18):8978-8985.
    [1]O. H. Johnson. Germanium and its inorganic compounds [J]. Chem. Rev.,1952, 51(3),432-469.
    [2]K. Saito, A. Ikushima. Reduction of light-scattering loss in silica glass by the structural relaxation of "frozen-in" density fluctuations [J]. Appl. Phys. Lett., 1997,70(26):3504-3506.
    [3]W. X. Que, X. Hu, Q. Y. Zhang. Germania/ormosil hybrid materials derived at low temperature for photonic applications [J]. Appl. Phys. B,2003,76(4): 423-427.
    [4]K. Kojima, K. Tsuchiya, N. Wada. Sol-Gel Synthesis of Nd3+-doped GeO2 glasses and their optical properties [J]. J. Sol-Gel Sci. Technol.,2000,19(1-3):511-514.
    [5]Z. G Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Cai, Q. L. Hang, G C. Xiong, S. Q. Feng. Nano-scale GeO2 wires synthesized by physical evaporation [J]. Chem. Phys. Lett.1999,303(3-4):311-314.
    [6]Y. Su, Z. Y. He, Y. Q. Chen, J. Jiang, D. Cai, L. Chen. Bulk-quantity synthesis and photoluminescence properties of chain-like GeO2/ZnGeO3 crystal structures [J]. Mater. Lett. 2005,59(24-25):2990-2993.
    [7]E. Ghobadi, J. A. Capobianco. Crystal properties of alpha-quartz type GeO2 [J]. Phys. Chem. Phys.,2000,2(24):5761-5763.
    [8]A. Corma, M. J. Diaz-Cabanas, H. Garcia, E. Palomares. Characterization of germanium site distribution in zeolite ITQ-7 by photoluminescence [J]. Chem. Comm.,2001(20):2148-2149.
    [9]N. Snejko, M. E. Medina, E. Gutierrez-Puebla, M. A. Monge. GeO2 natrolite-type infinite four and eight R-containing layers in a 2D pure-Ge framework: Ge3O5(OH)4(C2N2H10) [J]. Inorg. Chem.,2006,45(4):1591-1594.
    [10]M. Sahnoun, C. Daul, R. Khenata, H. Baltache. Optical properties of germanium dioxide in the rutile structure [J]. Eur. Phys. J. B.,2005,45(4):455-458.
    [11]唐凤再.浅析MCVD工艺中优化光纤(G652)损耗的一种方法[J]. Network Telecom,2004,6(1):28-30.
    [12]刘德森,殷宗敏,祝颂来,纤维光学[M].北京:科学出版社,1987:479-491.
    [13]M. Zacharias, P. M. Fauchet. Light emission from Ge and GeO2 nanocrystals [J]. J. Non-Cryst. Solids,1998,227(B):1058-1062.
    [14]P. Hidalgo, E. Liberti, Y. Rodriguez-Lazcano, B. Mendez, J. Piqueras. GeO2 nanowires doped with opticallyactive ions [J]. J. Phys. Chem. C,2009,113(39):
    17200-17205.
    [15]A. S. Zyubin, A. M. Mebel, S. H. Lin. Optical properties of oxygen vacancies in germanium oxides:Quantum chemical modeling of photoexcitation and photoluminescence [J]. J. Phys. Chem. A,2007,111(38):9479-9485.
    [16]W. Z. Wang, K. Wang, D. X. Han, B. Poudel, X. W. Wang, D. Z. Wang, B. Q. Zeng, Z. F. Ren. Near-infrared photoluminescence in germanium oxide enclosed germanium nano-and micro-crystals [J]. Nanotechnology,2007,18(7):075707.
    [17]C. L. Yuan, H. Cai, P. S. Lee, J. Guo, J. He. Tuning photoluminescence of Ge/GeO2 core/shell nanoparticles by strain [J]. J. Phys. Chem. C,2009,113(46): 19863-19866.
    [18]P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, M. S. Khil, D. R. Lee, E. K. Suh. GeO2 fibers:Preparation, morphology and photoluminescence property [J]. J. Chem. Phys.,2004,121(1):441-445.
    [19]X. H. Zhang, Y. Q. Chen, C. Jia,Y. Su, Q. Li, L. Z. Liu, T. B. Gou, M. Q. Wei. Catalytic growth of doped ZnO/GeO2 core-shell nanorods [J]. J. Phys. Chem. C, 2009,113(31):13689-13693.
    [20]P. Hidalgo, E. Liberti, Y. Rodriguez-Lazcano, B. M6ndez, J. Piqueras. GeO2 nanowires doped with optically active ions [J]. J. Phys. Chem. C,2009,113(39): 17200-17205.
    [21]J. Wu, J. L. Coffer. Emissive erbium-doped silicon and germanium oxide nanofibers derived from an electrospinning process [J]. Chem. Mater.,2007, 19(25):6266-6276.
    [22]S. F. Dyke, H. J. Floyd, M. Sainsburg, R. S. Theobald. Organic spectroscopy an introduction (2nd edn.) [M]. New York:Longman Inc.,1978:80-82.
    [23]Z. X. Deng, L. B. Li, Y. D. Li. Novel inorganic-organic-layered structures: crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E= S, Se, Te) nanorods in ethylenediamine [J]. Inorg. Chem.,2003,42(7):2331-2341.
    [24]N. Tabet, M. Faiz, N. M. Hamdan, Z. Hussain. High resolution XPS study of oxide layers grown on Ge substrates [J]. Surf. Sci.,2003,523(1-2):68-72.
    [25]B. J. Meldrum, C. H. Rochester. Insitu infrared study of the modification of the surface of activated carbon by ammonia, water and hydrogen [J]. J. Chem. Soc. Faraday Trans.1990,86(10):1881-1884.
    [26]R. J. J. Jansen, H. Van Bekum. XPS of nitrogen-containing functional-groups on activated carbon [J]. Carbon 1995,33(8):1021-1027.
    [27]A. Clearfield, R. M. Tindwa. Mechanism of ion-exchange in zirconium-phosphates:Intercalation of amines by alpha-zirconium phosphate [J]. J. Inorg. Nucl. Chem.,1979,41(6):871-878.
    [28]L. B. Fan, H. W. Song, H. F. Zhao, G. H. Pan, H. Q. Yu, X. Bai, S. W. Li, Y.Q. Lei, Q. L. Dai, R. F. Qin, T. Wang, B. Dong, Z. H. Zheng, X. G Ren. Solvothermal synthesis and photoluminescent properties of ZnS/cyclohexylamine: Inorganic-organic hybrid semiconductor nanowires [J]. J. Phys. Chem. B,2006, 110(26):12948-12953.
    [29]W. T. Yao, S. H. Yu. Synthesis of semiconducting functional materials in solution:from ii-vi semiconductor to inorganic-organic hybrid semiconductor nanomaterials [J]. Adv. Funct. Mater.,2008,18(21):3357-3366.
    [30]Y. Zhang, G. M. Dalpian, B. Fluegel, S. H. Wei, A. Mascarenhas, X. Y. Huang, J. Li, L. W. Wang. Novel approach to tuning the physical properties of organic-inorganic hybrid semiconductors [J]. Phys. Rev. Lett.2006,96(2): 026405.
    [31]H. X. Fu, J. Li. Density-functional study of organic-inorganic hybrid single crystal ZnSe(C2H8N2)1/2 [J]. J. Chem. Phys.,2004,120(14):6721-6725.
    [32]Y. J. Zhang, J. Zhu, Q. Zhang, Y. J. Yan, N. L. Wang, X. Z. Zhang. Synthesis of GeO2 nanorods by carbon nanotubes template [J]. Chem. Phys. Lett.2000, 317(35):504-509.
    [33]X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, J. J. Du. Preparation and photoluminescence properties of crystalline GeO2 nanowires [J]. Chem. Phys. Lett.,2001,349(3-4):210-214.
    [34]M. J. Edmondson, W. Zhou, S. A. Sieber, I. P. Jones, I. Gameson, P. A. Anderson, P. P. Edwards. Electron-beam induced growth of bare silver nanowires from zeolite crystallites [J]. Adv. Mater.,2001,13(21):1608-1611.
    [35]Z. Y. Yuan, W. Zhou, V. Parvulescu, B. L. Su. Electron beam irradiation effect on nanostructured molecular sieve catalysts [J]. J. Electron Spectrosc,2003, 129(2-3):189-194.
    [1]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan. One-dimensional nanostructures:synthesis, characterization, and applications [J]. Adv. Mater.,2003,15(5):353-389.
    [2]L. Cademartiri, G. A. Ozin. Ultrathin nanowires-a materials chemistry perspective [J]. Adv. Mater.,2009,21(9):1013-1020.
    [3]V. Schmidt, J. V. Wittemann, U. Gosele. Growth, thermodynamics and electrical properties of silicon nanowires [J]. Chem. Rev.,2010,110(1):361-388.
    [4]W. X. Zhang, S. H. Yang. In-situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates [J]. Acc. Chem. Res.,2009,42(10): 1617-1627.
    [5]J. T. Hu, T. W. Odom, C. M. Lieber. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes [J]. Acc. Chem. Res.,1999, 32(5):435-445.
    [6]G. R. Patzke, F. Krumeich, R. Nesper. Oxidic nanotubes and nanorods-Anisotropic modules for a future nanotechnology [J]. Angew. Chem. Int. Ed., 2002,41(14):2446-2461.
    [7]Y. Li, M. Sui, Y. Ding, G. Zhang, J. Zhuang, C. Wang. Preparation of Mg(OH)2 nanorods [J]. Adv. Mater.,2000,12(11):818-821.
    [8]Y. D. Li, H. W. Liao, Y. Ding, Y. T. Qian, L. Yang, G E. Zhou. Nonaqueous synthesis of CdS nanorod semiconductor [J]. Chem. Mater.,1998,10(9): 2301-2303.
    [9]X. Wang, Y. D. Li. Solution-based synthetic strategies for 1-D nanostructures [J]. Inorg. Chem.,2006,45(19):7522-7534.
    [10]S. F. Dyke, H. J. Floyd, M. Sainsburg, R. S. Theobald. Organic spectroscopy an introduction (2nd edn.) [M]. New York:Longman Inc.,1978:80-82.
    [11]郝润蓉,方锡义,钮少冲.无机化学丛书第三卷碳硅锗分族[M].北京:科学出版社,1998.
    [12]华彤文,陈景祖.普通化学原理[M].北京:北京大学出版社,2005.
    [13]陈智.过渡元素化学[M].北京:原子能出版社,1990.
    [14]J. March. Advanced Organic Chemistry (reactions, mechanisms, and structure) third edition, New York:John Wiley& Sons Inc.,1985:1086.
    [15]T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro. Solution-liquid-solid growth of crystalline III-V semiconductors-an analogy to vapor-liquid-solid growth [J]. Science,1995,270(5243):1791-1794.
    [16]J. Sun, L. W. Wang, W. E. Buhro, Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots [J]. J. Am. Chem. Soc.,2008,130(25):7997-8005.
    [17]A. G Dong, H. Yu, F. D. Wang, W. E. Buhro. Colloidal GaAs qauntum wires: solution-liquid-solid synthesis and quantum-confinement studies [J]. J. Am. Chem. Soc.,2008,130(18):5954-5961.
    [18]J. W. Sun, W. E. Buhro. The use of single-source precursors for the solution-liquid-solid growth of metal sulfide semiconductor nanowires [J]. Angew. Chem. Int. Ed.2008,47(17):3215-3218.
    [19]J. F. Geng, W. Z. Zhou, P. Skelton, W. B. Yue, I. A. Kinloch, A. H. Windle, B. F. G. Johnson. Crystal structure and growth mechanism of unusually long fullerene (C-60) nanowires [J]. J. Am. Chem. Soc.,2008,130(8):2527-2534.
    [20]J.G. Choi, L.T. Thompson. XPS study of as-prepared and reduced molybdenum oxides [J]. Appl. Surf. Sci.,1996,93(2):143-149.
    [21]Y. G. Liang, S. J. Yang, Z. H. Yi, J. Y Sun, Y. H. Zhou. Preparation, characterization and lithium-intercalation performance of different morphological molybdenum dioxide [J]. Mater. Chem. Phys.,2005,93(2-3):395-398.
    [22]Y. G. Liang, Z. H. Yi, S. J. Yang, L. Q. Zhou, J. T. Zhou, Y. H. Zhou. Hydrothermal synthesis and lithium-intercalation properties of MoO2 nano-particles with different morphologies [J]. Solid State Ionics,2006,117(5-6): 501-505.
    [23]X. L. Ji, P. S. Herle, Y. Rho, L. F. Nazar. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers [J]. Chem. Mater.,2007,19(3):374-383.
    [24]Y. F. Shi, B. K. Guo, S. A. Corr, Q. H. Shi, Y. S. Hu, K. R. Heier, L. Q. Chen, R. Seshadri, G. D. Stucky. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity [J]. Nano Lett.2009,9(12):4215-4220.
    [1]M. Greenblatt. Molybdenum oxide bronzes with quasi-low-dimensional properties [J]. Chem. Rev.,1988,88(1):31-53.
    [2]N. A. Chernova, M. Roppolo, A. C. Dillon, M. S. Whittingham. Layered vanadium and molybdenum oxides:batteries and electrochromics [J]. J. Mater. Chem.,2009,19(17):2526-2552.
    [3]管自生,张玉,李东旭.三氧化钼化合物的研究进展[J].材料导报,2007,21(10):71-73.
    [4]J. N. Yao, K. Hashimoto, A. Fujishima. Photochromism induced in an electrolytically pretreated MoO3 thin-film by visible-light [J]. Nature,1992, 355(6361):624-626.
    [5]V. Hornbecq, Y. Matai, M. Antonietti, S. Polarz. Redox behavior of nanostructured molybdenum oxide-mesoporous silica hybrid materials [J]. Chem. Mater.,2003,15(19):3586-3593.
    [6]Z. Hussain. Optical and electrochromic properties of heated and annealed MoO3 thin films [J]. J. Mater. Res.,2001,16(9):2695-2708.
    [7]L. Zheng, Y. Xu, D. Jin, Y. Xie. Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties [J]. Chem. Mater.,2009, 21(23):5681-5690.
    [8]S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. B. Zhang, A. C. Dillon. Reversible Lithium-Ion Insertion in Molybdenum Oxide Nanoparticles [J]. Adv. Mater.,2008,20(19): 3627-3632.
    [9]Y. F. Shi, B. K. Guo, S. A. Corr, Q. H. Shi, Y. S. Hu, K. R. Heier, L. Q. Chen, R. Seshadri, G. D. Stucky. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity [J]. Nano Lett.,2009,9(12):4215-4220.
    [10]X. L. Ji, P. S. Herle, Y. Rho, L. F. Nazar. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers [J]. Chem. Mater.,2007,19(3):374-383.
    [11]J. H. Ku, Y. S. Jung, K. T. Lee, C. H. Kim, S. M. Oh. Thermoelectrochemically activated MoO2 powder electrode for lithium secondary batteries [J]. J. Electrochem. Soc.,2009,156(8):A688-A693.
    [12]M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, T. Hyeon. A magnetically recyclable nanocomposite catalyst for olefin epoxidation [J]. Angew. Chem. Int. Ed.,2007, 46(37):7039-7043.
    [13]D. V. Deubel, G. Frenking, P. Gisdakis, W. A. Herrmann, N. Rosch, J. Sundermeyer. Olefin epoxidation with inorganic peroxides:Solutions to four long-standing controversies on the mechanism of oxygen transfer [J]. Acc. Chem. Res.,2004,37(9):645-652.
    [14]D. J. Wang, J. H. Lunsford, M. P. Rosynek. Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene [J]. J. Catal.,1997,169(1): 347-358.
    [15]邓凡政,梁娟妮,戈霞.Mo03对染料光催化降解性能研究[J].稀有金属,2004,28(6):1034-1037.
    [16]Z. F. Liu, J. E. Hu, Q. Wang, K. Gaskell, A. I. Frenkel, G. S. Jackson, B. Eichhorn. PtMo alloy and MoOx@Pt core-shell nanoparticles as highly CO-tolerant electrocatalysts [J]. J. Am. Chem. Soc.,2009,131(20):6924-6925.
    [17]L. Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C. S. Lao, R. S. Yang, Y. Dai, Z. L. Wang. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries [J]. Adv. Mater.,2007,19(21):3712-3716.
    [18]C. V. S. Reddy, E. H. Walker, S. A. Wicker, Q. L. Williams, R. R. Kalluru. Characterization of MoO3 nanorods for lithium battery using PVP as a surfactant [J]. J. Solid State Electrochem.,2009,13(12):1945-1949.
    [19]X. K. Hu, D. K. Ma, L. Q. Xu, Y. C. Zhu, Y. T. Qian. Selective preparation of MoO3 and HxMoO3 nanobelts in molybdenum-hydrogen peroxide system [J]. Chem. Lett.,2006,35(8):962-963.
    [20]E. Comini, L. Yubao, Y. Brando, G. Sberveglieri. Gas sensing properties of MoO3 nanorods to CO and CH3OH [J]. Chem. Phys. Lett.,2005,407(4-6):368-371.
    [21]Y. B. Li, Y. Bando, D. Golberg, K. Kurashima. Field emission from MoO3 nanobelts [J]. Appl. Phys. Lett.2002,81(26):5048-5050.
    [22]J. Rajeswari, P. S. Kishore, B. Viswanathan, T. K. Varadarajan. One-dimensional MoO2 nanorods for supercapacitor applications [J]. Electrochem. Comm.,2009, 11(3):572-575.
    [23]S. Hu, X. Wang. Single-walled MoO3 nanotubes [J]. J. Am. Chem. Soc.,2008, 130(26):8126-8127.
    [24]T. Xia, Q. Li, X. D. Liu, J. Meng, X. Q. Cao. Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide [J]. J. Phys. Chem. B, 2006,110(5):2006-2012.
    [25]B. Hu, L. Q Mai, W. Chen, F. Yang. From MoO3 Nanobelts to MoO2 Nanorods: Structure Transformation and Electrical Transport [J]. ACS Nano,2009,3(2): 478-482.
    [26]Y. Ding, Y. Wan, Y. L. Min, W. Zhang, S. H. Yu. General synthesis and phase control of metal molybdate hydrates MMoO4 center dot nH2O (M=Co, Ni, Mn, n=0,3/4,1) nano/microcrystals by a hydrothermal approach:Magnetic, photocatalytic, and electrochemical properties [J]. Inorg. Chem.,2008,47(17): 7813-7823.
    [27]X. J. Cui, S.H. Yu, L. Biao, H. B. Li, M. S. Mo, X. M. Liu. Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process [J]. Chem. Eur. J.,2004,10(1):218-223.
    [28]M. Niederberger, F. Krumeich, H. J. Muhr, M. Muller, R. Nesper. Synthesis and characterization of novel nanoscopic molybdenum oxide fibers [J]. J. Mater. Chem.,2001,11(7):1941-1945.
    [29]B. Messer, J. H. Song, M. Huang, Y. Wu, F. Kim, P. Yang. Surfactant-induced mesoscopic assemblies of inorganic molecular chains [J]. Adv. Mater.,2000, 12(20):1526-1528.
    [30]J. H. Song, Y. Wu, B. Messer, H. Kind, P. Yang. Metal nanowire formation using Mo3Se3-as reducing and sacrificing templates [J]. J. Am. Chem. Soc.,2001, 123(42):10397-10398.
    [31]S. Park, S. W. Chung, C. A. Mirkin. Hybrid organic-inorganic, rod-shaped nanoresistors and diodes [J]. J. Am. Chem. Soc.,2004,126(38):11772-11773.
    [32]Y. B. Guo, Q. X. Tang, H. B. Liu, Y. J. Zhang, Y. L. Li, W. P. Hu, S. Wang, D. B. Zhu. Light-controlled organic/inorganic P-N junction nanowires [J]. J. Am. Chem. Soc.,2008,130(29):9198-9199.
    [33]A. Kerr, H. Wu, L. F. Nazar. Concurrent polymerization and insertion of aniline in molybdenum trioxide:Formation and properties of a [poly(aniline)]0.24MoO3 nanocomposite [J]. Chem. Mater.,1996,8(8):2005-2015.
    [34]X. Wei, L. F. Jiao, J. L. Sun, S. C. Liu, H. T. Yuan. Synthesis, electrochemical, and gas sensitivity performance of polyaniline/MoO3 hybrid materials [J]. J. Solid State Electrochem.,2010,14(2):197-202.
    [35]J. Z. Wang, I. Matsubara, N. Murayama, S. Woosuck, N. Izu. The preparation of polyaniline intercalated MoO3 thin film and its sensitivity to volatile organic compounds [J]. Thin Solid Films,2006,514(1-2):329-333.
    [36]A. V. Murugan, A. K. Viswanath, C. S. Gopinath, K. Vijayamohanan. Highly efficient organic-inorganic poly(3,4-ethylenedioxythiophene)-molybdenum trioxide nanocomposite electrodes for electrochemical supercapacitor [J]. J. Appl. Phys.,2006,100(7):074319.
    [37]X. Y. Chen, Z. J. Zhang, X. X. Li, C. W. Shi, X. L. Li. Selective synthesis of metastable MoO2 nanocrystallites through a solution-phase approach [J]. Chem. Phys. Lett.,2006,418(1-3):105-108.
    [1]Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of semiconducting oxides [J]. Science,2001,291(5510):1947-1949.
    [2]G. Z. Shen, P. C. Chen, K. Ryu, C. W. Zhou. Devices and chemical sensing applications of metal oxide nanowires [J]. J. Mater. Chem.,2009,19(7):828-839.
    [3]P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, H. J. Cho. Controlled growth of ZnO nanowires and their optical properties [J]. Adv. Funct. Mater.,2002,12(5):323-331.
    [4]X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen. Low-temperature oxidation of CO catalysed by Co3O4 nanorods [J]. Nature,2009,458(7239):746-749.
    [5]J. Hu, T. W. Odom, C. M. Lieber. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes [J]. Acc. Chem. Res.,1999, 32(5):435-445.
    [6]Y. N. Xia, P. D. Yang, Y. G. Sun, Y Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan. One-dimensional nanostructures:Synthesis, characterization, and applications [J]. Adv. Mater.,2003,15(5):353-389.
    [7]J. Huang, Q. Wan. Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures [J]. Sensors,2009,9(12):9903-9924.
    [8]Kolmakov, M. Moskovits. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J]. Annu. Rev. Mater. Res.,2004,34(1):151-180.
    [9]L. Vayssieres, M. Graetzel. Highly ordered SnO2 nanorod arrays from controlled aqueous growth [J]. Angew. Chem. Int. Ed.,2004,43(28):3666-3670.
    [10]X. Y. Kong, Y. Ding, R. S. Yang, Z. L. Wang. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts [J]. Science,2004,303(5662):1348-1351.
    [11]X. Wang, Y. D. Li. Selected control hydrothermal synthesis of alpha and beta MnO2 nanowires [J]. J. Am. Chem. Soc.,2002,124(12):2880-2881.
    [12]T. Xia, Q. Li, X. D. Liu, J. Meng, X. Q. Cao. Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide [J]. J. Phys. Chem. B, 2006,110(5):2006-2012.
    [13]C. Bae, S. Kim, B. Ahn, J. Kim, M. M. Sung, H. Shin. Template-directed gas-phase fabrication of oxide nanotubes [J]. J. Mater. Chem.,2008,18(12): 1362-1367.
    [14]H. Q. Cao, X. Q. Qiu, Y. Liang, L. Zhang, M. J Zhao, Q. M. Zhu. Sol-gel template synthesis and photoluminescence of n-and p-type semiconductor oxide nanowires [J]. Chemphyschem,2006,7(2):497-501.
    [15]S. J. Hurst, E. K. Payne, L. D. Qin, C. A. Mirkin. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods [J]. Angew. Chem. Int. Ed.,2006,45(17):2672-2692.
    [16]F. Wang, B. Q. Lu. Well-aligned MoO2 nanowires arrays:Synthesis and field emission properties [J]. Physica B,2009,404(14-15):1901-1904.
    [17]J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, S. T. Lee. Synthesis and "nanostructuring" of patterned wires of α-GeO2 by thermal-oxidation [J]. Adv. Mater.,2002,14(20):1396-1399.
    [18]Z. Jiang, T. Xie, G. Z. Wang, X. Y. Yuan, C. H. Ye, W P. Cai, G W. Meng, G. H. Li, L. D. Zhang. GeO2 nanotubes and nanorods synthesized by vapor phase reactions [J]. Mater. Lett.,2005,59(4):416-419.
    [19]J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, Z. L. Wang. Large-area nanowire arrays of molybdenum and molybdenum oxides:synthesis and field emission properties [J]. Adv. Mater.,2003,15(21):1835-1840.
    [20]Y. Su, Z. Y. He, Y. Q. Chen, J. Jiang, D. Cai, L. Chen. Bulk-quantity synthesis and photoluminescence properties of chain-like GeO2/ZnGeO3 crystal structures [J]. Mater. Lett.,2005,59(24-25):2990-2993.
    [21]Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Cai, Q. L. Hang, G. C. Xiong, S. Q. Feng. Nano-scale GeO2 wires synthesized by physical evaporation [J]. Chem. Phys. Lett.1999,303(3-4):311-314.
    [22]J.G. Choi, L.T. Thompson. XPS study of as-prepared and reduced molybdenum oxides [J]. Appl. Surf. Sci.,1996,93(2):143-149.
    [23]X. Y. Chen, Z. J. Zhang, X. X. Li, C. W. Shi, X. L. Li. Selective synthesis of metastable MoO2 nanocrystallites through a solution-phase approach [J]. Chem. Phys. Lett.,2006,418(1-3):105-108.
    [24]S. F. Dyke, H. J. Floyd, M. Sainsburg, R. S. Theobald. Organic spectroscopy an introduction (2nd edn.) [M]. New York:Longman Inc.,1978:80-82.
    [25]B. Hu, L. Q Mai, W. Chen, F. Yang. From MoO3 Nanobelts to MoO2 Nanorods: Structure Transformation and Electrical Transport [J]. ACS Nano,2009,3(2): 478-482.
    [26]Y. G. Liang, S. J. Yang, Z. H. Yi, J. Y Sun, Y. H. Zhou. Preparation, characterization and lithium-intercalation performance of different morphological molybdenum dioxide [J]. Mater. Chem. Phys.,2005,93(2-3):395-398.
    [27]Y. G. Liang, Z. H. Yi, S. J. Yang, L. Q. Zhou, J. T. Zhou, Y. H. Zhou. Hydrothermal synthesis and lithium-intercalation properties of MoO2 nano-particles with different morphologies [J]. Solid State Ionics,2006,117(5-6): 501-505.
    [28]X. L. Ji, P. S. Herle, Y. Rho, L. F. Nazar. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers [J]. Chem. Mater.,2007,19(3):374-383.
    [29]Y. F. Shi, B. K. Guo, S. A. Corr, Q. H. Shi, Y. S. Hu, K. R. Heier, L. Q. Chen, R. Seshadri, G. D. Stucky. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity [J]. Nano Lett.2009,9(12):4215-4220.
    [30]P. G. Bruce, B. Scrosati, J. M. Tarascon. Nanomaterials for rechargeable lithium batteries [J]. Angew. Chem. Int. Ed.,2008,47(16):2930-2946.
    [31]C. K. Chan, H. L. Peng, R. D. Twesten, K. Jarausch, X. F. Zhang, Y. Cui. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons [J]. Nano Lett.,2007,7(2):490-495.
    [32]M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, H. K. Liu. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries [J]. Angew. Chem. Int. Ed.,2007,46(5):750-753.
    [33]L. M. Reddy, M. M. Shaijumon, S. R.Gowda, P. M. Ajayan. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries [J]. Nano Lett.,2009,9(3):1002-1006.
    [34]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature,2000,407(6803):496-499.
    [1]L. E. Toth. Transition metal carbides and nitrides [M]. New York:Academic Press, 1971.
    [2]S. T. Oyama. The chemstry of transition metal carbides and nitrides [M]. London: Blackie Academic& Professional,1996.
    [3]朱全力,杨建,季生福,王嘉欣,汪汉卿.过渡金属碳化物的研究进展[J].化学进展,2004,16(3):382-390.
    [4]R. B. Levy, M. Boudart. Platinum-like behavior of tungsten carbide in surface catalysis [J]. Science,.1973,181(4099):547-549.
    [5]J. R. G. Chen. Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization and reactivities [J]. Chem. Rev.,1996,96(4): 1477-1498.
    [6]V. G. Pol, S.V. Pol, A. Gedanken. One-step synthesis and characterization of SiC, Mo2C, and WC Nanostructures [J]. Eur. J. Inorg. Chem.,2009,2009(6):709-715.
    [7]J. S. Lee, S. T. Oyama, M. J. Boudart. Molybdenum carbide catalysts.1. synthesis of unsupported powders [J]. J. Catal.,1987,106(1):125-133.
    [8]K. Oshikawa, M. Nagai, S. J. Omi. Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS [J]. J. Phys. Chem. B,2001,105(38): 9124-9131.
    [9]E. Iglesia, F. H. Ribeiro, M. Boudart, J. E. Baumgartner. Synthesis, characterization, and catalytic properties of clean and oxygen-modified tungsten carbides [J]. Catal. Today,1992,15(2):307-337.
    [10]J. Lu, H. Hugosson, O. Eriksson, L. Nordstrom, U. Jansson. Chemical vapour deposition of molybdenum carbides:aspects of phase stability [J]. Thin Solid Films,2000,370(1-2):203-212.
    [11]L. J. Ramqvist. Electronic structure of cubic refractory carbides [J]. J. Appl. Phys., 1971,42(5):2113-2121.
    [12]E. Siegel. D-bandwidth contraction upon metalloid formation-resolution of the bonding controversy in transition-metal carbides, nitrides and borides [J]. Semiconductors and Insulators,1979,5(1):47-60.
    [13]V. Heine. s-d interaction in transition metals [J]. Phys. Rev. A,1967,153(3): 673-678.
    [14]M. Saito, R. B. Anderson. The activity of several molybdenum compounds for the methanation of CO [J]. J. Catal.,1980,63(2):438-446.
    [15]M. J. Ledoux, C. Phamr Huu. High specific surface-area carbides of silicon and transition-metals for catalysis [J]. Catal. Today,1992,15(2):263-284.
    [16]Y. Z. Li, Y. N. Fan, Y. Chen. A novel route to nanosized molybdenum boride and carbide and/or metallic molybdenum by thermo-synthesis method from MoO3, KBH4, and CCl4 [J]. J. Solid State Chem.,2003,170(1):135-141.
    [17]T. Miyao, I. Shishikura, M. Matsuoka, M. Nagal, S. T. Oyama. Preparation and characterization of alumina-supported molybdenum carbide [J]. Appl. Catal. A, 1997,165(12):419-428.
    [18]J. X. Wang, S. F. Ji, J. Yang, Q. L. Zhu, S. B. Li. Mo2C and Mo2C/Al2O3 catalysts for NO direct decomposition [J]. Catal. Comm.,2005,6(6):389-393.
    [19]T. C. Xiao, A. P. E. York, V. C. Williams, H. Al-Megren, A. Hanif, X. Y. Zhou, M. L. H. Green. Preparation of molybdenum carbides using butane and their catalytic performance [J]. Chem. Mater.2000,12(12):3896-3905.
    [20]X. Y. Li, D. Ma, L. M. Chen, X. H. Bao. Fabrication of molybdenum carbide catalysts over multi-walled carbon nanotubes by carbothermal hydrogen reduction [J]. Catal. Lett.,2007,116(1-2):63-69.
    [21]C. H. Liang, P. L. Ymg, C. Li. Nanostructured β-Mo2C prepared bycarbothermal hydrogen reduction on ultrahigh surface area carbon material [J]. Chem. Mater., 2002,14(7):3148-3151.
    [22]B. Bokhonov, Y. Borisova, M. Korchagin. Formation of encapsulated molybdenum carbide particles by annealing mechanically activated mixtures of amorphous carbon with molybdenum [J]. Carbon,2004,42(10):2067-2071.
    [23]S. R. Vallance, S. Kingman, D. H. Gregory. Ultra-rapid processing of refractory carbides:20 s synthesis of molybdenum carbide Mo2C [J]. Chem. Commun., 2007(7):742-744.
    [24]N. A. Dhas, A. Gedanken. Sonochemical synthesis of molybdenum oxide-and molybdenum carbide-silica nanocomposites [J]. Chem. Mater.,1997,9(12): 3144-3154.
    [25]A. Hanif, T. C. Xiao, A. P. E. York, J. Sloan, M. L. H. Green. Study on the structure and formation mechanism of molybdenum carbides [J]. Chem. Mater., 2002,14(3):1009-1015.
    [26]C. Giordano, C. Erpen, W. T. Yao, M. Antonietti. Synthesis of Mo and W carbide and nitride nanoparticles via a simple "Urea Glass" route [J]. Nano Lett.,2008, 8(12):4659-4663.
    [27]C. Giordano, C. Erpen, W. T. Yao, B. Milke, M. Antonietti. Metal nitride and metal carbide nanoparticles by a soft urea pathway [J]. Chem. Mater.,2009, 21(21):5136-5144.
    [28]W. T. Yao, P. Makowski, C. Giordano, F. Goettmann. Synthesis of early-transition-metal carbide and nitride nanoparticles through the urea route and their use as alkylation catalysts [J]. Chem. Eur. J.,2009,15(44):11999-12004.
    [29]H. M. Wang, X. H. Wang, M. H. Zhang, X. Y. Du, W. Li, K. Y. Tao. Synthesis of bulk and supported molybdenum carbide by a single-step thermal carburization method [J]. Chem. Mater.,2007,19(7):1801-1807.
    [30]N. Liu, S. A. Rykov, J. G Chen. A comparative surface science study of carbide and oxycarbide:the effect of oxygen modification on the surface reactivity of C/W(111) [J]. Surf. Sci.,2001,487(1-3):107-117.
    [31]M. L. Xiang, D. B. Li, H. C. Xiao, J. L. Zhang, W. H. Li, B. Zhong, Y. H. Sun. K/Ni/beta-Mo2C:A highly active and selective catalyst for higher alcohols synthesis from CO hydrogenation [J]. Catal. Today,2008,131(14):489-495.
    [32]E. C. Weigert, J. South, S. A. Rykov, J. G Chen. Multifunctional composites containing molybdenum carbides as potential electrocatalysts [J]. Catal. Today, 2005,99(3-4):285-290.
    [33]吴倩,王弘轼,朱炳辰,朱子彬,钟娅玲.甲醇催化裂解重整制氢的热力学分析[J].华东理工大学学报,2003,29(2):120-123.
    [34]D. Connolly, H. Lund, B. V. Mathiesen, M. Leahy. A review of computer tools for analysing the integration of renewable energy into various energy systems [J]. Applied Energy,2010,87(4):1059-1082.
    [35]W. H. Cheng. Development of methanol decomposition catalysts for production of H2 and CO [J]. Acc. Chem. Res.1999,32(8):685-691.
    [36]D. R. Palo, R. A. Dagle, J. D. Holladay. Methanol steam reforming for hydrogen production [J]. Chem. Rev.2007,107(10):3992-4021.
    [37]M. V. Twigg, M. S. Spencer. Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis [J]. Topics Catal.,2003,22(3-4):191-203.
    [38]P. Tolmacsov, A. Gazsi, F. Solymosi. Decomposition and reforming of methanol on Pt metals supported by carbon Norit [J]. App. Catal. A Gen.,2009,362(1-2): 58-61.
    [39]J. C. Brown, E. Gulari, Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts [J]. Catal. Commun.,2004,5(8): 431-436.
    [40]Szechenyi, F. Solymosi. Production of hydrogen in the decomposition of ethanol and methanol over unsupported Mo2C catalysts [J]. J. Phys. Chem. C,2007, 111(26):9509-9515.
    [41]R. Barthos, F. Solymosi. Hydrogen production in the decomposition and steam reforming of methanol on Mo2C/carbon catalysts [J]. J. Catal.,2007,249(2): 289-299.
    [42]Farkas, F. Solymosi. Effects of potassium on the adsorption and dissociation pathways of methanol and ethanol on Mo2C/Mo (100) [J]. Surf. Sci.,2008, 602(7):1475-1485.
    [1]R. B. Levy, M. Boudart. Platinum-like behavior of tungsten carbide in surface catalysis [J]. Science,.1973,181(4099):547-549J.
    [2]J. R. G. Chen. Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities [J]. Chem. Rev.,1996,96(4): 1477-1498.
    [3]V. G. Pol, S.V. Pol, A. Gedanken. One-step synthesis and characterization of SiC, Mo2C, and WC nanostructures [J]. Eur. J. Inorg. Chem.,2009,2009(6):709-715.
    [4]J. S. Lee, S. T. Oyama, M. J. Boudart. Molybdenum carbide catalysts.1. synthesis of unsupported powders [J]. J. Catal.,1987,106(1):125-133.
    [5]D. E. Grove, U. Gupta, A. W. Castleman. Effect of carbon concentration on changing the morphology of titanium carbide nanoparticles from cubic to cuboctahedron [J]. ACS Nano,2010,4(1):49-54.
    [6]M. J. Ledoux, C. PhamHuu, R. R. Chianelli. Catalysis with carbides [J]. Curr. Opin. Solid State Mat. Sci.,1996,1(1):96-100.
    [7]N. Ji, T. Zhang, M. Y. Zheng, A. Q. Wang, H. Wang, X. D. Wang, J. G.G.Chen. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts [J]. Angew. Chem. Int. Ed.,2008, 47(44):8510-8513.
    [8]N. Ji, T. Zhang, M. Y. Zheng, A. Q. Wang, H. Wang, X. D. Wang, Y. Y. Shu, A. L. Stottlemyer, J. G. G. Chen. Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts [J]. Catal. Today,2009,147(2):77-85.
    [9]M. Y. Zheng, A. Q. Wang, N. Ji, J. F. Pang, X. D. Wang, T. Zhang. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol [J]. ChemSusChem,2010,3(1):63-66.
    [10]X. B. Liu, K. J. Smith. Acidity and deactivation of Mo2C/HY catalysts used for the hydrogenation and ring opening of naphthalene [J]. Appl. Catal. A,2008: 335(2),230-240.
    [11]K. R. McCrea, J. W. Logan, T. L. Tarbuck, J. L. Heiser, M. E. Bussell. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts:Effect of Mo loading and phase [J]. J. Catal.,1997,171(1):255-267.
    [12]A. Celzard, J. F. Mareche, G. Furdin, V. Fierro, C. Sayag, J. Pielaszek. Preparation and catalytic activity of active carbon-supported Mo2C nanoparticles [J]. Green Chem.,2005,7(11):784-792.
    [13]A. Koos, R. Barthos, F. Solymosi. Reforming of Methanol on a K-Promoted Mo2C/Norit Catalyst [J]. J. Phys. Chem. C,2008,112(7):2607-2612.
    [14]H. A. Al-Megren, S. L. Gonzalez-Cortes, T. C. Xiao, M. L.H. Green. A comparative study of the catalytic performance of Co-Mo and Co (Ni)-W carbide catalysts in the hydrodenitrogenation (HDN) reaction of pyridine [J]. Appl. Catal. A,2007,329:36-45.
    [15]A. Kotarba, G Adamski, W. Piskorz, Z. Sojka, C. Sayag, G Djega-Mariadassou. Modification of electronic properties of Mo2C catalyst by potassium doping: impact on the reactivity in hydrodenitrogenation reaction of indole [J]. J. Phys. Chem. B,2004,108(9):2885-2892.
    [16]R. Barthos, F. Solymosi. Hydrogen production in the decomposition and steam reforming of methanol on Mo2C/carbon catalysts [J]. J. Catal.,2007,249(2): 289-299.
    [17]E. Puello-Polo, J. L. Brito. Effect of the activation process on thiophene hydrodesulfurization activity of activated carbon-supported bimetallic carbides [J]. Catal. Today,2010,149(3-4):316-320.
    [18]F. Solymosi, R. Barthos, A. Kecskemeti. The decomposition and steam reforming of dimethyl ether on supported Mo2C catalysts [J]. Appl. Catal. A,2008,350(1): 30-37.
    [19]F. Solymosi, R. Nemeth, L. Ovari, L. Egri. Reactions of propane on supported Mo2C catalysts [J]. J. Catal.,2000,195(2):316-325.
    [20]S. S. Y. Lin, W. J. Thomason, T. J. Hagensen, S. Y. Ha. Steam reforming of methanol using supported Mo2C catalysts [J]. Appl. Catal. A,2007,318:121-127.
    [21]R. Barthos, A. Szechenyi, A. Koos, F. Solymosi. The decomposition of ethanol over Mo2C/carbon catalysts [J]. Appl. Catal. A,2007,327:95-105.
    [22]D. Mordenti, D. Brodzki, G. Djega-Mariadassou. New synthesis of Mo2C 14 nm in average size supported on a high specific surface area carbon material [J]. J. Solid State Chem.,1998,141(1):114-120.
    [23]C. H. Liang, P. L. Ying, C. Li. Nanostructured β-Mo2C Prepared by Carbothermal Hydrogen Reduction on Ultrahigh Surface Area Carbon Material [J]. Chem. Mater.,2002,14(7):3148-3151.
    [24]X. Y. Li, D. Ma, L. M. Chen, X. H. Bao. Fabrication of molybdenum carbide catalysts over multi-walled carbon nanotubes by carbothermal hydrogen reduction [J]. Catal. Lett.,2007,116(1-2):63-69.
    [25]B. Bokhonov, Y. Borisova, M. Korchagin. Formation of encapsulated molybdenum carbide particles by annealing mechanically activated mixtures of amorphous carbon with molybdenum [J]. Carbon,2004,42(10):2067-2071.
    [26]Z. H. Yang, P. J. Cai, L. Shi, Y. L. Gu, L. Y. Chen, Y. T. Qian. A facile preparation of nanocrystalline Mo2C from graphite or carbon nanotubes [J]. J. Solid State Chem.,2006,179(1):29-32.
    [27]R. Ganesan, J. S. Lee. Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation [J]. Angew. Chem. Int. Ed.,2005,44(40): 6557-6560.
    [28]J. Sun, M. Y. Zheng, X. D. Wang, A. Q. Wang, R. H. Cheng, T. Li, T. Zhang. Catalytic performance of activated carbon supported tungsten carbide for hydrazine decomposition [J]. Catal. Lett.,2008,123(1-2):150-155.
    [29]C. N. R. Rao, R. Voggu, A. Govindaraj. Selective generation of single-walled carbon nanotubes with metallic, semiconducting and other unique electronic properties [J]. Nanoscale,2009,1(1):96-105.
    [30]J. P. Pinheiro, M. C. Schouler, P. Gadelle. Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts I. Growth versus catalyst state [J]. Carbon,2003,41(15):2949-2959.
    [31]J. P. Pinheiro, M. C. Schouler, E. Dooryhee. In situ X-ray diffraction study of carbon nanotubes and filaments during their formation over Co/Al2O3 catalysts [J]. Solid State Commun.,2002,123(3-4):161-166.
    [32]H. Wang, Y. Liu, L. Wang, Y. N. Qin. Study on the carbon deposition in steam reforming of ethanol over Co/CeO2 catalyst [J]. Chem. Eng. J.,2008,145(1): 25-31.
    [33]S. M. de Lima, A. M. da Silva, L. O. O. da Costa, U. M. Graham, G.Jacobs, B. H. Davis, L. V. Mattos, F. B. Noronha. Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst [J]. J. Catal.,2009,268(2):268-281.
    [34]T. Nowitzki, H. Borchert, B. Jurgens, T. Risse, V. Zielasek, M. Baumer. UHV studies of methanol decomposition on mono-and bimetallic Co-Pd nanoparticles supported on thin alumina films [J]. ChemPhysChem,2008,9(5):729-739.
    [35]R. J. Levis, Z. C. Jiang, N.Winograd. Thermal-decomposition of CH3OH adsorbed on Pd (111)-a new reaction pathway involving CH3 formation [J]. J. Am. Chem. Soc.,1989,111(13),4605-4612.
    [36]F. Solymosi, K. Revesz. Thermal-stability of the CH3 group adsorbed on the Pd (100) surface [J]. J. Am. Chem. Soc.,1991,113(24):9145-9147.
    [37]H. B. Zhang, X. Dong, G. D. Lin, X. L. Liang, H. Y. Li. Carbon nanotube-promoted Co-Cu catalyst for highly efficient synthesis of higher alcohols from syngas [J]. Chem. Comm.,2005(40):5094-5096.
    [38]I. Eswaramoorthi, V. Sundaramurthy, A. K. Dalai. Partial oxidation of methanol for hydrogen production over carbon nanotubes supported Cu-Zn catalysts [J]. Appl. Catal. A,2006,313(1):22-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700