用户名: 密码: 验证码:
阳山金矿带成矿作用地球化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阳山金矿带位于西秦岭勉略构造带内,是研究复合造山带中金矿成因的理想选区,巨量金的来源及聚集机理是亟需深入研究的关键科学问题。论文通过系统的矿床地质和成矿作用地球化学研究,获得如下主要成果。
     (1)岩相学观察表明金矿化样式简单,微细浸染状矿化分布广泛,发育于各种岩/矿石中,贯穿于沉积-变质-成矿全过程;脉状-细脉状矿化分布局限,多产于断裂带附近,发育于热液成矿过程中;而围岩蚀变类型多、范围广、叠加明显、分带结构复杂。
     (2)矿相学研究厘定出五个世代黄铁矿、两个世代毒砂、一个世代辉锑矿,金主要呈微细浸染状分布于千枚岩和酸性岩脉中的黄铁矿及毒砂内,热液成矿晚阶段石英-方解石脉中可见少量不规则状的自然金。
     (3)载金矿物晶体结构研究发现含金黄铁矿和毒砂晶格结构完整、无明显位错和变形,也未见独立金矿物;热液成矿主阶段,金主要以晶格金的形式置换黄铁矿和毒砂中的铁,导致黄铁矿面网间距变大,而毒砂面网间距变化较小。
     (4)流体包裹体和流体物理化学条件分析结果反映成矿晚阶段均一温度为271.3~288.3℃,流体盐度为3.17wt%NaCl,流体密度为0.976g/cm3,流体压力为2.877kbar;成矿流体pH值为3~5,硫逸度(fS2)约为10~(-10.4),氧逸度(fO2)为10~(-36.3)~10~(-34.2),δ~(18)OV-SMOW值与造山型金矿一致,表明成矿流体主要来源于变质流体。
     (5)S-Pb-Sr-O同位素的联合研究表明碧口群和泥盆系的浅变质沉积岩系为金成矿作用提供了流体和物质来源。
     (6)EMPA和LA-ICP-MS研究表明沉积型黄铁矿提供了丰富的金等成矿元素;成矿主阶段As和Au元素的富集可能与硫化作用有关,且为Au~(3+)替代Fe~(2+)、AsS~(3-)替代S2~(2-)的双交代机制;成矿晚阶段流体富含Sb元素,金从黄铁矿和/或毒砂的晶格中释放出来,形成了游离自然金,表明此阶段温度和/或压力较低。
     (7)与典型造山型和卡林型金矿床对比表明阳山金矿带是一个以广泛的浸染型矿化为主的造山型金矿带。
The Yangshan gold belt is structurally located within the Mian-Lue suture zonein the West Qinling orogen. The gold belt is an ideal area to study the origin of golddeposits in the composite orogen. The source of huge amounts of gold and itsaccumulation mechanism are the critical scientific issues that need to be resolved. Thefollowing conclusions could be made after studying the geology and geochemistry ofore-forming processes in the Yangshan gold belt.
     (1) Disseminated mineralization is commonly developed in all the rock types andthrough the sedimentary-metamorphism-mineralization stages; the vein-stylemineralization is less common than the disseminated style, and is usually developednear the fault belt, but could be found in all the mineralization stages. There arevarious wall-rock alteration types, with widespread development and compositeoverprinting and zoning structure.
     (2) Five pyrite stages, two arsenopyrite stages, one stibnite stage are recognizedin the thesis. Gold is mainly disseminated in the pyrite and arsenopyrite in the phylliteand acidic dykes. Minor irregular free gold is developed in the late ore stagequartz-calcite vein.
     (3) Pyrite and arsenopyrite have complete lattice structure without obviousdislocation or deformation or independent gold mineral inclusions. Gold substitutesfor Fe in the pyrite and arsenopyrite structures, leading to the increase of interplanarspacing of pyrite and the minor change of interplanar spacing of arsenopyrite.
     (4) The Thin the late ore stage is271.3~288.3℃, and thesalinity is3.17wt%NaCl, with pressure of2.877kbar. The phase diagrams show that the pH is3~5, andthe fS2is10~(-10.4), and the fO2is10~(-36.3)~10~(-34.2). The oxygen isotope indicates ametamorphic fluid origin, which is similar to the orogenic gold deposits.
     (5) The comprehensive study of S-Pb-Sr-O isotopes shows that the Bikou Groupand the Devonian strata provide fluid and metal source for the mineralization.
     (6) The EMPA and LA-ICP-MS research shows that the diagenetic pyriteprovides fertile gold resource for the mineralization. The As and Au enrichment in the main ore stage could be related to sulfidation between the ore fluids and the rocks,and reflects a coupled substitution mechanism in which Au~(3+)substitutes for Fe~(2+)andAsS~(3-)substitutes for the S2~(2-)dianion. The late ore stage fluid is enriched in Sb andgold is liberated from the pyrite and/or arsenopyrite structure and forms free gold,indicating the drop in temperature and/or pressure in the late ore stage.
     (7) Compared with the typical orogenic gold deposits and the Carlin-type golddeposits, the Yangshan gold belt is a orogenic gold belt with disseminatedmineralization.
引文
Abraitis P.K., Pattrick R.A.D., Vaughan D.J. Variations in the compositional, textural andelectrical properties of natural pyrite: a review. International Journal of Mineral Processing.2004,74(1-4):41~59
    Ague J.J. Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut; I,Evidence for changes in composition and volume. American Journal of Science.1994,294(8):989~1057
    Ague J.J. Compositional variations in metamorphosed sediments of the Littleton Formation, NewHampshire; discussion. American Journal of Science.1997,297(4):440~449
    Arehart G.B., Chryssoulis S.L., Kesler S.E. Gold and arsenic in iron sulfides fromsediment-hosted disseminated gold deposits; implications for depositional processes.Economic Geology.1993,88(1):171~185
    Bakken B.M., Fleming R.H., Hochella M.F. High-resolution microscopy of auriferous pyrite fromthe Post Deposit, Carlin District, Nevada. In: Hausen D.M., Petruk W., Hagni R.D., eds.Process Mineralogy Ⅺ-Characterization of metallurgical and recyclable products: TMS,Mineral, Metals, Materials,1991,11,13~23
    Bakken B.M., Hochella M.F., Marshall A., et al. High-resolution microscopy of gold inunoxidized ore from the Carlin mine, Nevada. Economic Geology.1989,84(1):171~179
    Barnes H.L. Geochemistry of hydrothermal ore deposits. New York: John Wiley and Sons,1997
    Blanchard M., Alfredsson M., Brodholt J., et al. Arsenic incorporation into FeS2pyrite and itsinfluence on dissolution: A DFT study. Geochimica et Cosmochimica Acta.2007,71(3):624~630
    Bodnar R.J., Introduction to fluid inclusions. In: Samson I., Anderson A., and Marshall D., eds.Fluid Inclusions: Analysis and Interpretation: Mineral. Assoc. Canada, Short Course.2003,1~8
    Boyle R.W. The geochemistry of gold and its deposits (together with a chapter on geochemicalprospecting for the element). Ottawa: Geological Survey of Canada,1979
    Bralia A., Sabatini G., Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool inore genesis problems; evidences from southern Tuscany pyritic deposits. MineraliumDeposita.1979,14(3):353~374
    Brimhall G.H. and Dietrich W.E. Constitutive mass balance relations between chemicalcomposition, volume, density, porosity, and strain in metasomatic hydrochemical systems:results on weathering and pedogenesis. Geochimica et Cosmochimica Acta.1987,51(3):567~587
    Brimhall G.H., Lewis C.J., Ague J.J., et al. chemically mature aeolian dust. Nature.1988,333:30
    Campbell A.R., Robinson-Cook S. Infrared fluid inclusion microthermometry on coexistingwolframite and quartz. Economic Geology.1987,82(6):1640~1645
    Campbell McCuaig T., Kerrich R. P-T-t-deformation-fluid characteristics of lode gold deposits:evidence from alteration systematics. Ore Geology Reviews.1998,12(6):381~453
    Cline J.S. Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type golddeposit, north-central Nevada. Economic Geology.2001,96(1):75~89
    Condie K., Sinha A. Rare earth and other trace element mobility during mylonitization: acomparison of the Brevard and Hope Valley shear zones in the Appalachian Mountains, USA.Journal of Metamorphic Geology.1996,14(2):213~226
    Cook N.J. Mineralogy of the sulphide deposits at Sulitjelma, northern Norway. Ore GeologyReviews.1996,11(5):303~338
    Cook N.J., Chryssoulis S.L. Concentrations of invisible gold in the common sulfides. CanadianMineralogist.1990,28(1):1~16
    Deditius A.P., Utsunomiya S., Renock D., et al. A proposed new type of arsenian pyrite;composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta.2008,72(12):2919~2933
    Deng J., Yang L., Gao B., et al. Fluid evolution and metallogenic dynamics during tectonic regimetransition: example from the Jiapigou gold belt in Northeast China. Resource geology.2009,59(2):140~152
    Deng J., Wang Q., Yang S., et al. Genetic relationship between the Emeishan plume and thebauxite deposits in Western Guangxi, China: Constraints from U-Pb and Lu-Hf isotopes ofthe detrital zircons in bauxite ores. Journal of Asian Earth Sciences.2010,37(5~6):412~424
    Deng J., Wang Q., Xiao C., et al. Tectonic-magmatic-metallogenic system, Tongling ore clusterregion, Anhui Province, China. International Geology Review.2011,53(5~6):449~476
    Dong Y., Zhang G., Neubauer F., et al. Tectonic evolution of the Qinling orogen, China: Reviewand synthesis. Journal of Asian Earth Sciences.2011,41(3):213~237
    Emsbo P., Hofstra A.H., Lauha E.A., et al. Origin of high-grade gold ore, source of ore fluidcomponents, and genesis of the Meikle and neighboring Carlin-type deposits, NorthernCarlin Trend, Nevada. Economic Geology.2003,98(6):1069~1105
    Faure G. Principles of isotope geochemistry. New York: John Wiley and Sons,1986.217~234
    Fleet M.E., Mumin A.H. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from CarlinTrend gold deposits and laboratory synthesis. American Mineralogist.1997,82(1~2):182~193
    Fleet M.E., Chryssoulis S.L., MacLean P.J., et al. Arsenian pyrite from gold deposits: Au and Asdistribution investigated by SIMS and EMP, and color staining and surface oxidation by XPSand LIMS. Canadian Mineralogist.1993,31(1):1~17
    Fleet M.E., Chryssoulis S.L., MacLean P.J., et al. Arsenian pyrite from gold deposits; Au and Asdistribution investigated by SIMS and EMP, and color staining and surface oxidation by XPSand LIMS. The Canadian Mineralogist.1993,31(1):1~17
    Giesemann A., J ger H.J., Norman A., et al. Online sulfur-isotope determination using anelemental analyzer coupled to a mass spectrometer. Analytical Chemistry.1994,66(18):2816~2819
    Goldfarb R., Baker T., Dube B., et al., Distribution, character and genesis of gold deposits inmetamorphic terranes. In: Economic geology100th Anniversary volume. Littleton: Societyof Economic Geologists,2005,407~450
    Goldfarb R.J., Phillips G.N., Nokleberg W.J. Tectonic setting of synorogenic gold deposits of thePacific Rim. Ore Geology Reviews.1998,13(1~5):185~218
    Goldstein R.H., Reynolds T.J. Systematics of fluid inclusions in diagenetic minerals. Tulsa: SEPMshort course,1994,31
    Grant J.A. The isocon diagram; a simple solution to Gresens' equation for metasomatic alteration.Economic Geology.1986,81(8):1976~1982
    Gresens R.L. Composition-volume relationships of metasomatism. Chemical Geology.1967,2:47~65
    Groves D.I., Goldfarb R.J., Gebre-Mariam M., et al. Orogenic gold deposits: A proposedclassification in the context of their crustal distribution and relationship to other gold deposittypes. Ore Geology Reviews.1998,13(1~5):7~27
    Hawley J.E., Nichol I. Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores.Economic Geology.1961,56(3):467~487
    Hayashi K.I., Ohmoto H. Solubility of gold in NaCl-and H2S-bearing aqueous solutions at250-350°C. Geochimica et Cosmochimica Acta.1991,55(8):2111~2126
    Hemley J.J., Hunt J.P. Hydrothermal ore-forming processes in the light of studies in rock-bufferedsystems: I. Iron-copper-zinc-lead sulfide solubility relations. Economic Geology and theBulletin of the Society of Economic Geologists.1992,87(1):23~43
    Henley R. pH calculations for hydrothermal fluids. Reviews in Economic Geology.1984,1
    Holser W.T. Catastrophic chemical events in the history of the ocean. Nature.1977,267:403~408
    Huston D.L., Sie S.H., Suter G.F., et al. Trace elements in sulfide minerals from easternAustralian volcanic-hosted massive sulfide deposits: Part I, Proton microprobe analyses ofpyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison withdelta34S values and implications for the source of sulfur in volcanogenic hydrothermalsystems. Economic Geology.1995,90(5):1167~1196
    Jarvis K.E., Williams J.G. Laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS): a rapid technique for the direct, quantitative determination of major, trace andrare-earth elements in geological samples. Chemical Geology.1993,106(3-4):251~262
    Jenner F.E., Holden P., Mavrogenes J.A., et al. Determination of Selenium Concentrations inNIST SRM610,612,614and Geological Glass Reference Materials Using the ElectronProbe, LA-ICP-MS and SHRIMP II. Geostandards and Geoanalytical Research.2009,33(3):309~317
    Klammer D. Mass change during extreme acid-sulphate hydrothermal alteration of a Tertiary latite,Styria, Austria. Chemical Geology.1997,141(1):33~48
    Kretschmar U., Scott S.D. Phase relations involving arsenopyrite in the system Fe-As-S and theirapplication. Can Mineral.1976,14(3):364~386
    Large R., Thomas H., Craw D., et al. Diagenetic pyrite as a source for metals in orogenic golddeposits, Otago Schist, New Zealand. New Zealand Journal of Geology and Geophysics.2012,55(2):137~149
    Large R.R., Bull S.W., Maslennikov V.V. A Carbonaceous Sedimentary Source-Rock Model forCarlin-Type and Orogenic Gold Deposits. Economic Geology.2011,106(3):331~358
    Large R.R., Maslennikov V.V., Robert F., et al. Multistage Sedimentary and Metamorphic Originof Pyrite and Gold in the Giant Sukhoi Log Deposit, Lena Gold Province, Russia. EconomicGeology.2007,102(7):1233~1267
    Large R.R., Danyushevsky L., Hollit C., et al. Gold and Trace Element Zonation in Pyrite Using aLaser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-StyleSediment-Hosted Deposits. Economic Geology.2009,104(5):635~668
    Le Maitre R. The chemical variability of some common igneous rocks. Journal of Petrology.1976,17(4):589~598
    Loftus~Hills G., Solomon M. Cobalt, nickel and selenium in sulphides as indicators of ore genesis.Mineralium Deposita.1967,2(3):228~242
    Longerich H.P., Jackson S.E., Günther D. Inter-laboratory note. Laser ablation inductivelycoupled plasma mass spectrometric transient signal data acquisition and analyteconcentration calculation. Journal of Analytical Atomic Spectrometry.1996,11(9):899~904
    MacLean W., Kranidiotis P. Immobile elements as monitors of mass transfer in hydrothermalalteration; Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology.1987,82(4):951~962
    Mattauer M., Matte P., Malavieille J., et al. Tectonics of the Qinling belt: Build-up and evolutionof eastern Asia. Nature.1985,317(6037):496~500
    Meng Q.R., Zhang G.W. Timing of collision of the North and South China blocks: Controversyand reconciliation. Geology.1999,27(2):123
    Meng Q.R., Zhang G.W. Geologic framework and tectonic evolution of the Qinling orogen,central China. Tectonophysics.2000,323(3-4):183~196
    Mookherjee A., Philip R. Distribution of copper, cobalt and nickel in ores and host-rocks,Ingladhal, Karnataka, India. Mineralium Deposita.1979,14(1):33~55
    Murowchick J.B., Barnes H.L. Effects of temperature and degree of supersaturation on pyritemorphology. American Mineralogist.1987,72(11~12):1241~1250
    Nakai I., Yokoi H., Nagashima K. Crystal chemistry of the system As-Sb-S (I): Synthesis ofwakabayashilite and synthetic study on the solid solutions in the As2S3-Sb2S3system.Mineralogical Journal.1986,13(4):212~222
    Neiva A.M.R., Andrá P., Ramos J.M.F. Antimony quartz and antimony-gold quartz veins fromnorthern Portugal. Ore Geology Reviews.2008,34(4):533~546
    O'Hara K. Fluid flow and volume loss during mylonitization: an origin for phyllonite in anoverthrust setting, North Carolina USA. Tectonophysics.1988,156(1):21~36
    O'Hara K., Blackburn W.H. Volume-loss model for trace-element enrichments in mylonites.Geology.1989,17(6):524~527
    Ohmoto H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. EconomicGeology.1972,67(5):551~578
    Ohmoto H., Rye R.O. Isotopes of sulfur and carbon. In: Barnes H.L., eds. Geochemistry ofhydrothermal ore deposits. New York: John Wiley and Sons,1979,509~567
    Palenik C.S., Utsunomiya S., Reich M., et al."Invisible" gold revealed: Direct imaging of goldnanoparticles in a Carlin-type deposit. American Mineralogist.2004,89(10):1359~1366
    Pettke T., Diamond L.W. Oligocene gold quartz veins at Brusson, NW Alps: Sr isotopes trace thesource of ore-bearing fluid to over a10-km depth. Economic Geology and the Bulletin of theSociety of Economic Geologists.1997,92(4):389~406
    Pitcairn I.K., Olivo G.R., Teagle D.A.H., et al. Sulfide evolution during prograde metamorphismof the Otago and Alpine schists, New Zealand. Canadian Mineralogist.2010,48(5):1267~1295
    Pitcairn I.K., Teagle D.A.H., Craw D., et al. Sources of metals and fluids in orogenic gold deposits:Insights from the Otago and Alpine schists, New Zealand. Economic Geology.2006,101(8):1525~1546
    Price B.J. Minor elements in pyrites from the smithers map area, b.c. and exploration applicationsof minor element studies:[Doctoral thesis]. Vancouver: The University of British Columbia,1972,1~270
    Reich M., Kesler S.E., Utsunomiya S., et al. Solubility of gold in arsenian pyrite. Geochimica etCosmochimica Acta.2005,69(11):2781~2796
    Roedder E., Bodnar R. Fluid inclusion studies of hydrothermal ore deposits. Geochemistry ofhydrothermal ore deposits.1997,3:657~697
    Rose A., BURT DM. Hydrothermal Alteration. In: Barnes H., Eds. Geochemisty of hydrothermalore deposits. New York: John Wiley and Sons,1979,173~235
    Sharp Z.D., Essene E.J., Kelly W.C. A re-examination of the arsenopyrite geothermometer;pressure considerations and applications to natural assemblages. Can Mineral.1985,23(4):517~534
    Simon G., Huang H., Penner-Hahn J.E., et al. Oxidation state of gold and arsenic in gold-bearingarsenian pyrite. American Mineralogist.1999,84(7~8):1071~1079
    Simonen A. Stratigraphy and sedimentation of the Svecofennidic, early Archean supracrustalrocks in southwestern Finland. Government Press,1953
    Taylor S.R. and McLennan S.M. The continental crust: its composition and evolution. Palo Alto:Blackwell Scientific Publications,1985
    Thomas H.V., Large R.R., Bull S.W., et al. Pyrite and Pyrrhotite Textures and Composition inSediments, Laminated Quartz Veins, and Reefs at Bendigo Gold Mine, Australia: Insights forOre Genesis. Economic Geology.2011,106(1):1~31
    Wagner F., Marion P., Regnard J. M ssbauer study of the chemical state of gold in gold ores.Gold100. In: Proceedings of the International Conference on Gold,1986
    Wilkinson J. Fluid inclusions in hydrothermal ore deposits. Lithos.2001,55(1-4):229~272
    Wilkinson J.J., Eyre S.L., Boyce A.J. Ore-forming processes in Irish-type carbonate-hosted Zn-Pbdeposits: Evidence from mineralogy, chemistry, and isotopic composition of sulfides at theLisheen mine. Economic Geology.2005,100(1):63~86
    Yang L., Deng J., Zhang J., et al. Preliminary studies of fluid inclusions in Damoqujia golddeposit along Zhaoping Fault zone, Shandong province, China. Acta Petrol. Sin.2007,23:153~160
    Zhang G., Meng Q., Yu Z., et al. Orogenesis and dynamics of the Qinling orogen. Science inChina (Ser.D).1996,39(3):225~234
    Zhang G., Dong Y., Lai S., et al. Mianlue tectonic zone and Mianlue suture zone on southernmargin of Qinling-Dabie orogenic belt. Science in China (D).2004,47(4):300~316
    Zhao H., Frimmel H.E., Jiang S., et al. LA-ICP-MS trace element analysis of pyrite from theXiaoqinling gold district, China: Implications for ore genesis. Ore Geology Reviews.2011,43(1):142~153
    Zheng Y. and Hoefs J. Stable isotope geochemistry of hydrothermal mineralizations in the Harzmountains: II. Sulfur and oxygen isotopes of sulfides and sulfate and constraints onmetallogenetic models. Monograph Series on Mineral Deposits.1993,30:211~229
    安芳,朱永峰.热液金矿成矿作用地球化学研究综述.矿床地质.2011,30(5):799~814
    柏天宝.小寺沟钼铜矿床的成矿作用地球化学研究(摘要).地质地球化学.1988(10):98~101
    蔡元吉,周茂.金矿床黄铁矿晶形标型特征实验研究.中国科学(B辑化学生命科学地学).1993(09):972~978
    陈德兴.成矿作用地球化学研究.地质科技情报.1985(04):149~155
    陈光远,孙岱生,张立,等.黄铁矿成因形态学.现代地质.1987(01):60~76
    陈虹,胡健民,武国利,等.西秦岭勉略带陆内构造变形研究.岩石学报.2010,2(64):1277~1288
    陈书铬,余国贞,肖新元.陕西南部主要成矿带控矿条件初步分析(续).陕西地质.1987(02):51~58
    陈衍景,张静,张复新,等.西秦岭地区卡林-类卡林型金矿床及其成矿时间,构造背景和模式.地质论评.2004,50(02):134~152
    陈勇敢,刘桂阁,王美娟,等.甘肃阳山金矿区遥感地质特征及成矿预测.黄金科学技术.2009(01):1~5
    程斌,张复新,贺国芬.甘肃文县地区阳山超大微细浸染型金矿床的成因与类型.地质通报.2006(11):1354~1360
    程伟基,支霞臣.热液系统的物理化学性质和硫同位素演化——lgfo342-pH-δSi图解的原理、用途与使用方法.地质与勘探.1983(09):21~29
    池国祥,卢焕章.流体包裹体组合对测温数据有效性的制约及数据表达方法.岩石学报.2008,24(9):1945~1953
    邓海琳,涂光炽,李朝阳,等.地球化学开放系统的质量平衡:1.理论.矿物学报.1999,19(2):121~131
    邓军,方云.剪切带构造-流体-成矿系统动力学模拟.地学前缘.1999,6(1):115~127
    邓军,方云,杨立强,等.剪切蚀变与物质迁移及金的富集——以胶东矿集区为例.地球科学.2000,25(4):428~432
    邓军,孙忠实,杨立强,等.成矿流体运动系统与金质来源和富集机制讨论.地质科技情报.2000(01):41~45
    邓军,杨立强,葛良胜,等.滇西富碱斑岩型金成矿系统特征与变化保存.岩石学报.2010(06):1633~1645
    邓军,杨立强,王长明.三江特提斯复合造山与成矿作用研究进展.岩石学报.2011(09):2501~2509
    邓军,杨立强,翟裕生,等.构造-流体-成矿系统及其动力学的理论格架与方法体系.地球科学.2000(01):71~78
    丁振举,刘丛强.碧口群古热水系统发育的富铁硅岩.自然科学进展.2000
    丁振举,刘从强,姚书振.碧口群铜矿床的成矿时限及其意义.大地构造与成矿学.1999,23(4):368~372
    董广法,王国富,刘继顺.勉略宁地区东沟坝组火山岩的成因浅析.大地构造与成矿学.1998,22(2):163~169
    董瀚.南秦岭三河口地区三河口群的解体和时代厘定.地层学杂志.2004(01):59~63
    杜乐天.地壳流体与地幔流体间的关系.地学前缘.1996,3(4):172~180
    杜远生.秦岭造山带泥盆纪古海洋研究.地球科学.1995(06):617~623
    杜子图,吴淦国.西秦岭地区构造体系及金成矿构造动力学.北京:地质出版社,1998
    范永香,刘伟,曾键年,等.甘肃文县阳山超大型金矿床成矿地质特征及找矿方向.见:第二届全国成矿理论与找矿方法学术研讨会.广州:2004
    冯建忠,汪东波,王学明.西秦岭泥盆系Au背景值的确定、元素地球化学特征及地质意义.中国地质.2005(01):100~106
    甘肃省地质局区调队,1970.文县幅1:20万区域地质调查报告,86
    甘肃省地质局区调队,1989.碧口幅1:20万区域地质调查报告,80
    高斌,马东升.围岩蚀变过程中地球化学组分质量迁移计算:以湖南沃溪金锑钨矿床为例.地质学报.1999,73(3):272~277
    郭俊华,毛世东,陈衍景,等.甘肃文县阳山金矿田地质特征及控矿地质因素分析.大地构造与成矿学.2009(02):243~252
    郭俊华,齐金忠,孙彬,等.甘肃阳山特大型金矿床地质特征及成因.黄金地质.2002(02):15~19
    韩吟文,马振东,张宏飞,等.地球化学.北京:地质出版社,2003
    何江,马东升,刘英俊.湘西低温Au、Sb、Hg矿床成矿作用地球化学研究.南京大学学报(自然科学版).1995(04):678~684
    何江,马东升,刘英俊.江南古陆边缘渣滓溪锑矿带成矿作用地球化学研究.矿床地质.1996(01):41~52
    何学贤,朱祥坤,杨淳,等.多接收器等离子体质谱(MC-ICP-MS) Pb同位素高精度研究.地球学报.2005,26(S1):19~22
    侯明兰,蒋少涌,姜耀辉,等.胶东蓬莱金成矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究.岩石学报.2006,22(10):2525r2533
    胡文宣,张文兰,胡受奚,等.含金毒砂中晶格金的确定及其形成机理研究.地质学报.2001(03):410~418
    匡耀求,张本仁,欧阳建平.扬子克拉通北西缘碧口群的解体与地层划分.地球科学.1999(03):36~40+71
    雷时斌,甘肃阳山金矿带构造-岩浆成矿作用及勘查找矿方向:[博士学位论文].北京:中国地质大学(北京),2011
    雷时斌,齐金忠.甘肃阳山金矿带地球动力学体制与多因耦合成矿作用.地质与勘探.2007(02):33~39
    雷时斌,齐金忠,朝银银.甘肃阳山金矿带中酸性岩脉成岩年龄与成矿时代.矿床地质.2010(05):869~880
    李春昱,王荃,刘雪亚.中国的内生成矿与板块构造.地质学报.1981,55(3):195~204
    李建忠,刘洪波,张亿其,等.甘肃省文县阳山金矿带控矿构造特征及找矿方向.四川地质学报.2008(01):13~17
    李晶,陈衍景,李强之,等.甘肃阳山金矿流体包裹体地球化学和矿床成因类型.岩石学报.2007,23(09):2144~2154
    李晶,陈衍景,李强之,等.甘肃阳山金矿碳氢氧同位素与成矿流体来源.岩石学报.2008(04):817~826
    李楠,杨立强,张闯,等.西秦岭阳山金矿带硫同位素特征:成矿环境与物质来源约束.岩石学报.2012(05):1577~1587
    李永飞,赖绍聪,秦江锋,等.碧口火山岩系地球化学特征及Sr-Nd-Pb同位素组成——晋宁期扬子北缘裂解的证据.中国科学(D辑):地球科学.2007,37
    李志昌,路远发,黄圭成.放射性同位素地质学方法与进展.2004:中国地质大学出版社
    李志宏,杨印,彭省临,等.甘肃阳山超大型热液金矿床的成矿特征.大地构造与成矿学.2007(01):63~76
    凌洪飞,徐士进,沈渭洲,等.格宗、东谷岩体Nd、Sr、Pb、O同位素特征及其与扬子板块边缘其它晋宁期花岗岩对比.岩石学报.1998(03):2~10
    刘德良,杨晓勇.郯庐断裂带南段桴槎山韧性剪切带糜棱岩的变形条件和组分迁移系.岩石学报.1996,12(4):573~588
    刘桂阁,陈勇敢,张玉杰.松潘-摩天岭成矿带金矿资源潜力评价及找矿方向研究.廊坊:武警黄金地质研究所,2006
    刘国惠,张寿广,游振东,等.秦岭造山带主要变质岩群及变质演化.北京:地质出版社,1993.
    刘红杰,陈衍景,毛世东,等.西秦岭阳山金矿带花岗斑岩元素及Sr-Nd-Pb同位素地球化学.岩石学报.2008(05):1101~1111
    刘景波,游振东.秦岭群中条带状混合岩质量等比线分析.岩石学报.1997,13(3):427~438
    刘铁庚,叶霖.碧口群形成的地质构造环境探讨.矿物学报.1999,19(4):446~451
    刘伟,范永香,齐金忠,等.甘肃省文县阳山金矿床流体包裹体的地球化学特征.现代地质.2003(04):444~452
    刘伟,马瑛,范永香.甘肃文县阳山金矿床成矿流体特征.资源环境与工程.2007(02):87~94
    刘英俊,马东升,季峻峰.论江南型金矿床的成矿作用地球化学.桂林冶金地质学院学报.1991(02):130~138
    刘英俊,马东升,牛贺才.湖南益阳-沅陵一带金矿床的成矿作用地球化学.地球化学.1994(01):1~12
    卢焕章,范宏瑞,倪培.流体包裹体.北京:科学出版社,2004
    陆建军.河台韧性剪切带型金矿床成矿作用地球化学研究.南京大学学报(自然科学版).1993(02):293~302
    路远发. GeoKit:一个用VBA构建的地球化学工具软件包.地球化学.2004(05):459~464
    罗锡明,齐金忠,袁士松,等.甘肃阳山金矿床微量元素及稳定同位素的地球化学研究.现代地质.2004(02):203~209
    毛世东,甘肃阳山超大型金矿地质地球化学:[博士学位论文].广州:中国科学院广州地球化学研究所,2011
    毛世东,杨荣生,秦艳,等.甘肃阳山金矿田载金矿物特征及金赋存状态研究.岩石学报.2009(11):2776~2790
    牛贺才,湖南益阳-沅陵一带金矿床形成背景及成矿作用地球化学:[博士学位论文].南京:南京大学,1991
    潘家永,马东升.湘中大规模低温成矿作用地球化学研究.见:全国包裹体及地质流体学术研讨会.南京:2002
    裴先治.南秦岭碧口群岩石组合特征及其构造意义.长安大学学报(地球科学版).1989(02):46~56
    裴先治,张国伟,赖绍聪,等.西秦岭南缘勉略构造带主要地质特征.地质通报.2002(Z2):486~494
    彭建堂,胡瑞忠,邓海琳,等.湘中锡矿山锑矿床的Sr同位素地球化学.地球化学.2001(03):248~256
    齐金忠,李莉,杨贵才.甘肃省阳山金矿床成因及成矿模式.矿床地质.2008(01):81~87
    齐金忠,李莉,袁士松,等.甘肃省阳山金矿床石英脉中锆石SHRIMP U-Pb年代学研究.矿床地质.2005(02):141~150
    齐金忠,杨贵才,李莉,等.甘肃省阳山金矿床稳定同位素地球化学和成矿年代学及矿床成因.中国地质.2006(06):1345~1353
    齐金忠,杨贵才,李志宏,等.阳山金矿带构造-岩浆演化序列及构造控矿规律研究.2006
    齐金忠,袁士松,李莉,等.甘肃省文县阳山特大型金矿床地质特征及控矿因素分析.地质论评.2003(01):85~92
    齐金忠,赵小坡,陈样.甘肃省文县阳山金矿带成矿规律与找矿方向研究.见:中国西部地区金矿地质学术讨论会.北京:冶金工业出版社,2001
    秦克令,金浩甲.碧口古岛弧带构造演化与成矿.河南地质.1994,12(4):304~317
    秦艳,周振菊.甘肃省阳山超大型金矿床的有机地球化学特征研究.岩石学报.2009(11):2801~2810
    邱家骧.岩浆岩岩石学.北京:地质出版社,1985
    申安斌.陕西省莫霍面特征.陕西地质.1997,15(2):58~63
    苏文超,胡瑞忠,彭建堂,等.滇黔桂地区卡林型金矿床成矿物质来源的锶同位素证据.矿物岩石地球化学通报.2000(04):256~259
    孙树浩.川北-甘南地区类卡林型金矿床的地质-地球化学特征.地质找矿论丛.2005,20(1):7
    孙祥,杨子荣,王永春,等.辽西义县萤石矿床Sr同位素组成及成因.地质科技情报.2009(01):82~86
    唐红峰,刘丛强.区域变质作用中岩石的质量迁移和元素活动:以庐山双桥山群变泥质岩系为例.地质论评.2000,46(3):245~254
    陶维屏.中国非金属矿床成矿系列:矿床,含矿建造,成矿系列,形成模式.北京:地质出版社,1994
    田世洪,杨竹森,侯增谦,等.青海玉树东莫扎抓铅锌矿床S、Pb、Sr-Nd同位素组成:对成矿物质来源的指示.岩石学报.2011,27(7):2173~2183
    王尚文.中国石油地质.北京:石油工业出版社,1983
    王湘,吴泽源.陕西南部勉略宁地区地质背景及成矿特点探讨.西北金属矿产地质.1988((2)):1~9
    王学明,邵世才,汪东波,等.甘肃文康地区金矿地质特征与找矿标志.有色金属矿产与勘查.1999(04):29~30+32~35
    魏春景.陕甘川交界区碧口群的绿帘石及其岩石学意义.岩石矿物学杂志.1993,12(4):332~340
    魏俊浩,刘丛强,丁振举.热液型金矿床围岩蚀变过程中元素迁移规律——以张家口地区东坪,后沟,水晶屯金矿为例.矿物学报.2000,20(2):200~206
    文成敏.甘肃省阳山金矿带金矿成矿特征及矿床成因研究.四川地质学报.2006(04):223~227
    吴春俊,王金荣,喻光明,等.甘肃省阳山金矿田金的赋存状态和金矿物特征.矿产与地质.2008(04):353~356
    吴开兴,胡瑞忠,毕献武,等.矿石铅同位素示踪成矿物质来源综述.地质地球化学.2002(03):73~81
    夏林圻.勉-略地区细碧-角斑岩系成因及其母岩浆深部分异机制的初步探讨.地质学报.1976,50(1):24~37
    夏林圻,夏祖春,徐学义,李向民,马中平.碧口群火山岩岩石成因研究.地学前缘.2007,14(03):84~101
    肖新建.东胜地区砂岩铀矿低温流体成矿作用地球化学研究:[博士学位论文].北京:核工业北京地质研究院,2004
    徐学义,夏祖春,夏林圻.碧口群火山旋回及其地质构造意义.地质通报.2002,21(8):478~485
    闫全人,D.Hanson A.,王宗起,等.扬子板块北缘碧口群火山岩的地球化学特征及其构造环境.岩石矿物学杂志.2004(01):1~11
    阎凤增,齐金忠,郭俊华.甘肃省阳山金矿地质与勘查.北京:地质出版社,2010
    杨贵才,齐金忠.甘肃省文县阳山金矿床地质特征及成矿物质来源.黄金科学技术.200(804):20~24
    杨贵才,齐金忠,董华芳,等.甘肃省文县阳山金矿床地质及同位素特征.地质与勘探.2007(03):37~41
    杨立强,邓军,赵凯,等.哀牢山造山带金矿成矿时序及其动力学背景探讨.岩石学报.2011(09):2519~2532
    杨立强,邓军,赵凯,等.滇西大坪金矿床地质特征及成因初探.岩石学报.2011,27(12):3800~3810
    杨立强,刘江涛,张闯,等.哀牢山造山型金成矿系统:复合造山构造演化与成矿作用初探.岩石学报.2010(06):1723~1739
    杨荣生,甘肃阳山金矿地质地球化学特征及成因研究:[博士学位论文].北京:北京大学,2006
    杨荣生,陈衍景,谢景林.甘肃阳山金矿床含砷黄铁矿及毒砂的XPS研究.岩石学报.2009(11):2791~2800
    喻光明,郭华.川陕甘地区卡林型金矿对比研究.四川地质学报.2010(02):163~169
    喻光明,刘洪波,郭俊华,等.甘肃阳山金矿床深部盲矿定位预测的构造叠加晕理想模型.黄金.2009(10):8~12
    袁士松,齐金忠,葛良胜,等.甘肃文县阳山特大型金矿田微量元素特征及其找矿意义.西北地质.2006(03):20~27
    袁士松,张继武,齐金忠,等.甘肃阳山金矿构造控矿模式.黄金地质.2004(04):23~27
    张本仁.秦岭造山带地球化学.北京:科学出版社,2002
    张存旺,甘肃省文县阳山超大型金矿床地质与地球化学特征及其矿床成因:[硕士学位论文].西安:西北大学,2007
    张德会.成矿流体中金的沉淀机理研究述评.矿物岩石.1997(04):123~131
    张德会.关于成矿作用地球化学研究的几个问题.地质通报.2005(Z1):11~17
    张二朋.秦巴及邻区地质-构造特征概论.北京:地质出版社,1993
    张复新,侯俊富,张存旺,等.甘肃阳山超大型卡林-类卡林型复合式金矿床特征.中国地质.2007(06):1062~1072
    张国伟,董云鹏,姚安平.秦岭造山带基本组成与结构及其构造演化.陕西地质.1997(02):1~14
    张国伟,孟庆任,赖绍聪.秦岭造山带的结构构造.中国科学(B辑).1995(09):994~1003
    张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征.中国科学(D辑:地球科学).1996(03):193~200
    张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001
    张国伟,董云鹏,赖绍聪,等.秦岭-大别造山带南缘勉略构造带与勉略缝合带.中国科学(D辑:地球科学).2003(12):1121~1135
    张静,杨艳,胡海珠,等.河南银洞沟造山型银矿床碳硫铅同位素地球化学.岩石学报.2009(11):2833~2842
    张莉,杨荣生,毛世东,等.阳山金矿床锶铅同位素组成特征与成矿物质来源.岩石学报.2009(11):2811~2822
    张乾,潘家永,邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释.地球化学.2000(03):231~238
    张文淮,张志坚,伍刚.成矿流体及成矿机制.地学前缘.1996(04):86~93
    赵成海.甘肃阳山超大型金矿成因研究评述.矿物岩石地球化学通报.2009(03):286~293
    赵海香,河南小秦岭金矿成矿作用地球化学研究:[博士学位论文].南京:南京大学,2011
    赵祥生,马少龙,邹湘华,等.秦巴地区碧口群时代层序,火山作用及含矿性研究.西北地质科学.1990,29:1~117
    赵元艺,马志红,仲崇学.多宝山铜矿床成矿作用地球化学研究.西安工程学院学报.1997(01):28~35
    郑明华,顾雪祥,周渝峰.四川东北寨微细浸染型金矿床成矿物理化学条件和成矿过程分析.矿床地质.1990(02):129~140
    郑永飞.稳定同位素体系理论模式及其矿床地球化学应用.矿床地质.2001(01):57~70+85
    郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000
    钟增球,游振东.剪切带的成分变异及体积亏损——以河台剪切带为例.科学通报.1995,40(10):913~916
    周乐尧.甘肃省西成铅锌矿田矿源层的确定及其Pb-Zn活化机理研究.地球科学.1991,16(2):199~206
    朱和平,王莉娟,刘建明.不同成矿阶段流体包裹体气相成分的四极质谱测定.岩石学报.2003,19(2):314~318
    朱永峰,安芳.热液成矿作用地球化学:以金矿为例.地学前缘.2010,17(2):45~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700