用户名: 密码: 验证码:
基于ICT发光机理的有机荧光探针的设计、合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机发光小分子一般来说是由共轭结构的有机小分子组成,具有结构简单、便于修饰、容易纯化等优点,在场效应晶体管、有机电致发光、光捕获系统、逻辑门和荧光探针等领域有广泛的应用。荧光探针是超分子化学中最活跃的领域之一,由于其操作简单、高灵敏度和高选择性而备受人们关注,在检测实际环境和生物样品中具有广泛的应用。本论文设计、合成了三类基于ICT机理的小分子荧光探针。利用CN-和Cys的强亲核性,能与探针之间发生不可逆的化学反应,产生明显的光谱性质变化以及颜色改变,进而在实际环境与生物样品中实现高选择性和高灵敏度的检测分析。
     本论文主要研究内容如下:
     1.简介了荧光探针的概述、基本机理以及反应型荧光探针的研究现状,吸取前人的工作经验提出本篇论文的设计方案及研究目的。
     2.设计合成了以4-三氟甲基香豆素为发光基团和三氟乙酰基作为识别基团的新型ICT机理的荧光探针1。在CH3CN/H2O=4:1(v/v)的溶液体系下,探针1对CN-具有高度的选择性和灵敏度,响应速度小于30秒,最低检出限为0.29μM,低于世界卫生组织规定的饮用水中离子浓度的检测标准。通过光谱数据、NMR和MS验证了CN-与1的传感机理为不可逆的亲核反应。量子化学计算进一步证实了形成加成物1-CN-后存在分子内氢键,它可以引发强的ICT机理,产生吸收光谱红移和荧光强度增强的现象。最后,我们将探针1成功的应用在饮用水中检测氰离子,相对标准偏差小于2%。
     3.设计、合成了基于ICT作用机理,香豆素作为发光光团,分别将米氏酸、1,3-二甲基巴比妥酸和1,3-二乙基硫代巴比妥酸基团引入香豆素体系中的六种荧光探针CM1, CM2, CB1, CB2, CTB1和CTB2,并且获得了部分化合物的晶体结构。通过溶剂筛选分析发现,CM2, CB2和CTB2在含水介质中发生水解现象,这可能是由于扭曲的ICT作用导致的。在DMSO/Tris-HCl (10mM pH7.4,90%DMSO)缓冲溶液体系下,探针CM1、CB1和CTBl都能专一的识别CN-,不受其他分析物的干扰,并能够产生明显的颜色变化,实现可视化检测CN-;高的反应活性,说明增强末端取代基的酸性能够提高探针与CN-之间的反应速率。仅仅需要1当量的CN-就能使吸收和荧光强度达到最大值,并且CN-浓度在5×10-7到5×10-6mol/L范围内具有良好的线性关系,其检测极限都达到了纳摩级别(分别为:11nM,18nM和23nM);而且,这三个探针被成功应用在自来水和仿生样品中定量检测CN-,还获得了非常高的回收率。另外,CN"与探针CM1、CB1和CTBl的β-位能够发生高活性的加成反应,破坏了π-共轭体系,阻碍了ICT作用,导致吸收和发射光谱产生明显的变化。这个识别机理通过1H NMR,质谱,吸收光谱和密度泛函理论计算获得证实。
     4.设计、合成了以半菁染料作为发光基团和丙烯酸酯作为识别基团的新型ICT机理的荧光探针HCAl。探针HCAl对Cys具有显著的快速响应和高选择性超过了其他结构和功能相似的氨基酸。在吸收光谱中产生了明显的红移现象(大约180nm),还有明显的颜色变化,可以实现可视化检测纳摩级别的Cys。另外,仅仅加入1当量的Cys后就可以达到最大荧光信号,并且Cys浓度在1×10-7到1×10-6mol/L范围内具有良好的线性关系,其荧光检测极限为8.5nM。利用动力学分析可知,羟基半菁染料(2-anion)的稳定化在探针HCAl快速响应和高灵敏度的识别Cys过程中起到了一个很重要的作用。此外,探针HCAl被成功应用在蛋白质BSA的Cys34残基检测,并且可以在HeLa细胞进行生物成像。
Organic luminescent small molecules are generally composed of conjugate structure for small organic molecular, with advantages of simple structure, easy to modify, easy purification; which have a wide range of applications in many emerging areas, such as field-effect transistors, organic light-emitting materials, light harvesting system, logic gates, fluorescent probe and so on. Chemodosimetric fluorescent probe has attracted much attention in the environmental and biological relevant system because of its simple operation, high sensitivity and selectivity, developed an active area in supramolecular chemistry. In this paper, based on intramolecular charge transfer, three types of chemodosimetric fluorescent probe were designed and prepared, and this usually irreversible reaction-based approach relies on the strong nucleophilicity of CN'/Cys, which has been successfully observed remarkable optical properties and color change. Thus, we could high sensitivity and selectivity detect analytes in environmental and biological relevant system
     The main contents and results are focused as following:
     1. The outline and the major sensing principles of the fluorescent probes are simply introduced. The latest progresses of reaction-based chemodosimetric fluorescent probe sensing anions, metal ions, neutral molecule and biothiols are reviewed.
     2. A colorimetric and fluorescent cyanide chemodosimetric probe based on7-(trifluoroacetamino) coumarin has been prepared. This structurally simple probe displays rapid response and high selectivity for cyanide over other common anions in the CH3CN/H2O=4:1(v/v) solution. The detection limit of the fluorescent assay for cyanide is as low as0.29μM in a rapid response of less than30s. The sensing of cyanide was performed via the nucleophilic attack of cyanide anion to carbonyl of the probe with a1:1binding stoichiometry, which could be confirmed by Job's plot,'H NMR, and MS studies. DFT/TDDFT calculations support that the fluorescence enhancement of the probe is mainly due to the ICT process improvement. In the end, we were successfully applied to a practical system for the monitoring of cyanide concentrations in aqueous samples with relative standard deviation lower than2%.
     3. Based on ICT mechanism, six chemososimetric fluorescent probes (CM1, CM2, CB1, CB2, CTB1and CTB2) which own a coumarin unit as the fluorophore coupling to Meldrum's acid or1,3-dimethybarbituric acid or1,3-diethythiolbarbituric acid activation moiety were designed and synthesized, and the crystal structure of some compounds, and their optical behaviors toward aqueous solution were investigated. The probe CM2, CB2, and CTB2were hydrolyzed easily to produce the starting3in a same solution, because the crystal structure of CM2was also studied and showed a distorted conjugation between the coumarin and Meldrum's acid. The probes (CM1, CB1and CTB1) display rapid response and high selectivity for cyanide over other common anions, and biothiols, and a maximal fluorescent signal is achieved in the presence of only1equiv. of cyanide, and caused a fluorescence change, which provides a facile method for visual detection of cyanide by the naked eye in the DMSO/Tris-HCl (10mM pH7.4,90%DMSO) solution. Importantly, they presented linearly proportional to cyanide concentrations (from5×10-7to5×10-6mol/L) with detection limit down to11,23and18nM, respectively. Thus, this analytical method can be applied to the quantitative and qualitative determination of cyanide anion in drinking water sample and biomimetic system with high precision. In addition, the highly reactive nature on β-site was verified by H-NMR, absorption spectral, and DFRT calculations.
     4. We designed and developed a novel fluorescence probe based on benzothiazolium-quinoline hemicyanine dye with an acrylate group as a functional trigger moiety. The probe exhibited rapid response and high specificity for the detection of Cys over other structurally and functionally similar amino acids and thiols. The remarkable red-shift (179nm) of probe1with Cys was implemented by forming the intermolecular charge-separated hemicyanine dyes. Thus, the proposed probe can serve as an optical probe and a "naked-eye" probe for the detection of Cys at the nanomole level. In addition, a maximal fluorescent signal is achieved in the presence of only1equiv. of cys, and they presented linearly proportional to cys concentrations (from1×10-7to1×10-6mol/L) with detection limit down to8.5nM. The kinetic analysis results of probe1and control compound6show that the stabilization of the resultant hydroxyhemi-cyanine dye (2-anion) has an important role in the rapid response and high sensitivity of the probe toward Cys. Furthermore, this fluorescent probe was successfully applied for the fluorescent detection of Cys34in BSA and the bioimaging of Cys in HeLa cancer cells.
引文
[1]樊美公.光化学基本原理与光子学材料科学:科学出版社,2001.
    [2]于凯,关淑霞,张宏伟,et al.有机光致发光材料的研究进展.哈尔滨师范大学自然科学学报,2006,22(3):70-73.
    [3]McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors. Chem Rev 2000,100(7):2537-2574.
    [4]Martinez-Manez R, Sancenon F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 2003,103(11):4419-4476.
    [5]Pu L. Fluorescence of organic molecules in chiral recognition. Chem Rev 2004, 104(3):1687-1716.
    [6]Tsien R Y. New calcium indicators and buffers with high selectivity against magnesium and protons:design, synthesis, and properties of prototype structures. Biochemistry,1980,19(11):2396-2404.
    [7]Desvergne J J P, Czarnik A W. Chemosensors of ion and molecule recognition: Springer,1997.
    [8]Czarnik A W. Fluorescent chemosensors for ion and molecule recognition:An American Chemical Society Publication,1993.
    [9]Basabe-Desmonts L, Reinhoudt D N, Crego-Calama M. Design of fluorescent materials for chemical sensing. Chem Soc Rev 2007,36(6):993-1017.
    [10]Cattrall R W. Chemical sensors:Oxford University Press Oxford,1997.
    [11]Boens N, Leen V, Dehaen W. Fluorescent indicators based on BODIPY. Chem Soc Rev 2012,41(3):1130-1172.
    [12]Duke R M, Veale E B, Pfeffer F M, et al. Colorimetric and fluorescent anion sensors:an overview of recent developments in the use of 1, 8-naphthalimide-based chemosensors. Chem Soc Rev 2010,39(10):3936-3953.
    [13]De Silva A P, Gunaratne H N, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches. Chem Rev 1997,97(5):1515-1566.
    [14]Zhou Y, Yoon J. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem Soc Rev 2012,41(1):52-67.
    [15]Salinas Y, Martinez-Manez R, Marcos M D, et al. Optical chemosensors and reagents to detect explosives. Chem Soc Rev 2012,41(3):1261-1296.
    [16]Dsouza R N, Pischel U, Nau W M. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev 2011, 111(12):7941-7980.
    [17]Wysocki L M, Lavis L D. Advances in the chemistry of small molecule fluorescent probes. Curr Opin Chem Biol 2011,15(6):752-759.
    [18]Qian X, Xiao Y, Xu Y, et al. "Alive" dyes as fluorescent sensors:fluorophore, mechanism, receptor and images in living cells. Chem Commun 2010, 46(35):6418-6436.
    [19]Wu J, Liu W, Ge J, et al. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 2011,40(7):3483-3495.
    [20]韩庆鑫,石兆华,唐晓亮,et al.荧光化学传感器的研究与应用.兰州大学学报(自然科学版),2013,3:024.
    [21]Gunnlaugsson T, Ali H D P, Glynn M, et al. Fluorescent photoinduced electron transfer (PET) sensors for anions; from design to potential application. Journal of fluorescence,2005,15(3):287-299.
    [22]Kavarnos G J. Fundamental concepts of photoinduced electron transfer. Photoinduced Electron Transfer Ⅰ:Springer,1990;21-58.
    [23]Matsumoto T, Urano Y, Shoda T, et al. A thiol-reactive fluorescence probe based on donor-excited photoinduced electron transfer:key role of ortho substitution. Org Lett 2007,9(17):3375-3377.
    [24]Liu Z, He W, Guo Z. Metal coordination in photoluminescent sensing. Chem Soc Rev 2013,42(4):1568-1600.
    [25]Cheng X, Tang R, Jia H, et al. New Fluorescent and Colorimetric Probe for Cyanide:Direct Reactivity, High Selectivity, and Bioimaging Application. ACS Appl Mat Interfaces 2012,4(8):4387-4392.
    [26]Hu R, Feng J, Hu D, et al. A rapid aqueous fluoride ion sensor with dual output modes. Angew Chem Int Ed 2010,49(29):4915-4918.
    [27]Lakowicz J R. Principles of fluorescence spectroscopy 2nd ed. Kluwer Academic/Plenum Publishers, New York,1999.
    [28]Sherrill C B, Marshall D J, Moser M J, et al..Nucleic acid analysis using an expanded genetic alphabet to quench fluorescence. J Am Chem Soc 2004, 126(14):4550-4556.
    [29]Fan J, Hu M, Zhan P, et al. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev 2013, 42(1):29-43.
    [30]Han Z-X, Zhang X-B, Li Z, et al. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn2+using a rhodamine spirolactam as a trigger. Anal Chem 2010,82(8):3108-3113.
    [31]Zhao Y, Zhang Y, Lv X, et al. Through-bond energy transfer cassettes based on coumarin-Bodipy/distyryl Bodipy dyads with efficient energy efficiences and large pseudo-Stokes' shifts. J Mater Chem 2011,21(35):13168-13171.
    [32]Hong Y, Lam J W, Tang B Z. Aggregation-induced emission:phenomenon, mechanism and applications. Chem Commun 2009, (29):4332-4353.
    [33]Wang M, Zhang Q Zhang D, et al. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J Mater Chem 2010,20(10):1858-1867.
    [34]Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ion. Chem Rev 2008,108(9):3443-3480.
    [35]Zhang J F, Zhou Y, Yoon J, et al. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem Soc Rev 2011,40(7):3416-3429.
    [36]Kim H N, Ren W X, Kim J S, et al. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 2012, 41(8):3210-3244.
    [37]Xu Z, Chen X, Kim H N, et al. Sensors for the optical detection of cyanide ion. Chem Soc Rev 2010,39(1):127-137.
    [38]Li A-F, Wang J-H, Wang F, et al. Anion complexation and sensing using modified urea and thiourea-based receptors. Chem Soc Rev 2010,39(10):3729-3745.
    [39]Moragues M E, Martinez-Manez R, Sancenon F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chem Soc Rev 2011,40(5):2593-2643.
    [40]Zhou Y, Xu Z, Yoon J. Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH:highlighted research during 2004-2010. Chem Soc Rev 2011,40(5):2222-2235.
    [41]Chen X, Zhou Y, Peng X, et al. Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 2010,39(6):2120-2135.
    [42]Yin C, Huo F, Zhang J, et al. Thiol-addition reactions and their applications in thiol recognition. Chem Soc Rev 2013,42(14):6032-6059.
    [43]Jung H S, Chen X, Kim J S, et al. Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev 2013,42(14):6019-6031.
    [44]Chen X, Tian X, Shin I, et al. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 2011,40(9):4783-4804.
    [45]Kulig K W, Ballantyne B. Cyanide toxicity:US Department of Health & Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry,1991.
    [46]Organization W H. Guidelines for drinking water quality, vol 1 Recommendations. World Health Organization, Geneva,2004.
    [47]Baskin S, Brewer T, Sidell F, et al. Medical aspects of chemical and biological warfare. Chapter,1997,10:272-286.
    [48]Lv X, Liu J, Liu Y, et al. Ratiometric fluorescence detection of cyanide based on a hybrid coumarin-hemicyanine dye:the large emission shift and the high selectivity. Chem Commun 2011,47(48):12843-12845.
    [49]Liu Z, Wang X, Yang Z, et al. Rational design of a dual chemosensor for cyanide anion sensing based on dicyanovinyl-substituted benzofurazan. The Journal of organic chemistry,2011,76(24):10286-10290.
    [50]Jamkratoke M, Ruangpornvisuti V, Tumcharern G, et al. A-D-A Sensors Based on Naphthoimidazoledione and Boronic Acid as Turn-On Cyanide Probes in Water. The Journal of Organic Chemistry,2009,74(10):3919-3922.
    [51]Kleerekoper M. The role of fluoride in the prevention of osteoporosis. Endocrinology & Metabolism Clinics of North America,1998,27(2):441-452.
    [52]Black C B, Andrioletti B, Try A C, et al. Dipyrrolylquinoxalines:efficient sensors for fluoride anion in organic solution. J Am Chem Soc 1999,121(44):10438-10439.
    [53]Zhu B, Yuan F, Li R, et al. A highly selective colorimetric and ratiometric fluorescent chemodosimeter for imaging fluoride ions in living cells. Chem Commun 2011,47(25):7098-7100.
    [54]Matsui H, Morimoto M, Horimoto K, et al. Some characteristics of fluoride-induced cell death in rat thymocytes:cytotoxicity of sodium fluoride. Toxicology In Vitro,2007,21(6):1113-1120.
    [55]Jo M, Lim J, Miljanic O S. Selective and Sensitive Fluoride Detection through Alkyne Cruciform Desilylation. Org Lett 2013,15(14):3518-3521.
    [56]WOLFANGEL R. CONTAINER AND CLOSURE SYSTEM FOR MAINTAINING STABILITY OF SODIUM HYPOCHLORITE SOLUTIONS. WO Patent 1,993,022,056,1993.
    [57]Cheng X, Jia H, Long T, et al. A "turn-on" fluorescent probe for hypochlorous acid: convenient synthesis, good sensing performance, and a new design strategy by the removal of C [double bond, length as m-dash] N isomerization. Chem Commun 2011,47(43):11978-11980.
    [58]Kenmoku S, Urano Y, Kojima H, et al. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J Am Chem Soc 2007,129(23):7313-7318.
    [59]Wu X, Li Z, Yang L, et al. A self-referenced nanodosimeter for reaction based ratiometric imaging of hypochlorous acid in living cells. Chem Sci,2013, 4(1):460-467.
    [60]Li H-W, Li Y, Dang Y-Q, et al. An easily prepared hypersensitive water-soluble fluorescent probe for mercury (Ⅱ) ions. Chem Commun 2009, (29):4453-4455.
    [61]Aoki S, Kawatani H, Goto T, et al. A double-functionalized cyclen with carbamoyl and dansyl groups (cyclen= 1,4,7,10-tetraazacyclododecane):A selective fluorescent probe for Y3+ and La3+. J Am Chem Soc 2001,123(6):1123-1132.
    [62]Ma L-J, Li Y, Li L, et al. A protein-supported fluorescent reagent for the highly-sensitive and selective detection of mercury ions in aqueous solution and live cells. Chem Commun 2008, (47):6345-6347.
    [63]Lin W, Cao X, Ding Y, et al. A highly selective and sensitive fluorescent probe for Hg2+imaging in live cells based on a rhodamine-thioamide-alkyne scaffold. Chem Commun 2010,46(20):3529-3531.
    [64]Zhang X, Xiao Y, Qian X. A ratiometric fluorescent probe based on FRET for imaging Hg2+ions in living cells. Angew Chem Int Ed 2008,47(42):8025-8029.
    [65]Jiang W,Wang W. A selective and sensitive "turn-on" fluorescent chemodosimeter for Hg2+ in aqueous media via Hg2+ promoted facile desulfurization-lactonization reaction. Chem Commun 2009, (26):3913-3915.
    [66]Safety I P o C, Chemicals I-O P f t S M o. World Health Organization Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009:World Health Organization,2010.
    [67]Jun M E, Ahn K H. Fluorogenic and chromogenic detection of palladium species through a catalytic conversion of a rhodamine B derivative. Org Lett 2010, 12(12):2790-2793.
    [68]Garrett C E, Prasad K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Advanced Synthesis & Catalysis,2004,346(8):889-900.
    [69]Wang J, Song F, Wang J, et al. A near-infrared and ratiometric fluorescent chemosensor for palladium. Analyst,2013,138(13):3667-3672.
    [70]Kumar M, Kumar N, Bhalla V. Highly selective fluorescent probe for detection and visualization of palladium ions in mixed aqueous media. RSC Advances,2013, 3(4):1097-1102.
    [71]Cotarca L, Eckert H. Phosgenations:A Handbook:John Wiley & Sons,2006.
    [72]Zhang H, Rudkevich D M. A FRET approach to phosgene detection. Chem Commun 2007, (12):1238-1239.
    [73]Wu X, Wu Z, Yang Y, et al. A highly sensitive fluorogenic chemodosimeter for rapid visual detection of phosgene. Chem Commun 2012,48(13):1895-1897.
    [74]Barnham K J, Masters C L, Bush A I. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discovery 2004,3(3):205-214.
    [75]Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 2003,417(1):3-11.
    [76]Shah A, Channon K. Free radicals and redox signalling in cardiovascular disease. Heart,2004,90(5):486-487.
    [77]Setsukinai K-i, Urano Y, Kakinuma K, et al. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 2003,278(5):3170-3175.
    [78]Lo L-C, Chu C-Y. Development of highly selective and sensitive probes for hydrogen peroxide. Chem Commun 2003, (21):2728-2729.
    [79]Maeda H, Fukuyasu Y, Yoshida S, et al. Fluorescent Probes for Hydrogen Peroxide Based on a Non-Oxidative Mechanism. Angew Chem Int Ed 2004, 43(18):2389-2391.
    [80]Chang M C, Pralle A, Isacoff E Y, et al. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J Am Chem Soc 2004,126(47):15392-15393.
    [81]Albers A E, Okreglak V S, Chang C J. A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide. J Am Chem Soc 2006, 128(30):9640-9641.
    [82]Dickinson B C, Chang C J. A targetable fluorescent probe for imaging hydrogen peroxide in. the mitochondria of living cells. J Am Chem Soc 2008, 130(30):9638-9639.
    [83]Carmel R, Jacobsen D. Homocysteine in health and disease. Homocysteine in health and disease,2001.
    [84]Jung H S, Ko K C, Kim G-H, et al. Coumarin-based thiol chemosensor:synthesis, turn-on mechanism, and its biological application. Org Lett 2011,13(6):1498-1501.
    [85]Wang P, Liu J, Lv X, et al. A naphthalimide-based glyoxal hydrazone for selective fluorescence turn-on sensing of Cys and Hcy. Org Lett 2012,14(2):520-523.
    [86]Guo Z, Nam S, Park S, et al. A highly selective ratiometric near-infrared fluorescent cyanine sensor for cysteine with remarkable shift and its application in bioimaging. Chem Sci,2012,3(9):2760-2765.
    [87]Moncada S, Palmer R, Higgs E. Nitric oxide:physiology, pathophysiology, and pharmacology. Pharmacological reviews,1991,43(2):109-142.
    [88]Cals-Grierson M-M, Ormerod A. Nitric oxide function in the skin. Nitric oxide, 2004,10(4):179-193.
    [89]Nussler A K, Billiar T. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukocyte Biol 1993,54(2):171-178.
    [90]Miyasaka N, Hirata Y. Nitric oxide and inflammatory arthritides. Life Sci 1997, 61(21):2073-2081.
    [91]Esch T, Stefano G B, Fricchione G L, et al. Stress-related diseases-a potential role for nitric oxide. Medical Science Monitor,2002,8(6):RA103-RA118.
    [92]Zhang X, Wang H, Li J-S, et al. Development of a fluorescent probe for nitric oxide detection based on difluoroboradiaza-< i> s-indacene fluorophore. Anal Chim Acta 2003,481(1):101-108.
    [93]MiaChung Y, HanaAhn K. Fluorescence modulation in anion sensing by introducing intramolecular H-bonding interactions in host-guest adducts. Chem Commun 2006, (2):186-188.
    [94]Miyaji H, Kim D-S, Chang B-Y, et al. Highly cooperative ion-pair recognition of potassium cyanide using a heteroditopic ferrocene-based crown ether-trifluoroacetylcarboxanilide receptor. Chem Commun 2008, (6):753-755.
    [95]Lee H, Chung Y M, Ahn K H. Selective fluorescence sensing of cyanide with an-o-(carboxamido) trifluoroacetophenone fused with a cyano-1, 2-diphenylethylene fluorophore. Tetrahedron Lett 2008,49(38):5544-5547.
    [96]Kim D-S, Chung Y-M, Jun M, et al. Selective colorimetric sensing of anions in aqueous media through reversible covalent bonding. The Journal of organic chemistry,2009,74(13):4849-4854.
    [97]Kim D-S, Ahn K H. Fluorescence "turn-on" sensing of carboxylate anions with oligothiophene-based o-(carboxamido) trifluoroacetophenones., The Journal of Organic Chemistry,2008,73(17):6831-6834.
    [98]Ekmekci Z, Yilmaz M D, Akkaya E U. A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescent probe for cyanide ions. Org Lett 2008, 10(3):461-464.
    [99]Niu H-T, Su D, Jiang X, et al. A simple yet highly selective colorimetric sensor for cyanide anion in an aqueous environment. Org Biomol Chem 2008, 6(17):3038-3040.
    [100]Niu H-T, Jiang X, He J, et al. A highly selective and synthetically facile aqueous-phase cyanide probe. Tetrahedron Lett 2008,49(46):6521-6524.
    [101]Bissell E R, Mitchell A R, Smith R E. Synthesis and chemistry of 7-amino-4-(trifluoromethyl) coumarin and its amino acid and peptide derivatives. The Journal of Organic Chemistry,1980,45(12):2283-2287.
    [102]Saha S, Ghosh A, Mahato P, et al. Specific Recognition and Sensing of CN-in Sodium Cyanide Solution. Org Lett 2010,12(15):3406-3409.
    [103]Benesi H A, Hildebrand J H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J Am Chem Soc 1949,71(8):2703-2707.
    [104]Ros-Lis J V, Martinez-Manez R, Soto J. Subphthalocyanines as fluoro-chromogenic probes for anions and their application to the highly selective and sensitive cyanide detection. Chem Commun 2005, (42):5260-5262.
    [105]Sun Y, Liu Y, Chen M, et al. A novel fluorescent and chromogenic probe for cyanide detection in water based on the nucleophilic addition of cyanide to imine group. Talanta,2009,80(2):996-1000.
    [106]Nevado J J B, Pulgarin J A M, Laguna M A G. Spectrofluorimetric study of the. β-cyclodextrin:vitamin K3 complex and determination of vitamin K3. Talanta, 2001,53(5):951-959.
    [107]曾昭琼.有机化学(三版).北京:高等教育出版社,1993.
    [108]Lin Y-D, Peng Y-S, Su W, et al. A highly selective colorimetric and turn-on fluorescent probe for cyanide anion. Tetrahedron,2012,68(11):2523-2526.
    [109]Zhou X, Lv X, Hao J, et al. Coumarin-indanedione conjugate as a doubly activated Michael addition type probe for the colorimetric and ratiometric fluorescent detection of cyanide. Dyes Pigm 2012,95(2):168-173.
    [110]Kim G-J, Kim H-J. Doubly activated coumarin as a colorimetric and fluorescent chemodosimeter for cyanide. Tetrahedron Lett 2010,51(1):185-187.
    [111]Li H, Wen Z, Jin L, et al. A coumarin-Meldrum's acid conjugate based chemodosimetric probe for cyanide. Chem Commun 2012,48(95):11659-11661.
    [112]Kim G-J, Kim H-J. Coumarinyl aldehyde as a Michael acceptor type of colorimetric and fluorescent probe for cyanide in water. Tetrahedron Lett 2010, 51(21):2914-2916.
    [113]Hong S-J, Yoo J, Kim S-H, et al.β-Vinyl substituted calix [4] pyrrole as a selective ratiometric sensor for cyanide anion. Chem Commun 2009, (2):189-191.
    [114]Yuan L, Lin W, Yang Y, et al. Rational design of a highly reactive ratiometric fluorescent probe for cyanide. Org Lett 2011,13(14):3730-3733.
    [115]Dong Y-M, Peng Y, Dong M, et al. A selective, sensitive, and chromogenic chemodosimeter for cyanide based on the 1,1'-binaphthyl scaffold. The Journal of organic chemistry,2011,76(16):6962-6966.
    [116]Park S, Kim H-J. Highly activated Michael acceptor by an intramolecular hydrogen bond as a fluorescence turn-on probe for cyanide. Chem Commun 2010, 46(48):9197-9199.
    [117]Wu J-S, Liu W-M, Zhuang X-Q, et al. Fluorescence turn on of coumarin derivatives by metal cations:a new signaling mechanism based on C= N isomerization. Org Lett 2007,9(1):33-36.
    [118]Yuan L, Lin W, Yang Y. A ratiometric fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles. Chem Commun 2011,47(22):6275-6277.
    [119]Parker C A, Rees W. Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst,1960,85(1013):587-600.
    [120]Ajayaghosh A, Carol P, Sreejith S. A ratiometric fluorescence probe for selective visual sensing of Zn2+. J Am Chem Soc 2005,127(43):14962-14963.
    [121]Lin W, Yuan L, Tan W, et al. Construction of Fluorescent Probes Via Protection/Deprotection of Functional Groups:A Ratiometric Fluorescent Probe for Cu2+. Chemistry-A European Journal,2009,15(4):1030-1035.
    [122]Karstens T, Kobs K. Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements. The Journal of Physical Chemistry, 1980,84(14):1871-1872.
    [123]McMahon B K, Gunnlaugsson T. Selective Detection of the Reduced Form of Glutathione (GSH) over the Oxidized (GSSG) Form Using a Combination of Glutathione Reductase and a Tb (Ⅲ)-Cyclen Maleimide Based Lanthanide Luminescent'Switch On'Assay. J Am Chem Soc 2012,134(26):10725-10728.
    [124]Jung H S, Han J H, Pradhan T, et al. A cysteine-selective fluorescent probe for the cellular detection of cysteine. Biomaterials,2012,33(3):945-953.
    [125]Kwon H, Lee K, Kim H-J. Coumarin-malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression. Chem Commun 2011, 47(6):1773-1775.
    [126]JungaKim M. A thiol-specific fluorescent probe and its application for bioimaging. Chem Commun 2010,46(16):2751-2753.
    [127]Liu Y, Yu Y, Lam J W, et al. Simple Biosensor with High Selectivity and Sensitivity:Thiol-Specific Biomolecular Probing and Intracellular Imaging by AIE Fluorogen on a TLC Plate through a Thiol-Ene Click Mechanism. Chem-Eur J.2010,16(28):8433-8438.
    [128]Lin W, Yuan L, Cao Z, et al. A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to α, β-Unsaturated Ketones. Chem-Eur J,2009,15(20):5096-5103.
    [129]Yi L, Li H, Sun L, et al. A Highly Sensitive Fluorescence Probe for Fast Thiol-Quantification Assay of Glutathione Reductase. Angew Chem Int Ed 2009, 48(22):4034-4037.
    [130]Hong V, Kislukhin A A, Finn M G Thiol-Selective Fluorogenic Probes for Labeling and Release. J Am Chem Soc 2009,131(29):9986-9994.
    [131]Hewage H S, Anslyn E V. Pattern-Based Recognition of Thiols and Metals Using a Single Squaraine Indicator. J Am Chem Soc 2009,131(36):13099-13106.
    [132]Sreejith S, Divya K P, Ajayaghosh A. A Near-Infrared Squaraine Dye as a Latent Ratiometric Fluorophore for the Detection of Aminothiol Content in Blood Plasma. Angew Chem Int Ed 2008,47(41):7883-7887.
    [133]Guy J, Caron K, Dufresne S, et al. Convergent Preparation and Photophysical Characterization of Dimaleimide Dansyl Fluorogens:Elucidation of the Maleimide Fluorescence Quenching Mechanism. J Am Chem Soc 2007, 129(39):11969-11977.
    [134]Jiang W, Fu Q, Fan H, et al. A Highly Selective Fluorescent Probe for Thiophenols. Angew Chem Int Ed 2007,46(44):8445-8448.
    [135]Zhou X, Jin X, Sun G, et al. A cysteine probe with high selectivity and sensitivity promoted by response-assisted electrostatic attraction. Chem Commun 2012, 48(70):8793-8795.
    [136]Zhou X, Jin X, Sun G, et al. A Sensitive and Selective Fluorescent Probe for Cysteine Based on a New Response-Assisted Electrostatic Attraction Strategy: The Role of Spatial Charge Configuration. Chem-Eur J,2013,19(24):7817-7824.
    [137]Xiong L, Zhao Q, Chen H, et al. Phosphorescence imaging of homocysteine and cysteine in living cells based on a cationic iridium (Ⅲ) complex. Inorg Chem 2010, 49(14):6402-6408.
    [138]Shiu H Y, Chong H C, Leung Y C, et al. A Highly Selective FRET-Based Fluorescent Probe for Detection of Cysteine and Homocysteine. Chem-Eur J,2010, 16(11):3308-3313.
    [139]Li H, Fan J, Wang J, et al. A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine. Chem Commun 2009, (39):5904-5906.
    [140]Zhang X, Ren X, Xu Q-H, et al. One-and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift. Org Lett 2009, 11(6):1257-1260.
    [141]Lee K-S, Kim T-K, Lee J H, et al. Fluorescence turn-on probe for homocysteine and cysteine in water. Chem Commun 2008, (46):6173-6175.
    [142]Lin W, Long L, Yuan L, et al. A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Org Lett 2008,10(24):5577-5580.
    [143]Wang W, Rusin O, Xu X, et al. Detection of Homocysteine and Cysteine. J Am Chem Soc 2005,127(45):15949-15958.
    [144]Mei J, Wang Y, Tong J, et al. Discriminatory Detection of Cysteine and Homocysteine Based on Dialdehyde-Functionalized Aggregation-Induced Emission Fluorophores. Chem-Eur J,2013,19(2):613-620.
    [145]Yang Z, Zhao N, Sun Y, et al. Highly selective red-and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells. Chem Commun 2012,48(28):3442-3444.
    [146]Lee M H, Han J H, Kwon P-S, et al. Hepatocyte-targeting single galactose-appended naphthalimide:a tool for intracellular thiol imaging in vivo. J Am Chem Soc 2012,134(2):1316-1322.
    [147]Shao J, Sun H, Guo H, et al. A highly selective red-emitting FRET fluorescent molecular probe derived from BODIPY for the detection of cysteine and homocysteine:an experimental and theoretical study. Chem Sci,2012, 3(4):1049-1061.
    [148]Lim C S, Masanta G, Kim H J, et al. Ratiometric detection of mitochondrial thiols with a two-photon fluorescent probe. J Am Chem Soc 2011,133(29):11132-11135.
    [149]Cui K, Chen Z, Wang Z, et al. A naked-eye visible and fluorescence "turn-on" probe for acetyl-cholinesterase assay and thiols as well as imaging of living cells. Analyst,2011,136(1):191-195.
    [150]Long L, Lin W, Chen B, et al. Construction of a FRET-based ratiometric fluorescent thiol probe. Chem Commun 2011,47(3):893-895.
    [151]Zhao C, Zhou Y, Lin Q, et al. Development of an indole-based boron-dipyrromethene fluorescent probe for benzenethiols. The Journal of Physical Chemistry B,2010,115(4):642-647.
    [152]Lee J H, Lim C S, Tian Y S, et al. A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues. J Am Chem Soc 2010,132(4):1216-1217.
    [153]Li X, Qian S, He Q, et al. Design and synthesis of a highly selective fluorescent turn-on probe for thiol bioimaging in living cells. Org Biomol Chem 2010, 8(16):3627-3630.
    [154]Zhu B, Zhang X, Li Y, et al. A colorimetric and ratiometric fluorescent probe for thiols and its bioimaging applications. Chem Commun 2010,46(31):5710-5712.
    [155]Ji S, Yang J, Yang Q, et al. Tuning the Intramolecular Charge Transfer of Alkynylpyrenes:Effect on Photophysical Properties and Its Application in Design of OFF-ON Fluorescent Thiol Probes. The Journal of organic chemistry,2009, 74(13):4855-4865.
    [156]Pires M M, Chmielewski J. Fluorescence imaging of cellular glutathione using a latent rhodamine. Org Lett 2008,10(5):837-840.
    [157]Bouffard J, Kim Y, Swager T M, et al. A highly selective fluorescent probe for thiol bioimaging. Org Lett 2008,10(1):37-40.
    [158]Tang B, Xing Y, Li P, et al. A Rhodamine-Based Fluorescent Probe Containing a Se-N Bond for Detecting Thiols and Its Application in Living Cells. J Am Chem Soc 2007,129(38):11666-11667.
    [159]Yuan L, Lin W, Zhao S, et al. A Unique Approach to Development of Near-Infrared Fluorescent Sensors for in Vivo Imaging. J Am Chem Soc 2012, 134(32):13510-13523.
    [160]Wang R, Chen L, Liu P, et al. Sensitive Near-Infrared Fluorescent Probes for Thiols Based on Se-N Bond Cleavage:Imaging in Living Cells and Tissues. Chem-Eur J,2012,18(36):11343-11349.
    [161]Yang X, Guo Y, Strongin R M. Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew Chem Int Ed 2011,50(45):10690-10693.
    [162]Wang H, Zhou G, Gai H, et al. A fluorescein-based probe with high selectivity to cysteine over homocysteine and glutathione. Chem Commun 2012, 48(67):8341-8343.
    [163]Yang X, Guo Y, Strongin R M. A seminaphthofluorescein-based fluorescent chemodosimeter for the highly selective detection of cysteine. Org Biomol Chem 2012,10(14):2739-2741.
    [164]Wang L, Zhou Q, Zhu B, et al. A colorimetric and fluorescent chemodosimeter for discriminative and simultaneous quantification of cysteine and homocysteine. Dyes Pigm 2012,95(2):275-279.
    [165]Zhang M, Wu Y, Zhang S, et al. A nitroolefin functionalized BODIPY chemodosimeter for biothiols driven by an unexpected conjugated addition mechanism. Chem Commun 2012,48(71):8925-8927.
    [166]Leonard N J, Ning R Y. The Synthesis and Stereochemistry of Substituted 1, 4-Thiazepines Related to the Penicillinsl. The Journal of Organic Chemistry,1966, 31(12):3928-3935.
    [167]Blondeau P, Berse R G C, Gravel D. Synthesis of Some Stable 7-Halo-1, 4-thiazepines. Potential Substituted Penam Precursors. Can J Chem 1971, 49(23):3866-3876.
    [168]Khatik G L, Kumar R, Chakraborti A K. Catalyst-free conjugated addition of thiols to a, β-unsaturated carbonyl compounds in water. Org Lett 2006,8(11):2433-2436.
    [169]Illuminati G, Mandolini L. Ring closure reactions of bifunctional chain molecules. Ace Chem Res 1981,14(4):95-102.
    [170]Galli C, Mandolini L. The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur J Org Chem 2000,2000(18):3117-3125.
    [171]Galli C, Illuminati G, Mandolini L, et al. Ring-closure reactions.7. Kinetics and activation parameters of lactone formation in the range of 3-to 23-membered rings. J Am Chem Soc 1977,99(8):2591-2597.
    [172]Clemo G, Howe R.5-formyl-8-hydroxy-quinoline. J Chem Soc,1955:3552-3553.
    [173]Chen Y, Wang H, Wan L, et al.8-Hydroxyquinoline-Substituted Boron-Dipyrromethene Compounds:Synthesis, Structure, and OFF-ON-OFF Type of pH-Sensing Properties. The Journal of Organic Chemistry,2011, 76(10):3774-3781.
    [174]Xu Y, Panzner M J, Li X, et al. Host-guest assembly of squaraine dye in cucurbit
    [8]uril:its implication in fluorescent probe for mercury ions. Chem Commun 2010, 46(23):4073-4075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700