用户名: 密码: 验证码:
铜铟硒薄膜太阳能电池材料的制备与若干理论计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,全球范围内能源和环境问题日益突出。太阳能具有取之不尽、用之不竭并且属于清洁能源等优点,成为解决能源短缺、环境污染和温室效应等问题的有效途径。薄膜太阳能电池兼具Si基太阳能电池高转换效率及成本较低的优点,其中,铜铟硒(CuInSe2, CIS)由于具有能够调整光学能隙、吸收率高(~6×105/cm)、抗辐射能力强和长期的稳定性等特点,被认为最有希望的薄膜太阳能电池材料之一。本文对CIS薄膜太阳能电池中有关薄膜材料的几个基础问题进行研究,研究内容主要包括实验和理论计算两个部分。
     实验部分研究了电沉积法和溅射Cu-In合金层硒化法制备CIS薄膜,并对这两种制备方法的关键工艺参数对CIS薄膜的性能影响进行了分析。研究了电沉积法的工作机理和工艺参数对CIS薄膜性能的控制规律,以及后续的真空退火处理对电沉积CIS薄膜的结晶性、表面形貌和薄膜成分的改善作用;研究了硒化温度对溅射Cu-In合金层硒化法制备CIS薄膜的工艺的影响,揭示了硒化过程中成分和物相的变化以及薄膜表面和截面形貌的变迁,提出了硒化过程中CIS薄膜生长的三个阶段;在反应溅射的MoNx薄膜基底上生长了强择优取向的CIS薄膜,并对择优取向的形成原因进行了分析。
     理论计算部分用第一性原理计算方法对CIS中的一些基础物理问题进行了研究。研究了CIS结构变形和同族元素取代对电子结构的影响,用化学键长的变化解释了能带结构的变化,并提示了CIS的结构参数和能隙随着同族元素取代量的变化规律;研究了CIS中的本征和非本征缺陷物理,对于黄铜矿相和CuAu结构的CIS,首次提出了有序缺陷化合物CuIn5Se8的两种稳定晶型,计算了CIS中本征和非本征缺陷的形成能随化学势和费米能级的变化规律,并对Na+掺杂所引入缺陷的作用机制进行了解释;对CIS与II-VI族化合物所形成的异质结的能带排列进行了计算,确定导带偏差ΔEc和价带偏差ΔEv对寻找CdS缓冲层的替代材料有重要指导意义。
     本文的研究结果对推进CIS薄膜太阳能电池的大规模应用具有积极的意义。
Since the beginning of 21st century, global-scale energy and environmental issues have become increasingly prominent. Solar energy has the advantages of inexhaustible and clean energy, thus is effective solution to energy shortages, environmental pollution and the greenhouse effect. Thin film solar cells combine the high conversion efficiency as compared with Si based solar cells and the advantage of low cost. Meanwhile, copper indium diselenide (CuInSe2, CIS) is considered as the most promising materials for thin film solar cell application, owing to its ability to adjust optical band gap, high optical absorption coefficient (~6×105/cm), strong anti-radiation characteristics and long-term stability. In this thesis, we focus on some fundamental issues of CIS thin film materials for solar cell application, including the experimental and theoretical calculation parts.
     In the experimental part, the preparation of CIS thin film by electrodeposition and selenization of sputtered Cu-In alloy precursors is studied, and the effects of key process parameters on the properties of CIS thin films are analyzed. In the electrodeposition process, the work mechanism and the control of performance of CIS thin films by process parameter are studied. Also, the influence of follow-up vacuum annealing on the crystallization, surface morphology and composition profile of electrodeposited CIS thin films is investigated. Furthermore, the effect of selenization temperature on the properties of CIS thin films prepared by selenization of sputtered Cu-In alloy precursors is studied, revealing the selenium incorporation, phase change and evolution of surface and cross-section morphology of CIS thin films during selenization process. The three stage growth model of CIS thin films is also proposed. Moreover, it is revealed that CIS thin films deposited onto MoNx thin film substrate exhibit strong preferred orientation along (112) plane, and the enhancement of preferred orientation is attributed to the reduced lattice mismatch between MoNx and CIS with increasing N2 partial pressure during reactive sputtering of MoNx thin films.
     In the theoretical calculation part, we employ first principles calculation based on density functional theory (DFT) to study some basic physics problems in CIS. First, the electronic structure modification of CIS induced by structural deformation and composition alchemy is studied, in which the structural deformation is related to distortion of lattice constants (a and c) and anion displacementμand composition alchemy is related to substitution of components with the same group elements. The energy level movements induced by structural deformation are integrated by alteration of chemical bonds, and the changes of lattice parameter and band gap induced by composition alchemy are demonstrated. Also, the defect physics in CIS are studied by calculating the formation energy of intrinsic and extrinsic defects to evaluate the most favorite defect mechanism. Two stable polytypes of ordered defect compound CuIn5Se8 derived from chalcopyrite and CuAu type CIS are first reported in this thesis. Moreover, the roles of sodium induced extrinsic point defect and defect pairs in CIS are explained. Another topic is to determine the band alignment between CIS and II-VI group compounds (i.e. CdS, CdSe, ZnO, ZnS and ZnSe). The valence band offsetΔEv and conduction band offsetΔEc are calculated by means of average electrostatic potental.
     This thesis’s finds have positive significance to advance the large scale application of CIS thin film solar cells.
引文
[1] International Energy Agency, World energy outlook 2002. 2002, OECD: Paris
    [2] "十五"国家高技术发展计划能源技术领域专家委员会.能源发展战略研究.北京:化学工业出版社, 2004
    [3] Becquerel A E. Comt Rend Acad Sci, 1839, 9: 561
    [4] Chapin D M, Fuller C S, Pearson G L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. J Appl Phys, 1954, 25: 676-677
    [5]安其霖,曹国琛,李国欣.太阳电池原理与工艺.上海:上海科学技术出版社, 1984
    [6] Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook. Mater Sci Eng R, 2003, 40: 1-46
    [7] Green M A, Emery K, Bucher K, et al. Solar cell efficiency tables (version 13). Prog Photovoltaics, 1999, 7: 31-37
    [8] Glunz S W, Rein S, Warta W, et al. Degradation of carrier lifetime in Cz silicon solar cells. Sol Energy Mater Sol Cells, 2001, 65: 219-229
    [9] Glunz S W, Rein S, Knobloch J, et al. Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application. Prog Photovoltaics, 1999, 7: 463-469
    [10] Kemell M, Ritala M, Leskela M. Thin film deposition methods for CulnSe2 solar cells. Crit Rev Solid State, 2005, 30: 1-31
    [11] Goetzberger A, Hebling C. Photovoltaic materials, past, present, future. Sol Energy Mater Sol Cells, 2000, 6: 1-19
    [12]耿新华,孙云,王宗畔.薄膜太阳电池的研究进展.物理, 1999, 28: 96-102
    [13] Carlson D E, Wronski C R. Amorphous silicon solar cell. Appl Phys Lett, 1976, 28: 671-673
    [14] Yamamoto K, Nakajima A, Yoshimi M, et al. Novel hybrid thin film silicon solar cell and module. in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion. 2003, Osaka, Japan: 2789-2792
    [15] Meier J, Dubail S, Cuperus J, et al. Recent progress in micromorph solar cells. J Non-Crys Solids, 1998, 230: 1250-1256
    [16] Werner J H, Kolodinski S, Queisser H J. Novel Optimization Principles and Efficiency Limits for Semiconductor Solar-Cells. Phys Rev Lett, 1994, 72: 3851-3854
    [17] Bergmann R B. Crystalline Si thin-film solar cells: a review. Appl Phys A-Mater, 1999, 69: 187-194
    [18] Reber S, Wettling W. High-temperature processing of crystalline silicon thin-film solar cells. Appl Phys A-Mater, 1999, 69: 215-220
    [19] Yamamoto K, Yoshimi M, Suzuki T, et al. Thin film poly-Si solar cell with "star structure" on glass substrate fabricated at low temperature. in Proceedings of the 26 IEEE-PVSC. 1997, Anaheim: 575-580
    [20] Hebling C, Reber S, Schmidt K, et al. Oriented recrystallization of silicon layers for silicon thin-film solar cells. in Proceedings of the 26th IEEE Photovoltaic Specialists Conference. 1997, Anaheim: 623-626
    [21]王文静,许颖,罗欣莲,等.在SiO2和Si3N4膜上用RTCVD法沉积多晶硅薄膜的研究.太阳能学报, 1999, 20: 298-301
    [22] Ferekides C, Britt J, Ma Y, et al. High efficiency CdTe solar cells by close spaced sublimation. in Proceedings of the 23rd IEEE Photovoltaic Specialists Conference. 1993, Louisville, USA: 389-393
    [23] Meyers P V, Albright S P. Technical and economic opportunities for CdTe: PV at the turn of the millennium. Prog in Photovoltaics, 2000, 8: 161-169
    [24] Wu X, Kane J C, Dhere R G, et al. 16.5% efficiency CdS/CdTe polycristalline thin-film solar cells. in Proceedings of the 17th European Photovoltaic Solar Energy Conference and Exhibition. 2002, Munich: 995-1000
    [25] Contreras M A, Ramanathan K, AbuShama J, et al. Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1-xGax)Se2 solar cells. Prog Photovoltaics, 2005, 13: 209-216
    [26] O'Regan B, Graztel M. A low-cost, high-effciency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737-739
    [27] Gratzel M. From space to earth: The story of solar electricity. Nature, 2000, 403: 363-363
    [28] Rostalski J, Meissner D. Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells. Sol Energy Mater Sol Cells, 2000, 63: 37-47
    [29] Stanbery B J. Copper indium selenides and related materials for photovoltaic devices. Crit Rev Solid State, 2002, 27: 73-117
    [30] Birkmire R W, Eser E. Polycrystalline thin film solar cells: Present status and future potential. Annu Rev Mater Res, 1997, 27: 625-653
    [31] Schock H W, Noufi R. CIGS-based solar cells for the next millennium. Prog Photovoltaics, 2000, 8: 151-160
    [32] Schmid D, Ruckh M, Grunwald F, et al. Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. J Appl Phys, 1993, 73: 2902-2909
    [33] Kotschau I M, Schock H W. Depth profile of the lattice constant of the Cu-poor surface layer in (Cu2Se)1-x(In2Se3)x, evidenced by grazing incidence X-ray diffraction. J Phys Chem Solids, 2003, 64: 1559-1563
    [34] Negami T, Kohara N, Nishitani M, et al. Preparation and Characterization of Cu(In1-xGax)3Se5 Thin-Films. Appl Phys Lett, 1995, 67: 825-827
    [35] Zhang S B, Wei S H, Zunger A, et al. Defect physics of the CuInSe2 chalcopyrite semiconductor. Physical Review B, 1998, 57: 9642-9656
    [36] Schock H W, Rau U. The role of structural properties and defects for the performance of Cu-chalcopyrite-based thin-film solar cells. Physica B, 2001, 308-310: 1081-1085
    [37] Birkmire R W. Compound polycrystalline solar cells: Recent progress and Y2K perspective. Sol Energy Mater Sol Cells, 2001, 65: 17-28
    [38] AbuShama J A M, Johnston S, Moriarty T, et al. Properties of ZnO/CdS/CuInSe2 solar cells with improved performance. Prog Photovoltaics, 2004, 12: 39-45
    [39] Young D L, Keane J, Duda A, et al. Improved performance in ZnO/CdS/CuGaSe2 thin-film solar cells. Prog Photovoltaics, 2003, 11: 535-541
    [40] Klaer J, Bruns J, Henninger R, et al. Efficient CuInS2 thin-film solar cells prepared by a sequential process. Semicond Sci Technol, 1998, 13: 1456-1458
    [41] Contreras M A, Egaas B, Ramanathan K, et al. Progress toward 20% efficiency in Cu(In,Ca)Se2 polycrystalline thin-film solar cells. Prog Photovoltaics, 1999, 7: 311-316
    [42] Negami T, Hashimoto Y, Nishiwaki S. Cu(In,Ga)Se2 thin-film solar cells with an efficiency of 18%. Sol Energy Mater Sol Cells, 2001, 67: 331-335
    [43] Hagiwara Y, Nakada T, Kunioka A. Improved Jsc in CIGS thin film solar cells using a transparent conducting ZnO:B window layer. Sol Energy Mater Sol Cells, 2001, 67: 267-271
    [44] Chaisitsak S, Yamada A, Konagai M. Preferred orientation control of Cu(In1-xGax)Se2 (x approximate to 0.28) thin films and its influence on solar cell characteristics. Jpn J Appl Phys, 2002, 41: 507-513
    [45] Karg F H. Development and manufacturing of CIS thin film solar modules. Sol Energy Mater Sol Cells, 2001, 66: 645-653
    [46] Guillemoles J F, Kronik L, Cahen D, et al. Stability issues of Cu(In,Ga)Se2-based solar cells. J Phys Chem B, 2000, 104: 4849-4862
    [47] Wada T, Kohara N, Nishiwaki S, et al. Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells. Thin Solid Films, 2001, 387: 118-122
    [48] Schmid D, Ruckh M, Schock H W. A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures. Sol Energy Mater Sol Cells, 1996, 41-2: 281-294
    [49] Dullweber T, Lundberg O, Malmstrom J, et al. Back surface band gap gradings in Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2001, 387: 11-13
    [50] Guillemoles J F, Cowache P, Lusson A, et al. One, step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure. J Appl Phys, 1996, 79: 7293-7302
    [51] Heske C, Eich D, Fink R. Observation of intermixing at the buried CdS/Cu(In,Ga)Se2 thin film solar cell heterojunction. Appl Phys Lett, 1999, 74: 1451-1453
    [52] Nakada T, Kunioka A. Direct evidence of Cd diffusion into Cu(In,Ga)Se2 thin films during chemical-bath deposition process of CdS films. Appl Phys Lett, 1999, 74: 2444-2446
    [53]李长健,崔芮华,谢小健,等. CuInSe2/CdS薄膜太阳电池的制备工艺.电源技术, 1994, 3: 24-28
    [54]李伟,何清,敖建平,等. ZnO薄膜对CIGS太阳电池性能的影响.太阳能学报, 2004, 25: 419-425
    [55] Xu J L, Yao X F, Feng J Y. The influence of the vacuum annealing process on electrodeposited CuInSe2 films. Sol Energy Mater Sol Cells, 2002, 73: 203-208
    [56] Zhang L, Jiang F D, Feng J Y. Formation of CuInSe2 and Cu(In,Ga)Se2 films by electrodeposition and vacuum annealing treatment. Sol Energy Mater Sol Cells, 2003, 80: 483-490
    [57] Jiang F D, Feng J Y. Effect of temperature on selenization process of metallic Cu-In alloy precursors. Thin Solid Films, 2006, 515: 1950-1955
    [58] Jiang F D, Feng J Y. First principles calculation on polytypes of ordered defect compound CuIn5Se8. Appl Phys Lett, 2006, 89: 221920
    [59] Jiang F D, Zhang L, Feng J Y. Structural properties of CuInSe2 films prepared by selenization of metallic precursors on MoNx film substrates. Appl Surf Sci, 2006, 252: 3051-3057
    [60] Ramanathan K, Contreras M A, Perkins C L, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog Photovoltaics, 2003, 11: 225-230
    [61] Tokita Y, Chaisitsak S, Miyazaki H, et al. Novel In(OH)3:Zn2+ buffer layer for Cu(InGa)Se2 based solar cells. Jpn J Appl Phys, 2002, 41: 7407-7412
    [62] Nakada T, Mizutani M. 18% efficiency Cd-free Cu(In,Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Jpn J Appl Phys, 2002, 41: L165-L167
    [63] Kessler J, Chityuttakan C, Lu J, et al. Cu(In,Ga)Se2 thin films grown with a Cu-poor/rich/poor sequence: Growth model and structural considerations. Prog Photovoltaics, 2003, 11: 319-331
    [64] Lundberg O, Bodegard M, Stolt L. Rapid growth of thin Cu(In,Ga)Se2 layers for solar cells. Thin Solid Films, 2003, 431: 26-30
    [65] Thouin L, Massaccesi S, Sanchez S, et al. Formation of Copper Indium Diselenide by Electrodeposition. J Electroanal Chem, 1994, 374: 81-88
    [66] Guillen C, Herrero J. Effects of Thermal and Chemical Treatments on the Composition and Structure of Electrodeposited CuInSe2 Thin-Films. J Electrochem Soc, 1994, 141: 225-230
    [67] Bhattacharya R N, Batchelor W, Ramanathan K, et al. The performance of CuIn1-xGaxSe2-based photovoltaic cells prepared from low-cost precursor films. Sol Energy Mater Sol Cells, 2000, 63: 367-374
    [68] Zank J, Mehlin M, Fritz H P. Electrochemical codeposition of indium and gallium for chalcopyrite solar cells. Thin Solid Films, 1996, 286: 259-263
    [69] Reddy K T R, Datta P K, Carter M J. Detection of crystalline phases in CnInSe2 films grown by selenisation process. Phys Status Solidi A, 2000, 182: 679-685
    [70] Adurodija F O, Song J, Kim S D, et al. Growth of CuInSe2 thin films by high vapour Se treatment of co-sputtered Cu-In alloy in a graphite container. Thin Solid Films, 1999, 338: 13-19
    [71] Marudachalam M, Hichri H, Klenk R, et al. Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere. Appl Phys Lett, 1995, 67: 3978-3980
    [72] Marudachalam M, Birkmire R W, Hichri H, et al. Phases, morphology, and diffusion in CuInxGa1-xSe2 thin films. J Appl Phys, 1997, 82: 2896-2905
    [73] Ortega-Borges R, Lincot D. Mechanism of chemical bath deposition of cadmium sulfide thin films in the ammonia-thiourea system. J Electrochem Soc, 1993, 140: 3464-3473
    [74] Hodes G, Chemical solution deposition of semiconductor films. New York, Basel, Dekker. 2002
    [75] Rau U, Schock H W. Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges. Appl Phys A-Mater, 1999, 69: 131-147
    [76] Olsen L, Eschbach P, Kundu S. Role of buffer layers in cis based solar cells. in Proceedings of the 29th IEEE Photovoltaic Specialists Conference. 2002, New Orleans: 652-655
    [77] Chaisitsak S, Yamada A, Konagai M. Comprehensive study of light-soaking effect in ZnO/Cu(In,Ga)Se2 solar cells with Zn based buffer layers. in Proceedings of the Materials Research Society Spring Meeting. 2001, San Francisco: H.10.11-15
    [78] Ennaoui A, Siebentritt S, Lux-Steiner M C, et al. High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers. Sol Energy Mater Sol Cells, 2001, 67: 31-40
    [79] Siebentritt S, Kampschulte T, Bauknecht A, et al. Cd-free buffer layers for CIGS solar cells prepared by a dry process. Sol Energy Mater Sol Cells, 2002, 70: 447-457
    [80] Kushiya K, Ohtake Y, Yamada A, et al. Development of polycrystalline CuInxGa1-xSe2 thin film solar cells with band gap of 1.3eV to 1.5eV. Jpn J Appl Phys, 1994, 33: 6599-6604
    [81] Ohtake Y, Chaisitsak S, Yamada A, et al. Characterization of ZnInxSey thin films as a buffer layer for high efficiency Cu(InGa)Se2 thin-film solar cells. Jpn J Appl Phys, 1998, 37: 3220-3225
    [82] Yousfi E B, Weinberger B, Donsanti F, et al. Atomic layer deposition of zinc oxide and indium sulfide layers for Cu(In,Ga)Se2 thin-film solar cells. Thin Solid Films, 2001, 387: 29-32
    [83] Spiering S, Hariskos D, Powalla M, et al. Cd-free Cu(In,Ga)Se2 thin film solar modules with In2S3 buffer layer by ALCVD. Thin Solid Films, 2003, 431: 359-363
    [84] Negami T, Aoyagi T, Satoh T, et al. Cd free CIGS solar cells fabricated by dry processes. in Proceedings of the 29th IEEE Photovoltaic Specialists Conference. 2002, New Orleans: 656-659
    [85] Nakada T, Hongo M, Hayashi E. Band offset of high efficiency CBD-ZnS/CIGS thin film solar cells. Thin Solid Films, 2003, 431: 242-248
    [86] Tringe J, Nocerino J, Tallon R, et al. Ionizing radiation effects in copper indium gallium diselenide thin-film solar cells. J Appl Phys, 2002, 91: 516-518
    [87] Jasenek A, Rau U, Weinert K, et al. Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation. Thin Solid Films, 2001, 387: 228-230
    [88] Jasenek A, Rau U. Defect generation in Cu(In,Ga)Se2 heterojunction solar cells by high-energy electron and proton irradiation. J Appl Phys, 2001, 90: 650-658
    [89] Granath K, Bodegard M, Stolt L. The effect of NaF on Cu(In,Ga)Se2 thin film solar cells. Sol Energy Mater Sol Cells, 2000, 60: 279-293
    [90] Ard M B, Granath K, Stolt L. Growth of Cu(In,Ga)Se2 thin films by coevaporation using alkaline precursors. Thin Solid Films, 2000, 361: 9-16
    [91] Lammer M, Klemm U, Powalla M. Sodium co-evaporation for low temperature Cu(In,Ga)Se2 deposition. Thin Solid Films, 2001, 387: 33-36
    [92] Zellner M B, Birkmire R W, Eser E, et al. Determination of activation barriers for the diffusion of sodium through CIGS thin-film solar cells. Prog Photovoltaics, 2003, 11: 543-548
    [93] Chichibu S F, Sugiyama M, Ohbasami M, et al. Use of diethylselenide as a less-hazardous source for preparation of CuInSe2 photo-absorbers by selenization of metal precursors. J Cryst Growth, 2002, 243: 404-409
    [94] Sugiyama M, Dejene F B, Kinoshita A, et al. The use of diethylselenide as a less-hazardous source in CuInGaSe2 photoabsorbing alloy formation by selenization of metal precursors premixed with Se. J Cryst Growth, 2006, 294: 214-217
    [95] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys Rev, 1964, 136: B864-B871
    [96] Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys, 1992, 64: 1045-1097
    [97] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys-Condens Mat, 2002, 14: 2717-2744
    [98] Wei S H, Zhang S B, Zunger A. Effects of Na on the electrical and structural properties of CuInSe2. J Appl Phys, 1999, 85: 7214-7218
    [99] Wei S H, Zhang S B, Zunger A. First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J Appl Phys, 2000, 87: 1304-1311
    [100] Zhang S B, Wei S H, Zunger A. Stabilization of ternary compounds via ordered arrays of defect pairs. Phys Rev Lett, 1997, 78: 4059-4062
    [101] Schultz P A. Charged local defects in extended systems. Phys Rev Lett, 2000, 84: 1942-1945
    [102] Kohan A F, Ceder G, Morgan D, et al. First-principles study of native point defects in ZnO. Phys Rev B, 2000, 61: 15019-15027
    [103] Choi J, Puthenkovilakam R, Chang J P. Band structure and alignment of the AlN/SiC heterostructure. Appl Phys Lett, 2005, 86: -
    [104] Walle C G, Martin R M. Theoretical study of band offsets at semiconductor interfaces. Phys Rev B, 1987, 35: 8154-8165
    [105] Gonze X, Beuken J M, Caracas R, et al. First-principles computation of material properties: the ABINIT software project. Comp Mater Sci, 2002, 25: 478-492
    [106] Bhattacharya R N. Solution growth and electrodeposited CuInSe2 thin films. J Electrochem Soc, 1983, 130: 2040-2042
    [107] Garg P, Garg A, Rastogi A C, et al. Growth and characterization of electrodeposited CuInSe2 thin films from seleno-sulphate solution. J Phys D: Appl Phys, 1991, 24: 2026-2031
    [108] Oliveira M C F, Azevedo M, Cunha A. A voltammetric study of the electrodeposition of CuInSe2 in a citrate electrolyte. Thin Solid Films, 2002, 405: 129-134
    [109] Lokhande C D. Pulse plated electrodeposition of CuInSe2 films. J Electrochem Soc, 1987, 134: 1727-1729
    [110] Nomura S, Nishiyama K, Tanaka K, et al. Preparation of CuInSe2 thin films on Mo-coated glass substrates by pulse-plated electrodeposition. Jpn J Appl Phys, 1998, 37: 3232-3237
    [111] Pottier T, Maurin G. Preparation of polycrystalline thin films of CuInSe2 by electrodeposition. J Appl Electrochem, 1989, 19: 361-367
    [112] Molin A N, Dikusar A I, Kiosse G A, et al. Electrodeposition of CuInSe2 thin films from aqueous citric solutions I: Influence of potential and mass-transfer rate on composition and structure of films. Thin Solid Films, 1994, 237: 66-71
    [113] Molin A N, Dikusar A I. Electrodeposition of CuInSe2 thin films from aqueous citric solutions II: Investigation of macrokinetics of electrodeposition by means of rotating-disk electrode. Thin Solid Films, 1994, 237: 72-77
    [114] Bhattacharya R N, Hiltner J F, Batchelor W, et al. 15.4% CuIn1-xGaxSe2-based photovoltaic cells from solution-based precursor films. Thin Solid Films, 2000, 361: 396-399
    [115] Bhattacharya R N, Batchelor W, Hiltner J F, et al. Thin-film CuIn1-xGaxSe2 photovoltaic cells from solution-based precursor layers. Appl Phys Lett, 1999, 75: 1431-1433
    [116] Pourbaix M, Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon Press, New York. 1966
    [117] Chraibi F, Fahoume M, Ennaoui A, et al. Influence of citrate ions as complexing agent for electrodeposition of CuInSe2 thin films. Phys Status Solidi A, 2001, 186: 373-381
    [118] Ugarte R, Schrebler R, Cordova R, et al. Electrodeposition of CuInSe2 thin films in a glycine acid medium. Thin Solid Films, 1999, 340: 117-124
    [119] Qiu S N, Li L, Qiu C X, et al. Study of CuInSe2 thin films prepared by electrodeposition. Sol Energy Mater Sol Cells, 1995, 37: 389-393
    [120] Qiu S N, Lam W W, Qiu C X, et al. ZnO/CdS/CuInSe2 photovoltaic cells fabricated using chemical bath deposited CdS buffer layer. Appl Surf Sci, 1997, 114: 764-767
    [121] Kampmann A, Sittinger V, Rechid J, et al. Large area electrodeposition of Cu(In,Ga)Se2. Thin Solid Films, 2000, 361: 309-313
    [122] Chaure N B, Young J, Samantilleke A P, et al. Electrodeposition of p-i-n type CuInSe2 multilayers for photovoltaic applications. Sol Energy Mater Sol Cells, 2004, 81: 125-133
    [123] Raffaelle R P, Forsell H, Potdevin T, et al. Electrodeposited CdS on CIS pn junctions. Sol Energy Mater Sol Cells, 1999, 57: 167-178
    [124] Vedel J. An electrochemical route for the preparation of chalcopyrite semiconductors. Ternary and Multinary Compounds, 1998, 152: 261-268
    [125] Vedel J, Thouin L, Lincot D. Relation between physical properties and deposition conditions of electrodeposited CuInSe2. J Electrochem Soc, 1996, 143: 2173-2180
    [126] Knapp K, Jester T. Empirical investigation of the energy payback time for photovoltaic modules. Sol Energy, 2001, 71: 165-172
    [127] Caballero R, Guillen C. Comparative studies between Cu-Ga-Se and Cu-In-Se thin film systems. Thin Solid Films, 2002, 403: 107-111
    [128] Yuksel O F, Basol B M, Safak H, et al. Optical characterisation of CuInSe2 thin films prepared by two-stage process. Appl Phys A-Mater, 2001, 73: 387-389
    [129] Bandyopadhyaya S, Roy S, Chaudhuri S, et al. CuIn(SxSe1-x)2 films prepared by graphite box annealing of In/Cu stacked elemental layers. Vacuum, 2001, 62: 61-73
    [130] Guillen C, Herrero J. Structure, morphology and photoelectrochemical activity of CuInSe2 thin films as determined by the characteristics of evaporated metallic precursors. Sol Energy Mater Sol Cells, 2002, 73: 141-149
    [131] Sadigov M S, Ozkan M, Bacaksiz E, et al. Production of CuInSe2 thin films by a sequential processes of evaporations and selenization. J Mater Sci, 1999, 34: 4579-4584
    [132] Hermann A M, Gonzalez C, Ramakrishnan P A, et al. Fundamental studies on large area Cu(In,Ga)Se2 films for high efficiency solar cells. Sol Energy Mater Sol Cells, 2001, 70: 345-361
    [133] Guillen C, Martinez M A, Herrero J. CuInSe2 thin films obtained by a novel electrodeposition and sputtering combined method. Vacuum, 2000, 58: 594-601
    [134] Prosini P P, Addonizio M L, Antonaia A, et al. Electrodeposition of copper-indium alloy under diffusion-limiting current control. Thin Solid Films, 1996, 288: 90-94
    [135] Bekker J, Alberts V, Leitch A W R, et al. Properties of CuIn(Se,S)2 thin films prepared by two-step growth processes. Thin Solid Films, 2003, 431: 116-121
    [136] Shao L X, Chang K H, Chung T H, et al. Steps toward industrialization of Cu-III-VI2 thin-film solar cells: a novel full in-line concept. J Phys Chem Solids, 2003, 64: 1505-1509
    [137] Calixto M E, Sebastian P J. CuInSe2 thin films formed by selenization of Cu-In precursors. J Mater Sci, 1998, 33: 339-345
    [138] Bekker J, Alberts V, Witcomb M J. Influence of selenization techniques on the reaction kinetics of chalcopyrite thin films. Thin Solid Films, 2001, 387: 40-43
    [139] Kushiya K. Improvement of electrical yield in the fabrication of CIGS-based thin-film modules. Thin Solid Films, 2001, 387: 257-261
    [140] Kushiya K, Tachiyuki M, Nagoya Y, et al. Progress in large-area Cu(InGa)Se2-based thin-film modules with a Zn(O,S,OH)x buffer layer. Sol Energy Mater Sol Cells, 2001, 67: 11-20
    [141] Gillespie T J, Marshall C H, Contreras M, et al. Copper indium diselenide (CIS) process, control and manufacturing. Sol Energy Mater Sol Cells, 1999, 59: 27-34
    [142] Hermann A M, Mansour M, Badri V, et al. Deposition of smooth Cu(In,Ga)Se2 films from binary multilayers. Thin Solid Films, 2000, 361: 74-78
    [143] Vassilev G P, Daouchi B, Record M C, et al. Thermodynamic studies of the In-Se system. J Alloys Compd, 1998, 269: 107-115
    [144] Sahu B R, Kleinman L. Theoretical study of structural and electronic properties of delta-MoN. Phys Rev B, 2004, 70: 073103
    [145] Shay J L, Wernick J H, Ternary chalcopyrite semiconductors: growth, electronic properties, and applications. Pergamon, Oxford. 1975
    [146] Samanta L K, Ghosh D K, Bhar G C. Optical nonlinearity, band-structure parameters, and refractive indices of some mixed chalcopyrite crystals. Phys Rev B, 1986, 33: 4145-4148
    [147] Tinoco T, Quintero M, Rincón C. Variation of the energy gap with composition in AIBIIIC2VI chalcopyrite-structure alloys. Phys Rev B, 1991, 44: 1613-1615
    [148] Wei S H, Zunger A. Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys. J Appl Phys, 1995, 78: 3846-3856
    [149] Bodnar I V, Bologa A P, Korzun B V. Composition Dependence of the Band Gap of CuGaxIn1-xSe2 Solid Solutions. Phys Status Solidi B, 1982, 109: K31-K33
    [150] Jaffe J E, Zunger A. Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys Rev B, 1984, 29: 1882-1906
    [151] Wei S H, Zunger A, Choi I H, et al. Trends in band-gap pressure coefficients in chalcopyrite semiconductors. Phys Rev B, 1998, 58: R1710-R1713
    [152] Bouamama K, Daoud K, Kassali K. Ab initio calculations in the virtual-crystal approximation of the structural and the elastic properties of BeSxSe1-x alloys under high pressure. Model Simul Mater SC, 2005, 13: 1153-1162
    [153] Murphy-Armando F, Fahy S. First-principles calculation of alloy scattering in GexSi1-x. Phys Rev Lett, 2006, 97: 096606
    [154] Bellaiche L, Garcia A, Vanderbilt D. Finite-temperature properties of Pb(Zr1-xTix)O3 alloys from first principles. Phys Rev Lett, 2000, 84: 5427-5430
    [155] Bellaiche L, Vanderbilt D. Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys Rev B, 2000, 61: 7877-7882
    [156] Yakushev M V, Zegadi A, Neumann H, et al. Effect of Plasma Hydrogenation on the Defect Properties of CuInSe2 Single Crystals. Cryst Res Technol, 1994, 29: 427-437
    [157] Ikari T, Yoshino K, Shimizu T, et al. Dependence of Cu/In ratio on the optical properties of CuInSe2 epitaxial layers examined by piezoelectric photoacoustic spectroscopy. Ternary and Multinary Compounds, 1998, 152: 511-514
    [158] Neumann H, Jones P A, Sobotta H, et al. Optical investigation of defects in p-type CuInSe2 single crystals. Cryst Res Technol, 1996, 31: 63-74
    [159] Rincon C, Wasim S M, Marin G. Effect of donor-acceptor defect pairs on the electrical and optical properties of CuIn3Te5. J Phys-Condens Mat, 2002, 14: 997-1009
    [160] Rincon C, Wasim S M, Marin G, et al. Optical absorption and photoluminescence spectra of the ordered defect compound CuIn3Te5. J Phys-Condens Mat, 2003, 15: 3203-3212
    [161] Wasim S M, Bonalde I, Medina E, et al. Defect-induced increase in the phonon energy involved in the formation of Urbach tail in Cu-ternaries. J Phys Chem Solids, 2005, 66: 1187-1191
    [162] Burgelman M, Engelhardt F, Guillemoles J F, et al. Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin-film solar cells. Prog Photovoltaics, 1997, 5: 121-130
    [163] Rega N, Siebentritt S, Albert J, et al. Excitonic luminescence of Cu(In,Ga)Se2. Thin Solid Films, 2005, 480: 286-290
    [164] Rincon C, Arsene M A, Wasim S M, et al. Analysis of the donor-acceptor recombination band in the photoluminescence spectra of CuInSe2. Mater Lett, 1996, 29: 87-90
    [165] Sato K. EPR studies of point defects in Cu-III-VI2 chalcopyrite semiconductors. Mat Sci Semicon Processing, 2003, 6: 335-338
    [166] Schon J H, Alberts V, Bucher E. Sharp optical emissions from Cu-rich, polycrystalline CuInSe2 thin films. J Appl Phys, 1997, 81: 2799-2802
    [167] Xu C M, Huang W H, Xu J, et al. Defect-induced structural disorder in tetragonal Cu(In1-xGax)5Se8 thin films investigated by Raman spectroscopy: the effect of Ga addition. J Phys-Condens Mat, 2004, 16: 4149-4155
    [168] Yoshimi M, Noda Y. Optoelectronic properties of CuInSe2 grown by traveling heater method using Cu-In alloy solvent. Mater Trans, 1996, 37: 473-477
    [169] AbuShama J A M, Johnston S, Noufi R. Bandlike and localized defect states in CuInSe2 solar cells. J Phys Chem Solids, 2005, 66: 1855-1857
    [170] Han S H, Hasoon F S, Al-Thani H A, et al. Effect of Cu deficiency on the defect levels of Cu0.86In1.09Se2.05 determined by spectroscopic ellipsometry. Appl Phys Lett, 2005, 86: 021903
    [171] Igalson M, Schock H W. The metastable changes of the trap spectra of CuInSe2-based photovoltaic devices. J Appl Phys, 1996, 80: 5765-5769
    [172] Kundu S N, Johnston S, Olsen L C. Traps identification in Copper Indium Gallium Sulfur Selenide solar cells completed with various buffer layers by deep level transient spectroscopy. Thin Solid Films, 2006, 515: 2625-2631
    [173] Nadazdy V, Yakushev M, Djebbar E H, et al. Switching of deep levels in CuInSe2 due to electric field-induced Cu ion migration. J Appl Phys, 1998, 84: 4322-4326
    [174] Zabierowski P, Edoff M. Laplace-DLTS analysis of the minority carrier traps in the Cu(In,Ga)Se2-based solar cells. Thin Solid Films, 2005, 480: 301-306
    [175] Domain C, Laribi S, Taunier S, et al. Ab initio calculation of intrinsic point defects in CuInSe2. J Phys Chem Solids, 2003, 64: 1657-1663
    [176] Manolikas C, Landuyt J, Ridder R, et al. Electron microscopic study of the domain structure and of the transition state in Cu0.5In2.5Se4. Phys Status Solidi A, 1979, 55: 709-722
    [177] Merino J M, Mahanty S, Leon M, et al. Structural characterization of CuIn2Se3.5, CuIn3Se5 and CuIn5Se8 compounds. Thin Solid Films, 2000, 361: 70-73
    [178] Tham A T, Su D S, Neumann W, et al. Transmission electron microscopical studies of the layered structure of the ternary semiconductor CuIn5Se8. Cryst Res Technol, 2001, 36: 303-308
    [179] Duran L, Guerrero C, Hernandez E, et al. Structural, optical and electrical properties of CuIn5Se8 and CuGa5Se8. J Phys Chem Solids, 2003, 64: 1907-1910
    [180] Merino J M, Diaz-Moreno S, Subias G, et al. A comparative study of Cu-Se and In-Se bond length distributions in CuInSe2 with related In-rich compounds. Thin Solid Films, 2005, 480: 295-300
    [181] Chang C H, Wei S H, Johnson J W, et al. Local structure of CuIn3Se5: X-ray absorption fine structure study and first-principles calculations. Physical Review B, 2003, 68: 054108
    [182] Wolska A, Bacewicz R, Filipowicz J, et al. X-ray absorption near-edge structure of selenium in the Cu-In-Se system. J Phys-Condens Mat, 2001, 13: 4457-4470
    [183] Philip R R, Pradeep B. Structural analysis and optical and electrical characterization of the ordered defect compound CuIn5Se8. Semicond Sci Technol, 2003, 18: 768-773
    [184] Rincon C, Wasim S M, Marin G, et al. Temperature dependence of the optical energy gap and Urbach's energy of CuIn5Se8. J Appl Phys, 2001, 90: 4423-4428
    [185] Hedstr?m J, Olsen H, Bodeg?rd M, et al. ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance. in Proceedings of the 23rd IEEE Photovoltaic Specialists Conference. 1993, Louisville: 364-371
    [186] Heske C, Fink R, Umbach E, et al. Na-induced effects on the electronic structure and composition of Cu(In,Ga)Se2 thin-film surfaces. Appl Phys Lett, 1996, 68: 3431-3433
    [187] Kronik L, Cahen D, Schock H W. Effects of sodium on polycrystalline Cu(In,Ga)Se2 and its solar cell performance. Adv Mater, 1998, 10: 31-36
    [188] Rudmann D, da Cunha A F, Kaelin M, et al. Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation. Appl Phys Lett, 2004, 84: 1129-1131
    [189] Niles D W, Ramanathan K, Hasoon F, et al. Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy. J Vac Sci Technol A, 1997, 15: 3044-3049
    [190] Contreras M A, Egaas B, Dippo P, et al. On the role of Na and modifications to Cu(In,Ga)Se2 absorber materials using thin-MF (M=Na, K, Cs) precursor layers solar cells. in Conference Record of the 26th IEEE Photovoltaic Specialists Conference. 1997, Piscataway: 359-362
    [191] Braunger D, Hariskos D, Bilger G, et al. Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films. Thin Solid Films, 2000, 361: 161-166
    [192] Wei S H, Zunger A. Band offsets at the CdS/CulnSe2 heterojunction. Appl Phys Lett, 1993, 63: 2549-2551

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700