用户名: 密码: 验证码:
西藏甲玛铜多金属矿床成矿模式与找矿模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏冈底斯成矿带是目前青藏高原勘查与研究程度最高、发现矿床及设立整装勘查区最多、查明矿产资源储量最大的构造-岩浆岩带。甲玛铜多金属矿是冈底斯成矿带中东段第一个勘查程度最高、拥有多种成矿元素与矿体类型、已正式投入生产并为藏区带来了经济效益的超大型斑岩-矽卡岩型矿床。通过对矿床控矿条件、成矿模式、找矿模型、找矿标志等方面的研究达到为矿区外围及区域找矿指明方向之目的,本文在长达6年的野外地质调查和全面梳理前人工作基础上,采用了现代矿床学研究方法,结合了多学科知识,应用了先进的测试方法和技术,得到了以下认识:
     1、矿区地层主要包括林布宗组(K1l)砂板岩、角岩与多底沟组(J3d)灰岩、大理岩。林布宗组除了为上部石榴子石矽卡岩和角岩矿石的形成提供了部分成矿物质和容矿空间外,还为矽卡岩铜多金属矿体的形成提供了重要的岩性圈闭条件;多底沟组为矽卡岩的形成提供了必须的钙质来源。矿区岩浆岩主要有五类,以高钾钙碱性岩为主,形成于后碰撞造山环境;岩浆混合作用明显,基性单元主要为辉长质岩浆;岩浆岩侵位次序大致为:石英闪长玢岩→花岗斑岩→二长花岗斑岩→花岗闪长斑岩,其中石英闪长玢岩与铜矿化有关,而二长花岗斑岩与钼矿化关系密切;UST结构、石英斑晶的溶蚀现象以及熔融-流体混合包裹体的发现均为岩浆-热液的过渡提供了证据。推覆构造控制着矽卡岩主矿体的产出,滑覆构造控制了矿区东部矽卡岩小矿体的产出。
     2、对矿床地质特征进行了详细的研究,包括:①提出甲玛矿床主要是由产于上覆林布宗组角岩中铜钼矿体、产于中部层间构造带与斑岩接触带矽卡岩中的铜多金属矿体、产于深部隐伏斑岩中钼(铜)矿体与产于外围构造破碎带中的独立金矿体构成的“四位一体”式斑岩-矽卡岩矿床;②矽卡岩矿石以稠密浸染状、团块状、脉状构造产出为主,角岩与斑岩矿石中主要的构造为浸染-细脉状,矿石结构均以交代作用和固溶体分离作用形成为主;③主要的矿石矿物包括黄铜矿、斑铜矿、辉钼矿、辉铜矿、黝铜矿、方铅矿、闪锌矿、自然金等,脉石矿物以矽卡岩矿物(包含石榴子石、辉石、硅灰石等)和石英为主,含少量硬石膏、方解石、萤石等;④完善了矽卡岩中金属矿物与成矿元素的分带模式:由岩体中心向外到中部至矽卡岩前缘与大理岩接触带,矽卡岩中矿石矿物组合对应的成矿元素分带为Mo+Cu±Au±Ag→Cu±Mo±Au±Ag→Pb+Zn+Cu±Au±Ag±Mo→Au±Ag±Cu;⑤建立了矽卡岩矿物组合及其成分的分带模型:整体上,硅灰石矽卡岩相对于石榴子石矽卡岩与辉石矽卡岩较独立,主要分布在近岩体接触带及中部带垂向上的中下部至大理岩接触部位;而石榴子石、辉石矽卡岩由近岩体接触带→中部带→远部带的矽卡岩前缘,石榴子石/辉石比值从大于10:1→约5:1→约2:1;石榴子石颜色及成分由红-棕色钙铁榴石(Ad>80)→棕-黄色钙铁石榴子石(Ad50-80)→墨绿色-淡黄色钙铝榴石(Gr>50);⑥划分了甲玛斑岩矿床的蚀变分带,岩株(枝)中以钾、硅化为主,岩体上方角岩中出现中心泥化带向外围过渡为绢英岩化带至外围青磐岩化带的圈层分布特征;⑦总结了三个矿化期次,其中气水-热液矿化期又包括早期矽卡岩-硅酸盐阶段、晚期退化蚀变阶段、石英-铜硫化物阶段、石英-铜钼硫化物阶段、石英-铜铅锌硫化物阶段以及石英-金成矿阶段。
     3、对本次划分出的四种矿体类型都进行了详细的地球化学研究。一方面针对矽卡岩形成及矿化过程中出现的矽卡岩化大理岩、石榴子石为主的无矿矽卡岩、硅灰石为主的无矿矽卡岩、石榴子石为主的含矿矽卡岩与硅灰石为主的含矿矽卡岩分别进行了常量元素、微量元素及稀土元素特征研究,整体分析了蚀变过程与矿化过程中的元素地球化学行为,为矽卡岩成矿作用过程及矿床成因的研究提供了依据;另一方面对ZK4504孔含金石英闪长玢岩与矿区其他钻孔中不含金石英闪长玢岩进行了地球化学特征对比研究,提出晚期热液金矿化主要形成于斑岩系统外围构造破碎带中,受温度、压力控制,而与围岩性质关系不密切。
     4、矿床中主要金属硫化物与硫酸盐中硫同位素组成具有高度均一性,中值处于零附近,显示了硫的岩浆来源特征;矿石铅同位素组成中~(206)Pb/~(204)Pb一般为18‰~19‰,~(207)Pb/~(204)Pb为15.4‰~15.8‰,~(208)Pb/~(204)Pb为38.4‰~39‰,与矿区斑岩全岩铅同位素组成特征一致,铅同位素表现出造山带以及与岩浆作用有关的壳幔混合铅来源特点,介于雅鲁藏布江蛇绿岩和喜马拉雅片麻岩和花岗岩的铅同位素组成之间,与拉萨地体岩浆岩的铅同位素组成一致;对比了不同成因矿床中矿石硅同位素的组成特征,证实甲玛矽卡岩的硅同位素组成与矿区岩浆岩完全一致,而与典型喷流矿床中喷流岩相差较远;氢、氧同位素的研究证实了甲玛成矿系统中流体起源于岩浆热液,晚期有大气降水的参与,结合不同成矿阶段流体包裹体盐度-温度的变化特征,提出了甲玛成矿流体的演化模式。
     5、进行了矿床年代学的研究,测得甲玛矿床成岩成矿年龄分别为16Ma±和15Ma±,这一重要地质事实否定了晚侏罗世至早白垩喷流沉积成矿的矿床成因观点,支持了斑岩-矽卡岩成矿的认识。
     6、在对矿床进行全面地质、地球化学特征研究的基础上,将甲玛矿床与国内外典型斑岩-矽卡岩矿床进行了类比研究,分析了彼此之间的异同点。据此,本文认为岩浆活动为成矿提供了成矿物质来源,构造提供了矿体的定位空间,岩性为矿体形成提供了良好的圈闭,岩浆-构造-岩性圈闭的耦合作用,形成了甲玛超大型矿床。并提出了矿床成矿流体侧向逃逸、垂向逃逸的成矿动力学机制,从而为在不同空间位置寻找不同类型矿体指明了方向,建立了矿床成矿模式;在此基础上,综合勘查地球物理、勘查地球化学等信息,建立了较新颖的斑岩铜矿元素分带找矿模型与传统的地质-地球物理-地球化学找矿模型,并结合矿区外围的找矿实践,初步证实了找矿模型的实用性。
     7、总之,基于甲玛矿床“四位一体”的找矿勘查模式,通过长达4年多近350个钻孔的验证,不仅实现了矽卡岩矿体的找矿突破,同时在0线~40线上部发现了产于角岩中的铜钼矿体,在深部还发现了产于二长花岗斑岩与石英闪长玢岩中的斑岩钼(铜)矿体。已经控制和探明矿床铜资源量超过600万吨,钼资源量超过60万吨,铅锌资源量超过50万吨,伴生金超过140吨,伴生银超过8000吨,当量铜资源量达1500万吨以上。甲玛铜多金属矿成为西藏第一大斑岩-矽卡岩型矿床,取得了重大找矿突破。
At present, Gangdese metallogenic belt is the largest tectonic-magmatite belts which makesthe highest level of prospecting and studying, discovering ore deposits, setting up the mostexploration zone and proving through investigation mineral resources reserves. Jiama copperpolymetallic ore deposit is the highest level of prospecting, possessing a variety of ore-formingelements and ore body types of porphyry-skarn deposit in middle east of Gangdese metallogenicbelt, which has investment in producing and taking economic benefit for Tibetan. Throughstudying on ore-controlling conditions, metallogenic model、prospecting model and explorationmarkers etc, all of them are to get a clearly prospecting direction in ore field and outside. Duringsix years based on geological field work and clearing up previous work, we adopting moderndeposit research method, combining with multidisciplinary knowledge, applying advanced testmethod and technology. At last, we obtaining some understandings as below:
     1. Ore field mainly comprise of Linbuzong formation sandy slate, hornfels and Duodigouformation limestone, marble. Linbuzong formation offer metallogenic materials and hoststructures for upper garnet skarn and hornfels, expect that it also offer lithology entrapmentconditions for copper polymetallic ore deposit; Duodigou formation took calcium for skarnforming. There are five types of magma in the ore field, and they are mainly high-K calc-alkaline,forming from post-collision orogenesis condition; magma migmatization is obvious, the base unitsmainly are gabbroic magma; the sequence of magma invasion is: quartz diorite porphyrite→granite porphyry→monzonite granite porphyry→granodiorite-porphyry, and Cu mineralizationhas close relation with quartz diorite porphyrite, while Mo mineralization has close relation withmonzonite granite-porphyry; UST structure, erosion of quartz phenocryst and melting-fluidmixing inclusion all offer evidence for magma-hydrothermal transition. Nappe structure controlthe occurrence of mother-lode and sliding structures control the squats occurrence in eastern orefield.
     2. Making a detailed study on geology of deposits, includes:①Putting forward Jiamadeposit is a “quaternity “type porphyry-skarn deposits which is mainly comprise of molybdenumore body bearing in upper Linzongbu formation, Cu polymetal ore body bearing in medi-interlayertectonic zone and porphyry contact zones, Cu-Mo ore body bearing in bathy-hidden porphyry andAu ore body bearing outside of structure fracture zone;②The skarn ore yield by dense disseminated structure, cloddy, vein structure, hornfels and porphyry ore structure mainly isdisseminated-stringer, and they forming because of metasomatism and solid solution segregation;③The mainly ore mineral are chalcopyrite, bornite, molybdenite, cyprite, tetrahedrite, galena,sphalerite and native gold etc. gangue mineral mainly are skarns mineral(Garnet, pyroxene,Wollastonite) and quartz, including a bit of anhydrite, calcite, fluorite etc;④Improvingore-forming elements banding pattern in skarn: From the centre to middle of rock mass till topre-margin of skarn and marble contact zones. Mineral assemblage in skarn homologousore-forming elements zonation is Mo+Cu±Au±Ag→Cu±Mo±Au±Ag→Pb+Zn+Cu±Au±Ag±Mo→Au±Ag±Cu;⑤setting up zoning model of mineral assemblage and composition in skarn; as awhole, wollastonite skarn is rather independent relative to pyroxene skarn, it is mainly located inrock mass contact zones and middle-lower to marble contact zones on the vertical of centralsection. While garnet and pyroxene skarn located in rock mass contact zones→middle→remotezones front margin of skarn, Garnet/pyroxene>10:1→about5:1→about2:1; Colour andcomposition of garnet is red-brown andradite(Ad>80)→brown-yellow andradite(Ad50-80)→atrovirens-light yellow grossularite(Gr>50);⑥Dividing the alteration zoning of Jiamadeposit, rock plant includes elements mainly are K and Si. Above the hornfels appear argillizationzones-beresitization zones-propylitization zones that are located in nugget region, the transitionregion and the periphery;⑦Summing up three minerogenetic stages, among of them Gaswater-hydrothermal mineralization stage includes early stage skarn-silicate stage, late degradationaltered stage, quartz-copper sulfide stage, quartz-copper molybdenum sulfide stage, quartz-copperlead and zinc sulfide stage and quartz-gold-forming stages.
     3. A detailed geochemical study on the four ore body type which are classified at this time.On the one hand, a study was made on the formation of skarn and marble skarn duringmineralization process, garnet-based barren skarn, wollastonite-based non-ore skarnization,garnet-based ore skarn and mainly wollastonite-based skarn ore silicon in terms of major and traceelements and REE characteristics. An overall analysis of the geochemical behavior of elementsduring the alteration and mineralization process has been concluded to supporting the research onthe skarm mineralization process and reasons; on the other hand, the comparative study of thegeochemical characteristics has been made on the ZK4504other drillings which containing quartzdiorite porphyry and non-containing quartz diorite in the mining area. It is pointed out that the latehydrothermal gold mineralization was caused by external structure of the porphyry system,impacted by temperature and pressure control, but not closely related to the surrounding rock.
     4. The characteristics of sulfur magma source has been showed that sulfide in the major metalin the deposits and sulfur in the sulfate with a high degree of homogeneity, the value is near zero;isotopic composition of206Pb/204Pb, generally is18‰~19‰;~(207)Pb/~(204)Pb is15.8‰to15.4‰;~(208)Pb/~(204)Pb is38.4‰to39‰, same as porphyry rock lead isotope compositions in the miningarea. The isotope composition of lead has the characteristic that is the orogenic belt andcrust-mantle mixing relating to magmatism. isotope show orogenic belt and magmatic activity andthe shell curtain mixed lead source characteristics the Pb isotopic composition between theYarlung Zangbo ophiolites and Himalayan gneiss and granite, and as same as the lead isotopecomposition in the magmatic rocks from Lhasa block; comparing the characteristics of ore siliconisotope composition from the different deposits formed differently, it is confirmed that the siliconisotope composition of Jiama skarn is as exactly same as mine magmatic, but is far away from thetypical spray jet rocks. hydrogen and oxygen isotope study confirmed that the fluids originated from magmatic-hydrothermal ore-forming system in the Jiama, with the participation ofatmospheric precipitation in its late period, with inclusions in salinity-temperature variationJiama the evolution of the ore-forming fluid model with different mineralization stages of fluid.
     5. The study on the deposit chronology, it is concluded that the mineralization age of Jiamadeposit is±16Ma and15Ma±. This important geological fact negates view of the genesis ofsedimentary mineralization in the late Jurassic to early Cretaceous jet, and supports theunderstanding of the porphyry-skarn mineralization.
     6. On the basis of the research of the deposit geology and the geochemical characteristics,this paper has made a analogy research between Jiama deposits at laboratory and comparing withtypical porphyry-skarn deposits abroad, to analyze their similarities and differences. Accordingly,it is believed that the magmatism offer metallogenic material for mineralization, structure offerpositioning space for ore body, and the lithology provides a good trap for the formation of the orebody. The coupling effect of the magma-Construction-lithologic traps formed a very largedeposit of Jiama, besides, it made a deposit ore-forming fluid lateral escape and metallogenicdynamics vertical escape mechanism, so as to point out the direction to find different types of orebodies at different spatial location and to establish a metallogenic model; On this basis, combiningwith the integrated exploration geophysical, geochemical exploration, and other information, arelatively new element of porphyry copper zoning prospecting model and the traditionalgeological-geophysical-geochemical prospecting model have been established. Moreover,combined with the practice in prospecting mining area peripheral, initially, the paper confirmedthe practicality of prospecting model.
     7. In short, through the " quaternity " prospecting model, the drilling up to350in more thanfour years, not only the skarn mineralization prospecting has been achieved, on the0line to40line, the copper-molybdenum ore body produced in the hornsfels has been found, also found indepth porphyry molybdenum (copper) ore body. So far, found out copper resources is more than6million tons, molybdenum resource of over600thousand tons, Pb and Zn resources is more than500thousand tons, associated gold over140tons, associated silver over8000tons, the equivalentcapacity copper resources of over15million tons. Jiama copper polymetallic has beenbreakthrough in the prospecting, and became the largest porphyry-skarn-type deposit, in Tibet.
引文
[1]陈毓川,朱玉生.1993.中国矿床成矿模式[M].北京:地质出版社,1-366.
    [2] Sillitoe R H.2003. IOCG deposits: An view[J]. Mineralium Deposita,38(7):787-812.
    [3]施俊法,唐金荣,周平,等.2010.世界找矿模型与矿产勘查[M].北京:地质出版社,1-72.
    [4]宁芜研究项目编写小组.1978.宁芜玢岩铁矿[M].北京:地质出版社.
    [5]程裕淇,陈毓川,赵一鸣.1979.初论矿床的成矿系列问题[J].中国地质科学院院报,第1号:32-58.
    [6]程裕淇.1983.再论矿床的成矿系列[J].中国地质科学院院报,6:1-64.
    [7]陈毓川,王登红,朱玉生,等.2007.中国区域成矿体系与区域成矿评价(上册)[M].北京:地质出版社.
    [8]张贻侠.1993.矿床模型导论[M].北京:地震出版社.
    [9]裴荣富.1995.中国矿床模式[M].北京:地质出版社,1-357.
    [10]邹光华,欧阳宗圻,李惠,等.1996.中国主要类型金矿床找矿模型[M].北京:地质出版社,1-280.
    [11]王钟,邵孟林,肖树建.1996.隐伏有色金属矿床综合找矿模型[M].北京:地质出版社,1-209.
    [12] Cunningham C G, Allcott G H, Ovenshine A T et al.1993. The IUGS deposit modelingprogram[C]//Kirkham R V, Sinelair W D, Thorpe R I et al. Mineral deposit modeling.Geological Association of Canada Special Paper,40:1-5.
    [13]芮宗瑶,黄崇轲,齐国明,等.1984.中国斑岩铜(钼)矿床[M].北京:地质出版社,223-300.
    [14]赵一鸣,林文蔚,毕承思,等.1990.中国矽卡岩矿床[M].北京:地质出版社,1-354.
    [15]赵一鸣,林文蔚.2012.中国矽卡岩矿床[M].北京:地质出版社.
    [16]李光明,刘波,屈文俊.2005.西藏冈底斯成矿带的斑岩-矽卡岩成矿系统:来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据[J].大地构造与成矿学,29(4):482-490.
    [17]毛景文,邵拥军,谢桂青,等.2009.长江中下游成矿带铜陵矿集区铜多金属矿床模型[J].矿床地质,28(2):109-119.
    [18] Sillitoe R H, Bonham,Jr. H F.1990. Sediment-hosted gold deposits: Distal products ofmagmatic-hydrothermal systems[J]. Geology, V.18:157-161.
    [19] Sillitoe R H.2010. Porphyry copper systems[J]. Economic Geology,105:3-41.
    [20] Meinert L D.1993. Igneous petrogenesis and skarn deposits: in (R.V. Kirkham W D,Sinclair R I, Thorpe&J M Duke, eds.). Geol. Assoc. Can. Special Paper, v.40:569-583.
    [21] Meinert L D.1995. Compositional variation of igneous rocks associated with skarndeposits-chemical evidence for a genetic connection between petrogenesis andmineralization[C]//Magmas, fluids, and ore deposits.Victoria: MAC,401-418.
    [22]唐菊兴,王登红,钟康惠,等.2009.西藏自治区墨竹工卡县甲玛铜多金属矿区0-16-40-80、0-15线矿段铜多金属矿勘探报告[R].拉萨:西藏国土资源厅.
    [23]唐菊兴,王登红,钟康惠,等.2009.西藏自治区墨竹工卡县甲玛矿区外围铜多金属矿详查报告[R].拉萨:西藏国土资源厅.
    [24]唐菊兴,王登红,钟康惠,等.2011.西藏自治区墨竹工卡县甲玛矿区牛马塘矿段铜多金属矿勘探报告[R].拉萨:西藏国土资源厅.
    [25]唐菊兴,王登红,钟康惠,等.2011.西藏自治区墨竹工卡县甲玛矿区外围则古朗矿段铜多金属矿详查报告[R].拉萨:西藏国土资源厅.
    [26]杜光树,姚鹏,潘凤皱,等.1998.喷流成因矽卡岩与成矿——以西藏甲马铜多金属矿床为例[M].成都:四川科技出版社,54-60.
    [27]姚鹏,杜光树.1999.西藏甲马多金属矿床容矿岩石的地球化学特征及其成因初步研究[J].特提斯地质,23:47-56.
    [28]姚鹏.等.2000.西藏甲玛铜多金属矿床控矿条件、定位机制及成矿远景预测[R].成都:西南地质调查中心.
    [29]姚鹏,郑明华,彭勇明,等.2002.西藏冈底斯岛弧带甲马铜多金属矿床成矿物质来源及成因研究[J].地质论评,48(5):469-478.
    [30]姚鹏,顾雪祥,李金高,等.2006.甲马铜多金属矿床层控矽卡岩流体包裹体特征及其成因意义[J].成都理工大学学报(自然科学版),33(3):286-292.
    [31]李金高,王全海,郑明华,等.2001.西藏Sedex型矿床赋矿盆地性质对成矿元素的制约作用[J].沉积与特提斯地质,21(4):12-20.
    [32]潘凤雏,邓军,姚鹏,等.2002.西藏甲马铜多金属矿床矽卡岩的喷流成因[J].现代地质,16(4):360-364.
    [33]王全海,王保生,李金高,等.2002.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估[J].地质通报,21(1):36-40.
    [34]佘宏全,丰成友,张德全,等.2005.西藏冈底斯中东段矽卡岩铜_铅_锌多金属矿床特征及成矿远景分析[J].矿床地质,24(5):509-518.
    [35]佘宏全,丰成友,张德全,等.2006.西藏冈底斯铜矿带甲马矽卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究[J].岩石学报,22(3):690-696.
    [36]连玉,徐文艺,杨丹,等.2008.西藏冈底斯甲马和南木矿床流体包裹体SR-XRF研究[J].岩石矿物学杂志,27(3):186-196.
    [37]唐菊兴,王登红,汪雄武,等.2010.西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J].地球学报,31(4):495-506.
    [38]唐菊兴,邓世林,郑文宝,等.2011.西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J].矿床地质,30(2):179-196.
    [39]王登红,唐菊兴,应立娟,等.2011.甲玛与世界级铜矿的初步对比及下一步找矿工作建议[J].矿床地质,30(2):197-205.
    [40]王登红,唐菊兴,应立娟,等.2011.西藏甲玛矿区角岩特征及其对深部找矿的意义[J].岩石学报,27(7):2103-2108.
    [41]郑文宝,陈毓川,宋鑫,等.2010.西藏甲玛铜多金属矿元素分布规律及地质意义[J].矿床地质,29(5):775-784.
    [42]郑文宝,唐菊兴,畅哲生,等.2010.西藏甲玛铜多金属矿床地质地球化学特征及成因浅析[J].地质与勘探,46(6):985-994.
    [43]郑文宝,黎枫佶,唐菊兴,等.2010.西藏墨竹工卡地区甲玛矽卡岩型铜多金属矿体的变化性[J].地质通报,29(10):1486-1494.
    [44]郑文宝,唐菊兴,畅哲生,等2010.西藏甲玛铜多金属矿床地质地球化学特征及成因浅析[J].地质与勘探,46(6):985-994.
    [45]郑文宝,陈毓川,唐菊兴,等.2010.西藏甲玛铜多金属矿床铜矿化富集规律研究及应用[J].金属矿山,404(2):87-91.
    [46]郑文宝,唐菊兴,黎枫佶,等.2011.西藏甲玛矿区铅锌矿体成因研究及其找矿意义[J].高校地质学报,17(2):337-350.
    [47]郑文宝,冷秋锋,畅哲生,等.2011.西藏甲玛矿区钼成矿作用与找矿方向[J].成都理工大学学报(自然科学版),38(1):59-66.
    [48]郑文宝,陈毓川,唐菊兴,等.2011.西藏墨竹工卡县甲玛矿区筒状矿体的发现及其地质意义[J].矿床地质,30(2):207-218.
    [49]郑文宝,唐菊兴,汪雄武,等.2012.西藏甲玛铜多金属矿床金矿地质特征及成矿作用浅析[J].吉林大学学报(地球科学版),42(Z1).
    [50]郑文宝.2010.西藏墨竹工卡县甲玛铜多金属矿床地球化学特征[D].硕士学位论文,成都:成都理工大学,1-78.
    [51]应立娟,唐菊兴,王登红,等.2009.西藏甲玛铜多金属矿床夕卡岩中辉钼矿铼-锇同位素定年及其成矿意义[J].岩矿测试,28(3):265-268.
    [52]应立娟,王登红,唐菊兴,等.2010.西藏墨竹工卡县甲玛铜多金属矿不同矿石中辉钼矿Re-Os同位素定年及其成矿意义[J].地质学报,88(8):1165-1174.
    [53]应立娟,王登红,唐菊兴,等.2010.西藏甲玛铜多金属矿床中铋矿物及其与铜矿化关系[J].吉林大学学报(地球科学版),40(4):801-809.
    [54]应立娟,唐菊兴,王登红,等.2011.西藏甲玛超大型铜矿区斑岩脉成岩时代及其与成矿的关系[J].岩石学报,27(7):2196-2102.
    [55]应立娟,王登红,王焕,等.2011.西藏甲玛铜多金属矿床中白钨矿的产出特征及其找矿意义[J].矿床地质,30(2):318-326.
    [56]秦志鹏,汪雄武,多吉,等.2011.西藏甲玛中酸性侵入岩LA-ICP-MS锆石U-Pb定年及成矿意义[J].矿床地质,30(2):339-348.
    [57]秦志鹏,汪雄武,唐菊兴,等.2011.西藏甲玛过铝质花岗岩的地球化学特征及成因意义[J].成都理工大学学报(自然科学版),38(1):76-84.
    [58]秦志鹏.2010.西藏甲玛铜多金属矿床似埃达克岩的成岩成矿作用[D].硕士学位论文,成都:成都理工大学,15-40.
    [59]周云.2010.西藏墨竹工卡县甲玛铜多金属矿成矿流体特征及演化[D].硕士学位论文,成都:成都理工大学.
    [60]周云,汪雄武,唐菊兴,等.2011.西藏甲玛铜多金属矿含矿斑岩石英斑晶单个熔融包裹体的成分研究[J].成都理工大学学报(自然科学版),38(1):92-102.
    [61]周云,汪雄武,唐菊兴,等.2011.西藏甲玛铜多金属矿床成矿流体来源及演化[J].矿床地质,30(2):231-248.
    [62]彭惠娟,汪雄武,唐菊兴,等.2010.石英阴极发光在火成岩研究中的应用[J].矿物测试,29(2):153-160.
    [63]彭惠娟,汪雄武,唐菊兴,等.2010.石英显微构造阴极发光特征研究—以西藏甲玛岩体为例[J].矿物岩石地球化学通报,29(3):279-283.
    [64]彭惠娟,汪雄武, Müller Axel,等.2011.西藏甲玛铜多金属矿区成矿斑岩的岩浆混合作用:石英及长石斑晶新证据[J].矿床地质,30(2):249-266.
    [65]彭惠娟.2011.西藏甲玛铜多金属矿床成因矿物学与找矿矿物学初步研究[D].硕士学位论文,成都:成都理工大学,26-63.
    [66]王焕,唐菊兴,应立娟,等.2011.西藏甲玛铜多金属矿床主要矿石矿物特征[J].成都理工大学学报(自然科学版),38(1):103-112.
    [67]王焕,唐菊兴,王立强,等.2011.西藏墨竹工卡地区甲玛铜多金属矿床矽卡岩矿物学特征及其地质意义[J].地质通报,30(5):783-797.
    [68]王焕,王立强,应立娟,等.2011.西藏甲玛铜多金属矿床斑岩铜矿特征及其成因意义[J].矿床地质,30(2):305-317.
    [69]王崴平,唐菊兴.2011.西藏甲玛铜多金属矿床角岩岩石类型、成因意义及隐伏斑岩岩体定位预测[J].矿床地质,30(6):1017-1038.
    [70]王葳平.2012.西藏甲玛铜多金属矿床角岩岩石学与其蚀变-矿化演进序列研究[D].硕士学位论文,北京:中国地质科学院.
    [71] http://www.chinatibetnews.com/zhengfuzaixian/2010-03/10/content_417343_3.htm
    [72]周详.1989.西藏板块构造—建造图及说明书[M].北京:地质出版社.
    [73]西藏地矿局.1994.西藏自治区区域地质志[M].北京:地质出版社,160-194.
    [74]西藏地调院.2007.中华人民共和国区域地质调查报告——1/25万泽当镇幅[R].拉萨.
    [75]余光明,王成善.1990.西藏特提斯沉积地质[M].北京:地质出版社,1-185.
    [76]彭勇民,姚鹏,李金高.2001.西藏甲玛弧内盆地的形成演化[J].沉积与特提斯地质,21(2):101-107.
    [77]王成善,李祥辉,胡修棉,等.2005.特提斯喜马拉雅沉积地质与大陆古海洋学[M].北京:地质出版社,1-373.
    [78]潘桂棠,莫宣学,侯增谦,等.2006.冈底斯造山带的时空结构及演化[J].岩石学报,22(3):521-533.
    [79]莫宣学.2009.青藏高原岩浆岩成因研究:成果与展望[J].地质通报,28(12):1693-1700.
    [80]李磊.2010.西藏墨竹工卡县甲玛铜多金属矿床控矿构造研究[D].成都理工大学:硕士学位论文,36-52.
    [81]刘肇昌,李凡友,钟康惠.1996.扬子地台西缘构造演化与成矿[M].成都:电子科技大学出版社.
    [82]莫宣学,赵志丹,喻学惠,等.2009.青藏高原新生代碰撞-后碰撞火成岩[M].北京:地质出版社,12-152.
    [83] IUGS.2002. Igneous rocks-A classification and glossary of terms(2nd edition)[M]. London:Cambridge University Press,3-42.
    [84] Le Maitre R W.1976. Some problems of the projection of chemical data into mineralogicalclassifications[J]. Contributions to Mineralogy and Petrology, vol.56:181-189.
    [85]张旗,潘国强,李承东,等.2007a.花岗岩混合问题:与玄武岩对比的启示——关于花岗岩研究的思考之一[J].岩石学报,23(5):1141-1151.
    [86]张旗,潘国强,李承东,等.2007b.花岗岩结晶分离作用问题——关于花岗岩研究的思考之二[J].岩石学报,23(6):1239-1251.
    [87]张旗,潘国强,李承东,等.2007c.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报,23(11):2683-2698.
    [88]张旗,王焰,潘国强,等.2008a.花岗岩源岩问题——关于花岗岩研究的思考之四[J].岩石学报,24(6):1193-1204.
    [89]张旗,潘国强,李承东,等.2008b.花岗岩研究的误区——关于花岗岩研究的思考之五[J].岩石学报,24(10):2212-2218.
    [90]张旗.2012.花岗质岩浆能够结晶分离和演化吗?[J].岩石矿物学杂志,31(2):252-260.
    [91]罗照华,卢欣祥,刘翠,等.2012.岩浆热液成矿理论的失败:原因和出路[J].吉林大学学报(地球科学版),41:1-11.
    [92]徐兴旺,吴琪,黄雪飞等.2012.富铜斑岩岩浆形成机制与演化过程[J].岩石学报,28(2):421-432.
    [93]华仁民,王登红.关于花岗岩与成矿作用若干基本概念的再认识[J].矿床地质,2012,31(1):165-175.
    [94]莫宣学.2011.岩浆作用与青藏高原演化[J].高校地质学报,2011,17(3):351-367.
    [95] Green T H, Sie S H, Ryan C G, et al.1989. Proton microprobe-determined partitioning ofNb, Ta, Zr, Sr, and Y between garnet, Clinopytoxene and basaltic magma at high pressureand temperature[J]. Chem. Geol.,74:201-216.
    [96]刘英俊,曹励明,李兆麟,等.1984.元素地球化学[M].北京:科学出版社,50-415.
    [97] Chung S L, Chu M F, Zhang Y Q, et al.2005. Tibetan tectonic evolution inferred fromspatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews,68:173-196.
    [98] Sun S S and McDonough W F.1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[C]//Magmatism in the ocean basins.Oxford: Blackwell Scientific Publications.
    [99]高永丰,侯增谦,魏瑞华.2003.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义[J].岩石学报,19(3):418-428.
    [100] Taylor and McLennan S M.1985. The continental crust: Composition and evolution[M].Oxford: Blackwell Scientific Publications,1-372.
    [101]邓晋福,罗照华,苏尚国,等.2004.岩石成因、构造环境与成矿作用[M].北京:地质出版社,1-381.
    [102]莫宣学,邓晋福,董方浏,等.2001.西南三江造山带火山岩-构造组合及其意义[J].高校地质学报,7(2):121-135.
    [103]赵振华.2007.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿,31(1):92-103.
    [104] Kwak T A P and White A J R.1982. Contrasting W-Mo-Cu and W-Sn-F skarn types andrelated granitoids[J]. Mining Geology,32:339-351.
    [105]芮宗瑶,侯增谦,李光明,等.2006.冈底斯斑岩铜矿成矿模式[J].地质论评,52(4):459-465.
    [106]曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?[J].矿床地质,20(4):355-367.
    [107]赵志丹,莫宣学,董国臣,等.2007.青藏高原Pb同位素地球化学及其意义[J].现代地质,21(2):265-272.
    [108]莫宣学,董国臣,赵志丹,等.2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报,11(3):281-290.
    [109]肖庆辉,邓晋福,马大铨,等.2002.花岗岩研究思维与方法[M].北京:地质出版社,1-294.
    [110] Maniar D P and Piccdi P M.1989. Tectonic discrimination of granitoids[J]. GeologicalSociety of American Bulletin,101:635-643.
    [111] Eby G N.1992. Chemical subdivision of the A-type granitoids, petrogenetic and tectonicimplications[J]. Geology,20:641-644.
    [112] Muller D, Rock N M S and Groves D I.1992. Geochemical discrimination betweenshoshonitic and potassic volcanic rocks from different tectonic settings: a plot study Mine[J].Petrol,46:259-289.
    [113] Pearce J A.1982. Trace elements characteristics of lavas from destructive plate boundaries.In: Thorpe R S (ed). Andesites. Wiley, New York:525-548.
    [114] Pearce J A, Harris N B W and Tindle A G.1984. Trace element discrimination diagrams forthe tectonic interp retation of granitic rocks[J]. Petrol,25:956-983.
    [115] Pearce J A.1996. Source and settings of granitic rocks[J]. Episodes,19:120-125.
    [116]洪大卫,王式洸,韩宝福,等.1995.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学(B辑),25(4):418-425.
    [117]侯增谦,曲晓明,杨竹森,等.2006.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,25(6):629-646.
    [118] Gloaguen R and Ratschbacher L.2011. Growth and collapse of the Tibetan Plateau:introduction[C]//Growth and collapse of the Tibetan Plateau. London: The GeologicalSociety,1-8.
    [119]洪大卫.1998.“花岗岩类型和成矿作用”国际讨论会简介[J].矿床地质,17(4):377-378.
    [120] Cottin J Y, Lorand J P, Agrinier P, et al.1998. Isotopic(O,Sr, Nd)and trace elementgeochemistry of the Laouni layered intrusions_Pan-African belt, Hoggar, Algeria/: evidencefor post-collisional continental tholeiitic magmas variably contaminated by continentalcrust[J]. Lithos,45:197-222.
    [121] Cortesogno L, Cassinis G, Dallagiovanna G, et al.1998. The Variscan post-collisionalvolcanism in Late Carboniferous–Permian sequences of Ligurian Alps, Southern Alps andSardinia(Italy): a synthesis[J]. Lithos,45:305-328.
    [122] Caprarelli G, Leitch E C.1998. Magmatic changes during the stabilisation of a cordilleranfold belt: the Late Carboniferous–Triassic igneous history of eastern New South Wales,Australia[J]. Lithos,45:413-430.
    [123] Dias G, Leterrier J, Mendes A, et al.1998. U–Pb zircon and monazite geochronology ofpost-collisional Hercynian granitoids from the Central Iberian Zone (Northern Portugal)[J].Lithos,45:349-369.
    [124] Elliott B A, R m O T, Nironen M.1998. Mineral chemistry constraints on the evolution ofthe1.88–1.87Ga post-kinematic granite plutons in the Central Finland GranitoidComplex[J]. Lithos,45:109-129.
    [125] Eklund O, Konopelko D, Rutanen H, et al.1998.1.8Ga Svecofennian post-collisionalshoshonitic magmatism in the Fennoscandian shield[J]. Lithos,45:87-108.
    [126] Ferré E C, Caby R, Peucat J J, et al.1998. Pan-African, post-collisional, ferro-potassicgranite and quartz–monzonite plutons of Eastern Nigeria[J]. Lithos,45:255-279.
    [127] Grigoriev S I, Pshenichny C A.1998. Late Mesozoic post-collisional intermediate to silicicmagmatism in the Badjal area, Far East of Russia[J]. Lithos,45:457-468.
    [128] Hegner E, K lbl-Ebert M, Loeschke J.1998. Post-collisional Variscan lamprophyres(BlackForest, Germany):40Ar/39Ar phlogopite dating, Nd, Pb, Sr isotope, and trace elementcharacteristics[J]. Lithos,45:395-411.
    [129] Hadj-Kaddour Z, Liégeois J P, Demaiffe D, et al.1998. The alkaline–peralkaline graniticpost-collisional Tin Zebane dyke swarm(Pan-African Tuareg shield, Algeria): prevalentmantle signature and late agpaitic differentiation[J]. Lithos,45:223-243.
    [130] Jung S, Mezger K, Hoernes S.1998. Petrology and geochemistry of syn-to post-collisionalmetaluminous A-type granites—a major and trace element and Nd–Sr–Pb–O-isotope studyfrom the Proterozoic Damara Belt, Namibia[J]. Lithos,45:147-175.
    [131] Küster D, Harms U.1998. Post-collisional potassic granitoids from the southern andnorthwestern parts of the Late Neoproterozoic East African Orogen: a review[J]. Lithos,45:177-195.
    [132] Liégeois J P.1998. Preface—Some words on the post-collisional magmatism[J]. Lithos,45:xv-xvii.
    [133] Liégeois J P, Navez J, Hertogen J, et al.1998. Contrasting origin of post-collisional high-Kcalc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of slidingnormalization[J]. Lithos,45:1-28.
    [134] Ma C Q, Li Z C, Ehlers C, et al.1998. A post-collisional magmatic plumbing system:Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressuremetamorphic zone, east-central China[J]. Lithos,45:431-456.
    [135] Nabelek P I, Bartlett C D.1998. Petrologic and geochemical links between thepost-collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its sourcerocks[J]. Lithos,45:71-85.
    [136] Duchesne J C, Berza T, Liégeois J P, et al.1998. Shoshonitic liquid line of descent fromdiorite to granite: the Late Precambrian Post-collisional Tismana pluton (South Carpathians,Romania)[J]. Lithos,45:281-303.
    [137] Paquette J L, Caby R, Djouadi M T, et al.1998. U–Pb dating of the end of the Pan-Africanorogeny in the Tuareg shield: the post-collisional syn-shear Tioueine pluton (WesternHoggar, Algeria)[J]. Lithos,45:245-253.
    [138] Rottura A, Bargossi G M, Caggianelli A, et al.1998. Origin and significance of the Permianhigh-K calc-alkaline magmatism in the central-eastern Southern Alps, Italy[J]. Lithos,45:329-348.
    [139] Sylvester P J.1998. Post-collisional strongly peraluminous granites[J]. Lithos,45:29-44.
    [140] Stracke A, Hegner E.1998. Rifting-related volcanism in an oceanic post-collisional setting:the Tabar–Lihir–Tanga–Feni (TLTF) island chain, Papua New Guinea[J]. Lithos,45:545-560.
    [141] Seghedi I, Balintoni I, Szakács A.1998. Interplay of tectonics and neogene post-collisionalmagmatism in the intracarpathian region[J]. Lithos,45:483-497.
    [142] Waight T E, Weaver S D, Muir R J.1998. Mid-Cretaceous granitic magmatism during thetransition from subduction to extension in southern New Zealand: a chemical and tectonicsynthesis[J]. Lithos,45:469-482.
    [143] Wennerstr m M, Airo M L.1998. Magnetic fabric and emplacement of the post-collisionalPomovaara Granite Complex in northern Fennoscandia [J]. Lithos,45:131-145.
    [144] Zeck H P, Kristensen A B, Williams I S.1998. Post-collisional volcanism in a sinking slabsetting—crustal anatectic origin of pyroxene-andesite magma, Caldear Volcanic Group,Neogene Albor′an volcanic province, southeastern Spain[J]. Lithos,45:499-522.
    [145] Batchelor R A and Bowden P.1985. Petrogenetic interpretation of granitoid rock seriesusing multicationic parameters[J]. Chem. Geol.,(48):43-55.
    [146]杨志明,侯增谦,宋玉财,等.2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿[J].矿床地质,27(3):279-284.
    [147]卢焕章,范宏瑞,倪培,等.2004.流体包裹体[M].北京:科学出版社,293-303.
    [148] Anderson A T.1976. Magma mixing: petrological process and volcanological tool[J]. J.Volcanol. Geotherm. Research1,3-33.
    [149] Frost T P and Mahood G A.1987. Field, chemical, and physical constraints on mafic-felsicmagma interaction in the Lamarck granodiorite, Sierra Nevada, California. Geol. Soc. Am.Bull.99,272-291.
    [150] Newberry R J and Swanson S E.1986. Scheelite skarn granitoids: an evaluation of the rolesof magmatic source and process. Ore Geol. Reviews1,57-81.
    [151]袁见齐,朱上庆,翟裕生.1985.矿床学[M].北京:地质出版社,1-346.
    [152]王焕.2011.西藏甲玛铜多金属矿床矿物学特征及其成因意义研究[D].硕士学位论文,北京:中国地质科学院.
    [153]钟裕锋.2011.西藏甲玛铜多金属矿伴生元素金的赋存状态研究[D].硕士学位论文,成都:成都理工大学.
    [154]侯树桓,姜建军.2005.吉林六批叶沟金矿石及金矿物特征研究[J].地质与勘探,41(1):43-47.
    [155]赵振华,赵惠兰,杨蔚华,等.1987.礁边和武山寒武-奥陶系界线剖面微量元素地球化学特征[J].地球化学,02:99-112.
    [156] Einaudi M T, Meinert L D and Newberry R J.1981. Skarn deposits[J]. Economic Geology75th Anniversary Volume,317-391.
    [157] Meinert L D, Dipple G M and Nicolescu S.2005. World skarn deposit[J]. EconomicGeology100th Anniversary Volume,299-336.
    [158] Bouzari F, and Clark A H.2006. Prograde evolution and geothermal affinities of a majorporphyry copper deposit: The Cerro Colorado hypogene protore, I Región, northern Chile[J].Economic Geology,101:95-134.
    [159] Khashgerel B E, Kavalieris I. and Hayashi K.2008. Mineralogy, textures, and whole-rockgeochemistry of advanced argillic alteration: Hugo Dummett porphyry Cu-Au deposit, OyuTolgoi mineral district, Mongolia[J]. Mineralium Deposita,43:913-932.
    [160]叶天竺,薛建玲.2007.金属矿床深部找矿中的地质研究[J].中国地质,34(5):855-868.
    [161] Chen, Halls C and Stanley C J.1992. Rare earth elements and patterns in major skarnminerals from Shizhuyuan W, Sn, Bi and Mo deposit, South China[J]. Geoch. J.,26;147-157.
    [162]凌其聪,刘丛强.2003.层控夕卡岩及有关矿床形成过程的稀土元素行为-以安徽冬瓜山矿床为例[J].岩石学报,19(1):192-199.
    [163] Gaspar M, Knaack C, Meinert L D, et al.2008. REE in skarn systems: A LA-ICP-MS studyof garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta,72:185-205.
    [164] Haas J R, Shock E L and Sassani D C.1995. Rare earth elements in hydrothermal systems:estimates of standard partial molal thermodynamic properties of aqueous complexes of therare earth elements at high pressures and temperatures[J]. Geochim. Cosmochim. Acta,59:4329-5350.
    [165]徐晓春,陆三明,谢巧勤,等.2008.安徽铜陵冬瓜山铜金矿床流体包裹体微量元素地球化学特征及其地质意义[J].岩石学报,24(8):1865-1874.
    [166] Gresens R L.1967. Composition-volume relations of metasomatism[J]. Chen. Geol.2:116-132.
    [167] Grant J A.1986. The isocon diagram-A simple solution to Gresens’ equation formetasomatic alteration[J]. Econ. Geol.81:1976-1982.
    [168]周水章,涂光炽, Chown E H,等.1994.热液围岩蚀变过程中数学不变量的寻找及元素迁移的定量估计一以广东河台金矿田为例[J].科学通报,39(11):1026-1028.
    [169]邓海琳,涂光炽,李朝阳,等.1999.地球化学开放系统的质量平衡:1.理论[J].矿物学报,19(2):121-130.
    [170] Taylor H P Jr.1974. The application of oxygen and hydrogen isotope studies to problems ofhydrothermal alteration and ore deposition[J]. Economic Geology, Vol.69:843-883.
    [171] Taylor H P Jr.1979. Oxygen and hydrogen isotope relationships in hydrothermal mineraldeposits[J]. In: Barnes H L(Editor), Geochemistry of Hydrothermal Ore Deposits, Vol.2:236-277.
    [172] Sheppard S M F and Taylor H P Jr.1974. Hydrogen and oxygen isotope evidence for theorigins of water in the Boulder batholith and the Butte ore deposits, Montana[J]. EconomicGeology, Vol.69:926-946.
    [173] Dilles J H, Solomon G C, Taylor H P Jr, et al.1992. Oxygen and hydrogen isotopecharacteristics of hydrothermal alteration at the Ann-Mason porphyry copper deposit,Yerington, Nevada[J]. Economic geology, Vol.87:44-63.
    [174] USGS.2010. Porphyry copper deposit model[R]. Scientific Investigations Report2010-5010-B,1-158.
    [175]李永胜.2009.西藏甲玛铜多金属矿床地质特征及矿床成因探讨[D].硕士学位论文,北京:中国地质大学:1-70.
    [176]张理刚,陈振胜,刘敬秀,等.1995.两阶段水-岩同位素交换理论及其勘查应用[J].北京:地质出版社,1-173.
    [177]储雪蕾.1996.氢氧同位素探矿的理论与实践—推荐一本新书《两阶段水-岩同位素交换理论及其勘查》[J].矿床地质,15(1):95-96.
    [178]丁悌平.1980.氢氧同位素地球化学[M].北京:地质出版社,1-171.
    [179] Ohmoto H.1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Economic geology, Vol.67:551-578.
    [180]格里年科,赵瑞译.1980.硫同位素地球化学[M].北京:科学出版社,1-145.
    [181]陈岳龙,杨忠芳,赵志丹.2005.同位素地质年代学与地球化学[M].北京:地质出版社,262-276.
    [182] Sakai H.1957. Fractionation of sulfur isotopes in nature[J]. Geochim. Cosmochim. Acta.,12(2).
    [183] Sakai H.1968. Isotopic properties of sulfur compounds in hydrothermal prosesses[J].Geochem. J.,2(1).
    [184] Bachinski D J.1969. Bono strength and sulfur isotopic fractionation in coexisting sulfides[J].Economic Geology,64(1).
    [185]薛春纪,祁思敬,隗合明,等.2006.基础矿床学[M].北京:地质出版社,1-134.
    [186] Qu X M, Hou Z Q, Khin Z, et al.2007. Characteristics and genesis of Gangdese porphyrycopper deposits in the southern Tibetan Plateau: Preliminary geochemical andgeochronological results[J]. Ore Geology Reviews,31:205-223.
    [187] Zartman R E and Doe B R.1981. Plumbotectonics-the model[J]. Tectonophysics,75:135-162.
    [188]朱炳泉.1998.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化[M].北京:科学出版社.
    [189]朱炳泉.2001.地球化学省与地球化学急变带[M].北京:科学出版社,12.
    [190]马鸿文.1990.西藏玉龙斑岩铜矿带花岗岩类与成矿[M].北京:中国地质大学出版社,123-131.
    [191] Richards J P.2009. Post-subduction porphyry Cu-Au and epithermal Au deposits—Productsof remelting of subduction modified lithosphere[J]. Geology, Vol.37:247-250.
    [192]丁悌平,蒋少涌,万德芳,等.1994.硅同位素地球化学[M].北京:地质出版社,1-102.
    [193]李延河,丁悌平,万德芳.1994.硅同位素动力学分馏的实验研究及地质应用[J].矿床地质,13(3):282-288.
    [194] Aitchison J C, McDermid I R C, Ali J R, et al.2007. Shoshonites in Southern Tibet RecordLate Jurassic Rifting of a Tethyan Intraoceanic Island Arc[J]. The Journal of Geology,115(2):197-213.
    [195]李光明,芮宗瑶.2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J].大地构造与成矿学,28(2):165-170.
    [196]冯孝良,管仕平,牟传龙,等.2001.西藏甲马铜多金属矿床的岩浆热液交代成因:地质与地球化学证据[J].地质地球化学,29(4):41-48.
    [197]袁万明,侯增谦,李胜荣,等.2001.西藏甲马多金属矿区热历史的裂变径迹证据[J].中国科学(D辑),31(增刊):118-121.
    [198]任云生,粟登逵,张金树.2002.西藏甲马铜多金属矿床金的叠加成矿[J].吉林大学学报,32(3):226-228.
    [199] Burnham C W.1979. Magmas and hydrothermal fluids, in Barnes H.L., ed., Geochemistryof hydrothermal ore deposits,2nd edition: New York, John Wiley and Sons,71-136.
    [200] Yang K and Bodnar R J.1994. Magmatic-hydrothermal evolution in the “Bottoms” ofporphyry copper systems: Evidence from silicate melt and aqueous fluid inclusions ingranitoid intrusions in the Gyeongsang basin, South Korea[J]. International Geology Review,v.36:608-628.
    [201] Bodnar R J.1995. Fluid-inclusion evidence for a magmatic source for metals in porphyrycopper deposits[J]. Mineralogical Association of Canada Short Course Series, v.23:139-152.
    [202] Fournier R O.1987. Conceptual models of brine evolution in magmatic-hydrothermalsystems: U.S. Geological Survey Professional Paper1350,1487-1506.
    [203] Shinohara H and Hedenquist J W.1997. Constraints on magma degassing beneath the FarSoutheast porphyry Cu-Au deposit, Philippines[J]. Journal of Petrology, v.38:1741-1752.
    [204] Meinert L D, Hefton K K, Mayes D, et al.1997. Geology, zonation, and fluid evolution ofthe Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya[J]. Economic Geology,V.92:509-534.
    [205] Meinert L D.1997. Application of skarn deposit zonation models to mineral exploration[J].Exploration and Mining Geology, v.6:185-208.
    [206] Cline J S.1995. Genesis of porphyry copper deposts: The behavior of water, chloride, andcopper in crystallizing melts[J]. Arizona Geological Society Digest, v.20:69-82.
    [207] Fournier R O.1991. The transition from hydrostatic to greater than hydrostatic fluidpressure in presently active continental hydrothermal systems in crystalline rock[J].Geophysical Research Letters, v.18:955-958.
    [208] Bendezú R and Fontboté L.2002. Late timing for high sulfidation Cordilleran base metallode and replacement deposits in porphyry-related districts: The case of Colquijirca, centralPeru[J]. Society for Geology Applied to Mineral Deposits News, no.13,9-13.
    [209] Rusk B and Reed M.2002. Scanning electron microscope-cathodoluminescence analysis ofquartz reveals complex growth histories in veins from the Butte porphyry copper deposit,Montana[J]. Geology, v.30:727-730.
    [210] Redmond P B and Einaudi M T.2010. The Bingham canyon porphyry Cu-Mo-Au deposit.Ⅰ.Sequence of intrusions, vein formation, and sulfide deposition[J]. Economic Geology, V.105:43-68.
    [211] Love D A, Clark A H, and Glover J K.2004. The lithologic, stratigraphic, and structuralsetting of the giant Antamina copper-zinc skarn deposit, Ancash, Peru[J]. Economic Geology,V.99:887-916.
    [212] Zuzunaga A.2003.“Closing the loop”—Using actual concentrator performance todetermine the true value of ore sources [abs.]: Canadian Institute of Mining, Metallurgy andPetroleum, Annual Meeting,105th, Montreal, Quebec, May5-7,2003, Program withAbstracts,170.
    [213] Petersen U.1965. Regional geology and major ore deposits of central Peru[J]. EconomicGeology, v.60:407-476.
    [214] Silberman M L and Noble D C.1977. Age of igneous activity and mineralization, Cerro dePasco, central Peru[J]. Economic Geology, v.72:925-930.
    [215]张文宽,王毅,章奇志,等.2009.西藏自治区江达县玉龙矿区铜矿勘探报告[R].拉萨:西藏国土资源厅.
    [216]陈建平,唐菊兴,丛源,等.2009.藏东玉龙斑岩铜矿地质特征及成矿模型[J].地质学报,83(12):1888-1900.
    [217]唐菊兴,张丽,李志军,等.2006.西藏玉龙铜矿床——鼻状构造圈闭控制的特大型矿床[J].矿床地质,25(6):652-661.
    [218] Tosdal R.2007. The Porphyry Copper Environment: Deposit characteristics, alteration, andtectonics. XiAn, Report.
    [219] Williams-Jones A E and Heinrich C A.2005. Vapor transport of metals and the formation ofmagmatic-hydrothermal ore deposits[J]. Economic Geolgoy,100(7):1287-1312.
    [220] Sangster D F.1983. Sediment-hosted stratiform lead-zinc deposits[M]. Canada:Mineralogical Association of Canada.151-309.
    [221]徐克勤,王鹤年,周建平,等.1996.论华南喷流-沉积块状硫化物矿床[J].高校地质学报,2(3):241-254.
    [222]黄瑞玺.1994.喷气-沉积矿床成矿作用研究现状与进展[C]/[G]//中国有色金属工业总公司地质勘查总局.喷气-沉积矿床成矿作用研究现状与进展.12.
    [223]西藏地调院.2006.西藏雅鲁藏布江成矿区东段铜多金属矿勘查报告[R].拉萨:西藏地调院.
    [224] Seedorff E, Dilles J H, Phoffett, JR. J M et al.2005. Porphyry deposits: Characteristics andorigin of hypogene features[J]. Economic Geology,100thAnniversary Volume,251-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700