用户名: 密码: 验证码:
高温用2:17型SmCo合金及Re-Tm基复合磁性合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了Zr含量、时效工艺等对Sm(Co,Fe,Cu,Zr)z合金中成分分布、组织、磁畴及磁性能的影响;通过调整z值、降低Fe含量、提高Cu含量、优化Zr含量设计了低矫顽力温度系数特征的Sm(CobalFe0.08-0.10Cu0.08-0.10Zr0.025)7.4-7.6合金;在此基础上采用吸铸法较大幅度提高了合金的室温磁性能,发展了一种具有优良高温磁性能的2:17型SmCo永磁合金。本文还在具有较高非晶形成能力的Y(Fe,Co)B共晶合金基础上,采用吸铸法实现了块体合金中纳米级层状周期结构的可控制备,并对其晶态、周期尺寸及磁性能成功进行了调控。
     采用电弧熔炼、吸铸、快淬法制备了Sm(CobalFe0.08-0.10Cu0.08-0.10Zr0.025)7.4-7.6合金的纽扣锭、吸铸合金及薄带试样,研究发现铜模吸铸法制备的尺寸为?6mm的Sm(CobalFe0.08Cu0.10Zr0.025)7.45合金性能稳定且室温下矫顽力达到16.47kOe;分析认为?6合金磁性能的改善与吸铸造成的晶粒细化、取向度增强及两相晶格错配度增加等因素有关。该成分的?6合金在温度升高到500℃以上时矫顽力才开始较快下降, 600℃时矫顽力仍能保持室温水平的70%,其高温磁性能优于目前报道的结果。在此基础上进一步进行了重稀土元素取代试验,Ho元素取代的(Sm0.5Ho0.5)(CobalFe0.10Cu0.08Zr0.025)7.55合金具有优良的室温磁性能,其纽扣锭合金室温矫顽力超过12kOe;250℃以上其相对矫顽力水平低于未取代的样品,但温度高于300℃后其饱和磁化强度则明显高于不含Ho的试样;针对不同的具体应用可对Ho元素的取代比例加以进一步优化。
     采用铜模吸铸法制备了?2~?9及截面尺寸为2×10的Y6(FeCo)72B22合金,合金具有软磁特性。研究发现,合金?2试样几乎完全为非晶态,随着冷却速度的降低,基体上开始析出有序相并最终形成纳米级层状结构,层状结构的周期随冷速的继续降低而逐渐增大,周期尺寸从?2.5试样中约40nm增加到?9试样中的约400nm。XRD、SAED和EDX分析认为层状结构中的两相分别为(Fe,Co)2B和富Y的αFe相。根据双相纳米晶的耦合作用,控制两相的组成可望在大范围内实现对磁性能的调控。尝试用Nd取代部分Y元素并且在外磁场下吸铸制备了?2合金,初步结果表明其矫顽力和剩磁比相对于纽扣锭合金均有数量级的提高,分别达到1.1kOe和0.3,为新型复合磁性合金的研发提供了新思路。
The effects of Zr content and heat treatment on the distribution of alloy elements, magnetic domain and magnetic properties in Sm(Co, Fe, Cu, Zr)z alloy have been investigated. A new magnetic alloy with a low temperature coefficient of intrinsic coercivity (Hci) was designed by adjusting the value of z, lowering the content of Fe, increasing the content of Cu and optimizing Zr content. In addition, by using suction casting method, the Hci of this alloy at room temperature was improved considerably. On the basis of the optimization of component and the improving of fabrication process, an excellent 2:17 type SmCo permanent magnetic alloy was developed for high temperature up to 550~600℃. The Y(Fe, Co)B alloy with nano-layered structure was prepared by suction casting method. The controlled preparation of the nano-layered structure with different sizes could be achieved by changing the solicitation process. The hard magnetic property was achieved in this alloy replacing part of the Y by Nd element.
     The ingot, rod and ribbon of Sm(CobalFe0.08-0.10Cu0.08-0.10Zr0.02-0.03)7.5~7.6 alloy were prepared by arc-melting, suction casting and melt quenching methods, respectively. Results show that magnetic property of the fast-cooling alloy rod is remarkably enhanced and is much higher than that of the ingot and ribbon samples. The fast-cooling alloy rod with size of ?6 shows the most stable property and its Hci reach 16.47kOe at room temperature in Sm(CobalFe0.08Cu0.10Zr0.025)7.45 alloy. The Hci of ?6 sample does not show an evident decline until 500℃and its remains 70% of the value at room temperature when temperature was increased to 600℃, which is better than the results reported in the literatures. The critical temperatures at which the Hci of sample start to decrease obviously in ingot and ribbon with the same composition, are ~450℃. The more excellent magnetic property at room temperature of ?6 sample than that of the ingot and ribbon maybe due to grain refinement, change in the lattice parameters and misfits of 2:17 phase and 1:5 phase caused by suction casting. The substitution of Sm by the heavy rare-earth elements has been also investigated. (Sm0.5Ho0.5)(CobalFe0.10Cu0.08Zr0.025)7.55 ingot sample shows an excellent magnetic property and its Hci can exceed 12 kOe at room temperature. Its Hci is less than that of the sample without Ho element when the temperature exceeds 250℃. But its saturation magnetization (Ms) is much more than that of the sample without Ho element with the temperature above 300℃.
     The Y6(FeCo)72B22 alloy samples with the diameter of ?2mm ~ ?9mm and size of 2×10mm were prepared by suction casting method, which shows soft magnetic properties. The sample with size of ?2 is almost amorphous. With the increasing of sample size, in other words, the decreasing of the cooling rate, some nano-scale phases start to precipitate in the amorphous matrix and eventually forming the two phases nano-layered structure. It has been found that with lowering of cooling rate, the period of nano-layered structure increases from 40 to 400 nm in ?2.5 and ?9 alloys, respectively. The EDX result shows that the concentration of Fe and Y elements are enrichment regarding their own layers over each other. The presence of Co element does not show any significant change in both layers. XRD and SAED investigations also confirm that there are two phases (Fe,Co)2B and Fe (Co,Y) or Fe (Co,Y,B) in the nano-layered structure. The alloy replacing of Y by Nd element has been prepared by suction casting under the magnetic field (~1kOe) and its magnetic measurements show a significant enhancement in Hci (1.1kOe) and Mr/ Ms (0.3).
引文
[1] Liu J.F, Zhang Y, Ding Y, et al. Rare earth permanent magnets for high temperature applications. Proceedings of the Fifteenth International Workshop Rare-Earth Magnets and their Applications, 1998, 607-622.
    [2] Chen X, Liu JF, Ni C, et al. Magnetic and structural properties of commercial Sm2(Co,Fe,Cu,Zr)17-based magnets. J. Appl. Phys, 1998, 83 (11):7139-7141.
    [3]郭朝晖,李卫.新型高温磁体的研究概况.金属功能材料,2000, 7(5):1-5.
    [4] Zhou J, Skomski R, Chen C, et al. Sm-Co-Cu-Ti high-temperature permanent magnets. Appl. Phys. Lett, 2000, 77(10):1514-1516.
    [5] Handstein A , Yan A , Martinek G, et al.Stability of magnetic properties of Sm2Co17-type magnet s at operating temperatures higher than 400℃. IEEE Trans. on Mag, 2003, 39 (5): 2923-2925.
    [6] Coehoorn R, Mooij D B, Duchateau J P W B, et al. Novel permanent magnetic materials made by rapid quenching. J. de Phys, 1988, 49:C8-669.
    [7] Manaf A, Buckley R A, Davies H A. New nanocrystalline high remanence Nd-Fe-B alloys by rapid solidification. J. Magn. Magn. Mater, 1993, 128:302-306.
    [8] Skomski R. Aligned two-phase magnet: Permanent magnetism of the future. J. Appl. Phys, 1994, 76:7059-7064.
    [9] Betamcourt J I R, Davis H A. Magnetic properties of nanocrystalline didymium (Nd-Pr)-Fe-B alloys. J. Appl. Phys, 1999, 85:5911-5913.
    [10]周寿增,董清飞.超强永磁体—稀土铁系永磁材料.冶金工业出版社. 2004.
    [11]黄钢祥.稀土永磁材料的发展.世界科学, 1998(6):29-30.
    [12] Nesbbit E A, Willens R H, Sherwood R C, et al. New permanent magnet materials. Appl. Phys. Lett, 1968, 12:361-362.
    [13] MenthA. Bulk-hardened Sm-Co-Fe 2-17 magnets. Appl. Phys. Lett, 1976, 29(4):270-272.
    [14] Ojima T, Tomizawa S, Yoneyama T, et al. New type rare earth cobalt magnets with an energy product of 30 MGOe. J. Appl. Phys, 1977, 16(4): 671-672.
    [15] Ojima T, Tomizawa S, Yoneyama T, et al. Magnetic properties of a new type of rare earth magnets Sm2(CoFeCuZr)17. IEEE Trans. on Mag, 1977, 13(5): 1317-1319.
    [16] Mishra R K, Thomas G, Yoneyama T, et al. Microstructure and properties of step aged rare earth alloy magnets. J. Appl. Phys, 1981, 52: 2517-2519.
    [17] Rabenberg L, Mishra P.K, Thomas G. Microstructures of precipitation hardened SmCo permanent magnets. J. Appl. Phys, 1982, 53(3): 2389-2391.
    [18] Hadjipanayis G C. Magnetic hardening in Zr-substituted 2:17 rare-earth permanent magnets. J. Appl. Phys, 1984, 55(6): 2091-2093.
    [19]周寿增.稀土永磁材料及其应用.北京:冶金工业出版社. 1999.
    [20] Croat J J. Pr-Fe and Nd-Fe-based materials: a new class of high-performance permanent magnets. J. Appl. Phys, 1984, 55 (6): 2078-2082.
    [21] Sellmyer D J, Ahmed A, Muench G, et al. Magnetic hardening in rapidly quenched Fe-Pr and Fe-Nd alloys. J. Appl. Phys, 1984, 55(6):2088-2090.
    [22] Sagawa M, Fujimura S, Toyawa N, et al. New material for permanent magnets on a base of Nd and Fe. J. Appl. Phys, 1984, 55(6):2083-2087.
    [23]林河成.我国稀土永磁材料的新进展.矿冶, 2005, 14 (3):53-78.
    [24]易健宏,彭元东. 2:17型SmCo稀土永磁材料的研究现状与趋势.稀有金属材料与工程, 2004, 33(4): 337-342.
    [25] Tang, W, Zhang, Y, Hadjipanayis, GC. Sm(Co,Fe,Cu,Zr)z magnets fabricated by simple processing. Appl. Phys. Lett, 2000, 77(3):421-422.
    [26] Zhang Y, Corte-Real M, Hadjipanayis GC, et al. Magnetic hardening studies in sintered Sm(Co,Cux,Fe,Zr)z 2:17 high temperature magnets. J. Appl. Phys, 2000, 87(9): 6722-6724.
    [27] Tang W, Zhang Y, Hadjipanayis GC. High-temperature magnetic properties of Sm(Coba1Fe0.1Cu0.088Zrx)8.5 magnets. J. Magn. Magn. Mater, 2000, 212(1-2):138-144.
    [28] Liu JF, Zhang Y, Hadjipanayis GC. High-temperature magnetic properties and microstructural analysis of Sm(Co,Fe,Cu,Zr) permanent magnets. J. Magn. Magn. Mater, 1999, 202 (1):69-76.
    [29] Liu JF, Hadjipanayis GC. Demagnetization curves and coercivity mechanism in Sm(CoFeCuZr)(z) magnets. J. Magn. Magn. Mater, 1999, 195(3):620-626.
    [30] Christina H, Martin C, Wa Kmer S. Magnetic pinning strength for the new Sm-Tm magnetic materials for use up to 550℃. J Appl Phys, 2000, 87 (9): 6719-6721.
    [31] Leupold H A, Potenziani E, Clarke J P. High Energy product, temperature compensated permanent magnets for device used at high operating temperature. IEEE Trans. on Mag, 1984, 20(5): 1572-1574.
    [32] Sam liu, Edward Kuhl. Temperature coefficients of Rare Earth Permanent Magnets. IEEE Trans. on Mag, 1999, 35(5): 3271-3273.
    [33] Andrew S Kim. Design of high temperature permanent magnets. J Appl Phys,1997, 81 (30): 5609-5611.
    [34] Goll D. Kleinschroth I, Sigle W, et al. Melt-spun precipitation-hardened Sm2(Co, Cu, Fe, Zr)17 magnets with abnormal temperature dependence of coercivity. Appl. Phys. Lett, 2000, 76(8):1054-1056.
    [35] Yan A, Bollero A, Gutrleisch O, et e1. Melt-spun precipitation hardened Sm(Co, Fe, Cu, Zr)z magnets. Materials Science and Engineering A, 2004, 375(Sp. Iss. SI):1169-1172.
    [36] Du Xiaobo, Zhang Hongwei. Rong Chuanbing, et al. Magnetic properties and coercivity mechanism of melt-spun Sm(Co1?xFex)6.8Zr0.2C0.06 ribbons with TbCu7 structure. J. Magn. Magn. Mater, 2004. 281(2-3):255-260.
    [37] Gopalan R, Ping D H, Hono K. Microstructural evolution and the magnetic properties of melt-spun Sm–Co–Cu–B and Sm–Co–Fe–Cu–B ribbons. J. Magn. Magn. Mater. 2004, 284,321-329.
    [38] Yan A. Bollero A, Muller K H, et a1. Influence of Fe, Zr, and Cu on the microstructure and crystallographic texture of melt-spun 2:17 Sm-Co ribbons. J.Appl.Phys, 2002, 91(10): 8825-8827.
    [39] Rong CB, Zhang J, Zhang HW, et al. Positive temperature coefficients of remanence and coercivity in precipitation-hardened Gd-Co-Fe-Cu-Zr alloys.J.Magn.Magn. Mater,2004, 279(2-3):143-148.
    [40] Rong CB, Zhang J, Du XB, et al. Magnetic properties and coercivity mechanism of precipitation-hardened Gd-Co based ribbons. Chinese physics, 2002, 13(7):1144-1148.
    [41] Gopalan R, Ping D H, Hono K, et al. Investigation on structure-magnetic property correlation in melt-spun Sm(Co0.56Fe0.31Cu0.04Zr0.05B0.04)z ribbons. J. Magn. Magn. Mater, 2005, 292:150-158.
    [42] Huang M Q, Yurgut Z, Ma B M, et al. Effects of Zr, Nb, and Cu substitutions on magnetic properties of melt-spun and hot deformed bulk anisotropic nanocomposite SmCo type magnets. J.Appl. Phys, 2008, 103(7):07E134 1-3.
    [43]潘晶,刘新才,郭鹅举,徐峰,肖军. Sm(Co0.68Fe0.02Cu0.08Zr0.04)z (z=10、12)合金快淬薄带的微观组织特征.功能材料, 2008, 39(8):1292-1294.
    [44]钟文定,戴道生,钱昆明.铁磁学(上册).北京:科学出版社,1998.
    [45]奥汉德利, Ao Han De Li R. C.现代磁性材料原理和应用.北京:化学工业出版社, 2002.
    [46] Kaplesh Kumar. RETM5 and RE2TM17 permanent magnets development. J.Appl. Phys, 1988, 63 (6):13-57.
    [47]钟文定,戴道生,钱昆明.铁磁学(中册).北京:科学出版社,1998.
    [48] Nesbitt E.A. Rare earth permanent magnets. Academic Press INC (London) Ltd. 1973:34.
    [49] Rabenberg L, Mishra R.K, Thomas G. Development of the cellular microstructure in the SmCo7.4 type magnets .Proc. 6th Int’l workshop on REPM. 1982, 599.
    [50] Xiao Y F, Zhang Z Y. The microstructure and coercivity of Sm(CoCuFeZr)7.4 magnet with high intrinsic coercivity. The proceeding 8th international workshop on rare earth-cobalt permanent magnets and their applications. 1985, 257-264.
    [51] Hadjipanayis G C, Hazelton R C, Wollins S H. The changes of coercive force andmicrostructure of Sm(CoCuFeZr)7.4 magnets during aging. The Proceeding 6th International Workshop on Rare Earth-Cobalt Permanent Magnets and Their Applications.1982,667-675.
    [52] Tang W, Zhang Y, Hadjipanayis G C. Effect of Zr on the microstructure and magnetic properties of Sm(CobalFe0.1Cu0.088Zrx)8.5 magnets. J.Appl. Phys, 2000, 87(1): 399-403.
    [53] Xiong X Y, Ohkubo T, Koyama T, et al. The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe. Acta Mater, 2004, 52(3):737-748.
    [54] Zhang Y, Tang W, Hadjipanayis G C, et al. Krishnan K. Evolution of microstructure, microchemistry and coercivity in 2:17 type Sm-Co magnets with heat treatment. IEEE Trans. on Mag, 2001, 37(4):2525-2527.
    [55] Hadjipanayis G C, Tang W, Zhang Y, et al. High temperature 2:17 magnets: relationship of magnetic properties to Microstructure and processing. IEEE Trans. on Mag, 2000, 36(5): 3382-3387.
    [56] Tang W, Zhang Y, Hadjipanayis G C. A high performance magnetic alloy with an operating temperature of 500℃. IEEE Trans. on Mag, 2000, 36(5): 3294-3296.
    [57] Cataldo L, Lefevre A, Ducret F, et al. Binary system Sm-Co: revision of the phase diagram in the Co-rich field. J. Alloys Compd., 1996, 241(1-2): 216-223.
    [58] Liu S, Pottsm G, Doyle G, et al. Effect of Z value on high temperature performance of Sm(Co,Fe,Cu,Zr)z with z=7.14-8.10. IEEE Trans. on Mag, 2000, 36(5): 3297-3299.
    [59] Liu J F, Zhang Y, Dimitrov D, Hadjipanajis G C. Microstructure of high temperature magnetic properties of Sm(Co,Cu,Fe,Zr)z (z=6.7-9.1) permanent magnets. J.Appl. Phys, 1999, 85(5): 2800-2804.
    [60]徐文第,曾令俊,连奇方. Cu含量对Sm-Co-Cu-Fe-Zr永磁合金结构和矫顽力的影响.金属材料研究,1983, 9(6): 37-40.
    [61]顾正飞,张伟华,余宁森等. Sm对Sm(Co,Cu,Fe,Zr)z永磁合金性能和退磁曲线方形度的影响.材料科学与工艺,1995, 3(2): 9-12.
    [62] Chen C H, Gong W, Walmer M H. Behavior of some heavy and light rare earth-cobalt magnets at high temperature. J.Appl. Phys, 2002, 91(10): 8483-8485.
    [63] Huang M Q, Zheng Y, Wallace W E. SmCo(2:17 type) magnets with high contents of Fe and Light rare earths. J.Appl. Phys, 1994, 75(10):6280-6282.
    [64] Zhang Y, Hadjipanayis G C. Microchemistry and microstructure of SmCo 2:17 permanent magnets with Ni, Pr, and Ti substitutions. IEEE Trans. on Mag, 2004, 40(4): 2925-2927.
    [65] Nagel H. Coercivity and microstructure of Sm(Co0.87Cu0.13)7.8. J.Appl. Phys, 1979, 50(2): 1026-1030.
    [66] Liu J F, Ding Y, Zhang Y, Dimitar D, Zhang F, Hadjipanayis G C. New rare-earth permanent magnets with an intrinsic coercivity of 10 kOe at 500℃. J.Appl. Phys, 1999, 85:5660-5662.
    [67] Lectard E. et al. Saturation magnetization and anisotropy fields in Sm(Co1-yCuy)5 phase. J.Appl. Phys, 1994, 75(10): 6277-6279.
    [68] Liu J F. Effect of iron on the high temperature magnetic properties and microstructure of Sm(Co,Fe,Cu,Zr)z permanent magnets. J. App. Phys, 1999, 85(3): 1670-1674.
    [69] Tang W, Zhang Y, Hadjipanayis G C. Microstructure and magnetic properties of Sm(CobalFexCu0.128Zr0.02)7.0 magnets with Fe substitution. J. Magn. Magn. Mater, 2000, 221: 268-272.
    [70]杜娟,彭元东,易健宏,李丽娅.成分对高温永磁体Sm(Co,Fe,Cu,Zr)z显微组织和磁性能的影响.金属功能材料, 2003, 10(2): 25-30.
    [71] Maury C, Rabenberg L, Allibert C H. Genesis of the cell microstructure in the Sm(Co, Fe, Cu, Zr) permanent magnets with 2:17 type. Physics Status Solidi A, 1993, 140(1):57-72.
    [72] Yoneyama T, Fukuno A, Ojima T. Sm2(Co, Cu, Fe, Zr)17 magnets having high iHc and (BH)max. Third International Conference on Ferrites. Kyoto, Japan, 1982:362-365.
    [73] Satyanarayana M V, Fujii H, Wallace E. Magnetic properties of substituted Sm2Co17–xTx compounds (T = V, Ti, Zr, and Hf). J. App. Phys, 1982, 53(3): 2374-2376.
    [74] Liu S, Yang J, Doyle G, et al. New sintered high temperature Sm-Co based permanent magnet materials. IEEE Trans. on Mag, 1999, 35(5):3325-3327.
    [75] Tang W, Zhang Y, Hadjipanayis G C. Influence of Zr and Cu content on the microstructure and coercivity in Sm(CobalFe0.1CuyZrx)8.5 magnets. J. App. Phys, 2000, 87(9): 5308-5310.
    [76]文雪萍.高温2:17型SmCo永磁体的合金成分和烧结与时效工艺研究[硕士学位论文].长沙:中南大学,2005.
    [77]杜娟. 2:17型SmCo永磁体合金的时效处理工艺研究[硕士学位论文].长沙:中南大学,2003.
    [78]彭元东.高矫顽力2:17型SmCo永磁体体热处理工艺研究[硕士学位论文].长沙:中南大学,2002.
    [79] Liu J F, Chui T, Dimitrov D, et al. Abnormal temperature dependence of intrinsic coercivity in Sm(Co,Fe,Cu,Zr)z powder materials. Appl. Phys. Lett, 1998, 73(20): 3007-3009.
    [80] Liu S, Yang L, Doyle G, et al. Abnormal temperature dependence of intrinsic coercivity in sintered Sm-Co-based permanent magnets. J.App.Phys, 2000, 87(9): 6728-6730.
    [81] Sellmyyer D J, Liu Y, Shindo D. Handbook of advanced magnetic materials. Volume IV advanced magnetic materials: properties and applications. Beijing: Tsinghua University Press, 2005.
    [82] Rothworf F, Tawara Y, Ohashi K. et al. Enhancement of coercitivity by heat treatment of Sm(CoCuFeZr)7.5 magnets. The Proceeding 6th International Workshop on Rare Earth-Cobalt Permanent Magnets and Their Applications. 1982,567-583.
    [83] Kronmuller H. Nucleation and propagation of reversed domains in Re-Co magnets. The Proceeding 6th Internatinal Workshop on Rare Earth-Cobalt Permanent Magnets and Their Applications. 1982: 555-565.
    [84] Fidler J. Skalicky P. Microstructure of precipitation hardened cobalt rare earth permanent magnets. J. Magn. Magn. Mater, 1982, 27: 127-134.
    [85] Strei B, Fidler J, Schrefl. Domain wall pinning in high temperature Sm(CoFeCuZr)7-8 magnets. J.App.Phys, 2000, 87(9): 4765-4767.
    [86] Livingston J D, Martin D L. Microstructure of aged (Co, Cu, Fe)7Sm magnets. J.App.Phys, 1977, 48(3): 1350-1354.
    [87] Sun T D. A model on the coercivity of the hardened 2-17 rare earth cobalt permanent magnets. J.App.Phys, 1981, 52(3): 2532-2534.
    [88] Nagel H, Perry A L, Menth A. Hard-magnetic properties and microstructure of Sm(Co,Cu)z compounds. J.App.Phys, 1976, 47(6): 2662-2670.
    [89] Li D, Mildrum H F, Stanat K J. Thermal stability of five sintered rare-earth-cobalt magnet types. J.App.Phys, 1988, 63(8):3984-3986.
    [90] Chen C H, Walmer M S, Walmer M H, Liu S, Kuhl G E. Thermal stability of Sm-TM high temperature magnets at 300-500℃. IEEE Trans. on Mag, 2000, 36(5): 3291-3293.
    [91] Chen C H, Walmer M H, Kottcamp E H, Gong W. Surface reaction and Sm depletion at 550℃for high temperature Sm-TM magnets. IEEE Trans. on Mag, 2001, 37(4): 2531- 2533.
    [92] Chen C H, Walmer M H, Liu S. Thermal stability and the effectiveness of coatings for Sm-Co 2:17 high-temperature magnets at temperatures up to 550℃. IEEE Trans. on Mag, 2004, 40(4):2928-2930.
    [93]冯海波,盛建锋,龚维幂,于荣海. Sm(Co,Fe,Cu,Zr)z (6.5≤z≤8.5)高温永磁合金的组织结构与性能.材料科学与工艺, 2006, 14(4): 442-448.
    [94]褚维,陈国钧.块状铁磁性非晶合金.金属功能材料,1999, 6(6):257-261.
    [95]黄永杰.非晶态磁性物理与材料.成都:电子科技大学出版社,1991.
    [96] Duwez P, Lin S C H. Amorphous ferromagnetic phase in iron-carbon-phosphorus alloys .J. Appl. Phys, 1967, 38(10):4096-4097.
    [97] Chen H S. Effect of composition and structure on magnetic properties of amorphous Fe-P-C alloys. Physics Status Solidi A, 1973, 17 (2):561-566.
    [98] Inoue A, Gook J S. Fe-Based Ferromagnetic Glassy Alloys with Wide Supercooled Liquid Region. Mater. Trans. JIM, 1995, 36(9):1180-1183.
    [99] Inoue A, Makino A, Mizushima T. Ferromagnetic bulk glassy alloys. J. Magn. Magn. Mater, 2000, 215-216:246-252.
    [100] Inoue A, Takeuch A, Zhang T, Murakami A. Soft Magnetic Properties of Bulk Fe-Based Amorphous Alloys Prepared by Copper Mold Casting. IEEE Trans. on Mag, 1996, 32 (5):4866-4871.
    [101] Inoue A, Makino A, Mizushima T. Soft magnetic properties of Fe based amorphous thick sheets with large glass forming ability. J. Appl. Phys, 1997, 81(8):4029-4031.
    [102] Koshiba H, Inoue A. Fe-based soft magnetic amorphous alloys with a wide supercooled liquid region. J. Appl. Phys, 1999, 85 (8):5136-5138.
    [103] Inoue A, Zhang T, Takeuchi A. Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe–TM–B (TM=IV–VIII group transition metal) system. Appl. Phys. Lett, 1997, 71 (4):464-466.
    [104] Zhang W, Inoue A. Thermal and magnetic properties of Fe-Co-Ln-B (Ln=Nd, Sm, Tb or Dy) amorphous alloys with high magnetostriction. Mater. Trans. JIM, 1999, 40(1):78-81.
    [105] Inoue A, Zhang T, Takeuchi A. Hard magnetic bulk amorphous alloys. IEEE Trans. on Mag, 1997, 33 (5):3814-3816.
    [106] Shen J, Chen Q, Sun J F, et al. Exceptionally high glass forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett, 2005, 86 (15):151907 1-3.
    [107] Inoue A, Zhang T, Zhang W , et al. Bulk Nd-Fe-A1 amorphous alloys with hard magnetic properties. Mater. Trans, JIM, 1996, 37(2):99-108.
    [108] J. J Croat. Permanent magnet properties of rapidly quenched rare earth-iron alloys. IEEE Trans. on Mag, 1982, 18(6):1442-1447.
    [109] Inoue A, Takeuchi A, Zhang T. Ferromagnetic bulk amorphous alloys. Metal and Mater Trans A, 1998, 2A:1779-1793.
    [110]魏炳忱,汪卫华等.硬磁性Nd60Al10Fe20Co10大块金属玻璃的磁畴结构.科学通报, 2001, 46(14): 1158-1161.
    [111] Inoue A, Zhang T, Takeuchi A, et al. Hard magnetic bulk amorphous Nd-Fe-Al alloys of 12 mm in diameter made by suction casting. Mater. Trans. JIM, 1996, 37(4):636-640.
    [112] Inoue A, Zhang T, Takeuchi A. Preparation of bulk Pr-Fe-Al amorphous alloys and characterization of their hard magnetic properties. Mater. Trans. JIM, 1996, 37(12): 1731-1740.
    [113] Zhang W, Matsusita M, Inoue A. Effect of Dy addition on the thermal stability and magnetic properties of the Fe-Co-Nd-B amorphous alloys with supercooled liquid region.Mater.Trans.JIM, 2000, 41(6):696-700.
    [114] Zhang W, Matsusita M, Inoue A.Hard magnetic properties and nanocrystallized structure of Fe66.5Co10Pr3.5B20 glassy alloy. Mater.Trans.JIM, 2001, 42 (8):1543-1546.
    [115] Ralph Skomski, J M D Coey. Giant energy product in nanostructured two-phase magnets, Phys. Rev. B, 1993, 48(21):15812-15816.
    [116] Kneller, E.F. Hawig, R. The exchange-spring magnet: a new material principle for permanent magnets, IEEE Trans. on Mag, 1991, 27(4): 3588-3560.
    [117] Gloriant T, Surinach S, Baro M D. Stability and crystallization of Fe-Co-Nb-B amorphous alloys. Journal of Non-Crystalline Solids, 2004, 333 (3):320-326.
    [118] Amiya K, Urata A, Nishiyama N, et al. Magnetic properties of (Fe, Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability. J. Appl. Phys, 2005, 97(10): 10F913 1-3.
    [119] Willard M A, Laughlin D E, McHenry M E, et al. Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. J. Appl. Phys, 1998, 84 (12):6773-6777.
    [120] Mastrogiacomo G, Kradolfer J, Loffler JF. Development of magnetic Fe-based metallic glasses without metalloids. J. Appl. Phys, 2006, 99(2): 023908 1-3.
    [121] Bozorth R M. Ferromagnetism. Van Nostrand, NY 1951,441.
    [122] O’Handley R C R, Ray H R, et al. Ferromagnetic properties of some new metallic glasses. Appl. Phys. Lett,1976, 29(6):330-332.
    [123] Liu C T, Chisholm M F, Miller M K. Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy. Intermetallics, 2002, 10(11-12):1105-1112.
    [124]刘翊纶,董耐芳,刘达元.基础元素化学.高等教育出版社,1992.
    [125] Zhang J, Tan H, Feng Y P, Li Y. The effect of Y on glass forming ability. Scripta Materialia, 2005, 53 (2):183-187.
    [126] Lu Z P, Liu C T, Porter W D. Role of yttrium in glass formation of Fe-based bulk metallic glasses. Appl. Phys. Lett, 2003, 83 (13):2581-2583.
    [127] Han T, Qiu K Q. Y addition on glass forming ability and magnetic properties of Nd-Fe-Al alloys. Rare Metal Materials and Engineering, 2003, 32 (11):907-910.
    [128] Lin C Y, Tien H Y, Chin T S. Soft magnetic ternary iron-boron-based bulk metallic glasses. Appl. Phys. Lett, 2005, 86(16): 162501 1-3.
    [129] Ray A E. Metallurgical behavior of Sm (Co,Fe,Cu,Zr)z alloys. J. Appl. Phys, 1984, 55(6): 2094-2096.
    [130] Streibl B, Fidler J, Schrefl T. Domain wall pinning in high temperature Sm(Co, Fe, Cu, Zr)7-8 magnets. J. Appl. Phys, 2000, 87(9):4765-4767.
    [131] Durst K D, Kronmüller H and Ervens W. Investigations of the magnetic properties and demagnetization processes of an extremely high coercive Sm(Co,Cu,Fe,Zr)7.6 permanent magnet. I. Determination of intrinsic magnetic material parameters. Phys. Status Solidi A, 1988, 108(1): 403-416.
    [132] Derkaoui S, Allibert C H, Delannay F, et al. The influence of zirconium on Sm(Co, Fe, Cu, Zr)7.2 alloys for permanent magnets II. Composition and lattice constants of the phases in heat-treated materials. J. Less-Common Met, 1987, 136(1): 75-86.
    [133] Fukui Y, Nishio T and Iwama Y. Effect of zirconium upon structure and magnetic properties of 2-17 type rare earth-cobalt magnets. IEEE Trans. Magn, 1987, 23(5): 2705-2707.
    [134] W M Gong, R S Gao,H B Feng, et al. Effect of Zr on the microstructure, magnetic domain structure, microchemistry and magnetic properties in Sm(CobalCu0.08Fe0.10Zrx)8.5 magnets. J.phys. D: applied physics, 2007, 40(24): 7620-7624.
    [135] Satyanarayana M V, Fujii H, Wallace E. Magnetic properties of substituted Sm2Co17-xTx compounds (T=V, Ti, Zr and Hf). J. Appl. Phys, 1982, 53(3): 2374-2376.
    [136] Christina H. Chen, Steve Kodat, and Michael H. Walmer. Effects of grain size and morphology on the coercivity of Sm2(Co1-xFex)17 based powders and spin cast ribbons. J. Appl. Phys, 2003, 93(10):7966-7968.
    [137] W. M. Pragnell, A. J. Williams and H. E. Evans. The oxidation of SmCo magnets. J. Appl. Phys, 2008, 103(7):07E127 1-3.
    [138] Gopalan R, Ohkubo T, Hono K. Identification of the cell boundary phase in the isothermally aged commercial Sm(Co0.725Fe0.1Cu0.12Zr0.04)7.4 sintered magnet. Scripta Materialia, 2006, 54(7): 1345-1349.
    [139] Streibl B, Fidler J, Schrefl T. Domain wall pinning in high temperature Sm(Co,Fe,Cu,Zr)7-8 magnets. J. Appl. Phys, 2000, 87(9): 4765-4767.
    [140] Kronmuller H, Goll D. Micromagnetic theory of the pinning of domain walls at phase boundaries. Physica B, 2002, 319: 122-126.
    [141] Matthias T, Scholz W, Fidler J, et al. Sm(Co,Fe,Cu,Zr)z magnets for high-temperature applications: microstructural and micromagnetic analysis. IEEE Trans. Magn, 2002, 38(5): 2943-2945.
    [142]林志,王艳丽,林均品等.纳米力学探针的基本原理及其应用实例.航空材料学报, 2001, 21(4):56-62.
    [143]卢光熙,侯增寿.金属学教程.上海:上海科学技术出版社, 1985:70.
    [144] Burden M. H, Jones H. A metallographic study of the effect of more rapid freezing on the cast structure of aluminum-iron alloys. Metallography, 1970, 3(3):307-326.
    [145]王宥宏,孙占波,宋晓平. Cu2Cr合金快淬带的凝固数值模拟.中国有色金属学报, 2005, 15(7):1045-1050.
    [146]张连勇.相变致冷凝固的铝合金及铜基大块非晶组织与性能研究[博士学位论文].哈尔滨:哈尔滨工业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700