用户名: 密码: 验证码:
新型尖晶石结构半金属材料磁电性能的第一性原理计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可将电子荷电性和自旋性从材料内部进行有机融合的自旋电子学已成为国际研究的新热点,自旋电子学的发展必将开启新的电子时代。半金属材料是自旋电子学的重要材料载体之一。在目前所发现的半金属中,高温相尖晶石结构半金属材料因居里温度高、室温自旋极化率大、制备简单等优点被认为极具应用潜力。然而,对尖晶石结构半金属材料的研究仍处于初步探索阶段。例如,它们的磁电阻仍不够大而难以满足应用要求,所发现的半金属材料仍极为有限等。因此,极有必要发现更多具有优良物理性能的尖晶石结构半金属材料,并对它们的磁电性能及其微观机制作深入探讨。
     本文通过基于密度泛函理论的第一性原理计算,预言了多种新高温相尖晶石结构半金属材料如ScFe_2O_4、LaFe_2O_4和LiPr_2O_4等和高自旋极化材料Fe_3F_4,并详细计算、分析了它们的半金属性、电荷分布、分子磁矩等磁电性能;然后利用配位场理论分析了这些材料磁电性能的微观机制和电子结构;最后预测了它们的应用前景。主要研究工作和成果概况如下:
     (1)对不同含量的非磁过渡元素(TM=Sc、Ti、V、Cr、Mn)取代Fe_3O_4中A位或B位Fe离子后所得的尖晶石化合物进行了几何结构优化,并计算了它们的自旋极化态密度和能带结构,预言了新半金属材料ScFe_2O_4、Fe2ScO4、TiFe_2O_4和CrFe_2O_4。通过计算和分析发现,ScFe_2O_4、Fe2ScO4、TiFe_2O_4和CrFe_2O_4的分子磁矩明显大于Fe_3O_4,而电阻率则可能小于Fe_3O_4。在相同外磁场中,ScFe_2O_4、Fe_2ScO_4、TiFe_2O_4和CrFe_2O_4的磁电阻可能大于Fe_3O_4,从而在自旋电子器件中更有应用前途。ScFe_2O_4、Fe_2ScO_4、TiFe_2O_4为弱铁磁性耦合化合物,CrFe_2O_4和Fe_3O_4为亚铁磁性耦合化合物。耦合差异的原因在于在配合物ML_4和ML_6中,中心离子TM与周围O配体间既有离子键作用也有共价键作用,孤立原子Sc和Ti的外层电子数少,故Sc和Ti离子与O配体的离子键比重高于Fe和Cr离子。
     (2)将稀土元素La和Pr取代Fe_3O_4的A位或B位Fe离子后得到尖晶石化合物(RexNM1-x)A(ReyNM2-y)BO4,其中Re=La、Pr,表示稀土元素;NM=Li、Co、Mn、Fe,表示非稀土元素。然后对它们的几何结构进行了优化,并计算了它们的自旋极化态密度和能带结构,预言了新稀土半金属材料FeLa_2O_4、CoLa_2O_4、MnLa_2O_4和LiPr_2O_4。通过计算和分析发现,FeLa_2O_4和CoLa_2O_4与Fe_3O_4类似,为ⅡB型半金属材料,而MnLa_2O_4和LiPr_2O_4与Fe_3O_4不同,为ⅡA型半金属材料。四种稀土半金属材料的A位和B位中心离子中,只有一个位置具有磁性,因此它们具有弱铁磁性耦合,可用间接交换作用模型(RKKY模型)进一步解释。这些稀土半金属材料的分子磁矩有较大的变化范围,最小为1.0μB,最大为5.0μB,从而具有比较广泛的应用前景。FeLa_2O_4、CoLa_2O_4、MnLa_2O_4的磁性主要来源于过渡金属离子,即过渡离子的3d轨道受较强的晶体场作用发生分裂,导致一种自旋子带处于费米面附近,并与O配体的2p轨道形成杂化轨道,而另一自旋子带的能量高于费米能级而形成空带。La离子没有4f电子,从而对材料的磁性几乎没有贡献。LiPr_2O_4的磁性主要来源于Pr离子。原因在于,处于晶体场中的Pr4f轨道的自旋向上子带移到费米面处,而向下子带则移到费米面之上形成空带,而且因受到外层电子的屏蔽作用,Pr4f轨道不能与其他轨道杂化而局域在离子内部。
     (3)将不同含量的F元素取代Fe_3O_4的O配体构成含F配体的高温相尖晶石结构材料,对它们的几何结构进行了优化,并计算了优化后材料的自旋极化态密度和能带结构,基于配位场理论分析其磁电性能的微观机制和电子结构。结果发现,F取代A位Fe离子的O配体不利于材料半金属性的出现。F取代B位Fe离子的配体时,F含量(x)对材料的半金属性及其稳定性有明显影响。x≤0.5时,材料没有半金属性。x>0.5时,材料具有半金属性,且随F配体含量的增加,费米面整体相对向高能方向移动,材料的半金属性更加稳定。主要原因在于随F配体含量增加,原胞中电子密度增大,从而导致原胞中具有更强的库仑斥力(即晶体场),该斥力导致了自旋向下和向上子带的分离加剧。Fe_3F_4的稳定相晶格常数约为0.643 nm,分子磁矩约为10.68μB,明显高于Fe_3O_4的4.0μB。Fe_3F_4的自旋极化率比Fe_3O_4稍小,但零磁场电导率比Fe_3O_4高很多,因而更具有应用潜力。
Spintronics has been emphasized very recently because the charge and spin of electrons can be probably controlled in spintronic materials. A new electronic age will be opened with the quick development of spintronics. Half-metal materials are very important spintronic materials. The cubic spinel half-metal materials are thought to have larger application probability than other half-metal materials because they have high Curie temperature, large room-temperature spin-polarization and they can be prepared simply. However, researches on them have been carried on for short time so that their room-temperature magnetoresistance is still not enough to satisfy their application and there are few kinds of spinel half-metal materials. Therefore, it is very necessary to probe more new spinel half-metal materials with good physical properties and to study their magnetic and electric properties, and then their microscopic mechanism.
     In this paper, the high spin-polarized material Fe3F4 and many new spinel half-metal materials such as ScFe_2O_4, LaFe_2O_4 and LiPr_2O_4 are prefaced from the first-principle calculation based on the density function theories. And their magnetic and electric properties including half-metallicity, charge distribution and molecular magnetic moments are calculated or analyzed in system. Then their electronic structures and the microscopic mechanism of magnetic and electric properties are analyzed based on the ligand field theories. At last, application probability of these half-materials is prefaced. The main works and results involve:
     The geometric structures of cubic spinel compounds including transition metals (TM) on A-sites or B-sites are optimized,where TM=Sc、Ti、V、Cr、Mn. Then their spin-polarized state densities and energy band structures are calculated in system. Many new half-metal materials including ScFe_2O_4, Fe_2ScO_4, TiFe_2O_4 and CrFe_2O_4 are prefaced from calculation. The molecular moments of ScFe_2O_4, Fe_2ScO_4, TiFe_2O_4 and CrFe_2O_4 are all larger than those of Fe_3O_4, but their resistivity is lower than that of Fe_3O_4. Therefore, the magnetoresistance of ScFe_2O_4, Fe_2ScO_4, TiFe_2O_4 and CrFe_2O_4 is larger than that of Fe_3O_4 so that they have wider application probability in spintronics. ScFe_2O_4, Fe2ScO4 and TiFe_2O_4 have weak ferromagnetic coupling, but CrFe_2O_4 and Fe_3O_4 has ferrimagnetic coupling. The mechanism is that there are both covalent bonds and ionic bonds between the transition ions (TM) and their ligands in the compound ML_4 and ML_6. However, the proportion of ionic bonds in ScFe_2O_4 and TiFe_2O_4 is larger than those in Fe3O4 and CrFe_2O_4 because Sc and Ti atoms have fewer electrons than Fe and Cr atoms.
     Fe-ions on A-sites or B-sites of Fe3O4 are substituted by doped La-ions or Pr-ions so that the cubic spinel compounds (RexNM1-x)A(ReyNM2-y)BO4 are designed, where Re=La, Pr and NM=Li, Co, Mn, Fe. Their geometric structures are optimized and their spin-polarized state densities and energy band structures are calculated. New rare-earth spinel half-metal materials including FeLa_2O_4, CoLa_2O_4, MnLa_2O_4 and LiPr_2O_4 are prefaced from calculation. Calculated results show that FeLa_2O_4 is a kind ofⅡB type half-metal material, which is similar with CoLa_2O_4 and Fe3O4, but MnLa_2O_4 and LiPr_2O_4 are bothⅡA type half-metal materials. FeLa_2O_4, CoLa_2O_4, MnLa_2O_4 and LiPr_2O_4 are weak ferromagnetic coupling compounds because the centric ions on A-sites and B-sites do not have magnetic moments at the same time. Therefore, the coupling can be interpreted by the Rude-Gmann-Kittel-Kasuya-Yosida Model (RKKY). Their molecular magnetic moments vary from 1.0μB to 5.0μB. Therefore, they have wider application area. The magnetic moments of FeLa_2O_4, CoLa_2O_4 and MnLa_2O_4 mainly come from transition ions. The mechanism is that the 3d-orbits of transition ions are splitted by strong crystal field in the tetrahedron compounds ML4 and octahedron compounds ML6. This results in that a kind of 3d sub-band are near fermi level, and then are mixed into hybrid orbits. However, the other kind of 3d sub-band are above the fermi level. La-ions have no contribution for the magnetism of half-metal materials because they have no 4f electrons, although there are hybrid orbits between O-ions and La-ions. The magnetic moments of LiPr_2O_4 mainly come from Pr-ions. The mechanism is that the Pr4f orbits are splitted by strong crystal field, and then there is relative moving between the up-spin and down-spin sub-band. This results in that the up-spin sub-band is near fermi face, but the down-spin sub-band is above the fermi level. On the other hand, the Pr4f orbits can not be mixed with other orbits, and then are localized in ions because there is static shielding of electrons around them.
     The O-ligands of Fe3O4 are substituted by F-ions, and then new cubic spinel materials are designed. Their geometric structures are optimized and their spin-polarized state densities and energy band structures are calculated in system. The mechanism of magnetic and electric properties and the electronic structures are analyzed based on the ligand field theories. Results show that spinel materials have no half-metallicity if their O-ligands around the Fe-ions on A-sites are substituted by F-ions. On the other hand, the concentration of F-ligand around Fe-ions on B-sites can cause important influence on the half-metallicity and stabilities of materials. Materials have no half-metallicity if x≤0.5. Materials have half-metallicity if x>0.5. The Fermi face move forward higher energy, and then the half-metallicity are more stable with increasing concentration of F-ions. The main mechanism is that the concentration of electrons in a primitive cell increases with the increasing of F-ions so that there are stronger crystal field, which cause stronger splitting of up-spin sub-band and down-spin sub-band. The stable crystal constant is about 0.643 nm and the molecular magnetic moment is about 10.68μB, which is higher than 4.0 of Fe3O4. The spin-polarization of Fe3F4 is a little lower than Fe3O4, but its conductance is much higher than Fe3O4 so that it has huger application potential than Fe3O4.
引文
[1]向勇,谢道华.尖晶石结构功能材料的新进展[J].磁性材料及器件. 2001.32(3):21-25.
    [2] V. M. Ferreira. J. L. Baptista. Preparation and Microwave Dielectric Properties of Pure and Doped Magnesium Titanate Ceramic. Material Research Buff [J], 1994, 29(10):1017-1023.
    [3]黄昆原著,韩汝琦改编.固体物理学[M].北京:高等教育出版社. 1998.
    [4]戴道生,钱乾坤.铁磁学[M].北京:科学出版社. 2000.
    [5]黄玉代,李娟,贾殿赠.锂离子电池正极材料LiMn204的低热固相合成与性能表征[J].无机化学学报,2004,20(7):837-840.
    [6]彭正顺.钕,铈掺杂的正极材料尖晶石型LiMn2O4的制备及性能[J].中国稀土学报,2000, 18(1): 48-51.
    [7]林志鹏,李荣华,沈春枝,曹虹霞,王文继. LiCoxNixMn2-xO4-xFx(x=0.05、0.10)的合成与性能研究[J].功能材料,2005,36(8):1220-1222.
    [8]彭忠东,胡国荣,肖劲,刘业翔.掺杂稀土Eu对LiMn204结构和性能的影响[J].电源技术,2004,28(5):264-267.
    [9]纪红兵,王乐夫,水垣共雄,海老谷幸喜,金田清臣.尖晶石纳米催化剂应用于烯丙醇多相氧化制烯丙醛或烯丙酮[J].高校化学工程学报, 2002,16(2):149-154.
    [10]叶明新,黄玮石,黄京根,蒋凯,余兴海. Mn4+在尖晶石和钙钛矿相关结构铝酸盐中的发光[J].发光学报. 2003,24(5):517-522.
    [11] G. T. Pott, B. D. McNicol. Luminescence of Cr3+ ions in ordered and disordered LiAl5O8[J]. J. Solid State Chem., 1973, 7:132-137.
    [12]杨晓娟刘尔生.几种尖晶石型氧化物纳米粉体的制备及气敏性[J].应用化学,1998,15(5):14-17.
    [13] X. H. Liu, J. Q. Wang, Zhang J. Y., Yang R.S. Fabrication and Characterization of LiFePO4 Nanotubes by a Sol-gel-AAO Template Process[J].Chin. J. Chem. Phy., 2006,19(6):530-534.
    [14]李俊荣,卢俊彪,唐子龙,张中太.尖晶石钛酸锂纳米管的制备与表征[J].稀有金属材料与工程, 2005, 34(z1):120-123.
    [15]谭明秋,陶向明,何军辉.重电子化合物LiV2O4的电子结构.中国科学(A辑)[J].2001,31(12):1142-1147.
    [16]谭明秋,陶向明.重费米子化合物LiV2O4电子结构的第一性原理研究[J].化学物理学报, 2002, 14, (6):663-668.
    [17] D. Dunlop and O. Ozdemir. Rock Magnetism: Fundamentals and Frontiers[M].Jianqiao of England: Cambridge University Press. 1997.
    [18]颜冲,于军,包大新,陈文洪,朱大中.自旋电子学研究进展[J].固体电子学研究与进展, 2005,25(1):1-6.
    [19]任尚坤,张凤鸣,都有为.半金属磁性材料[J].物理学进展. 2004, 24(4): 381-397.
    [20] J. Liu, X. Q. Wang, B. Q. Hu, A. P. Liu, H. N. Dong, Y. Liu, D. F. Li. ELECTRIC AND MAGNETIC PROPERTIES OF NEW APPROXIMATE HALF-METAL Fe3F4[J]. 2007, 21(18/19):3412-3417.
    [21] J. Liu, X.Q. Wang, Y. Liu, H.N. Dong. First Principle Calculation on Electric and Magnetic Properties of New Half-metal Fe2ScO4[J]. Chin. J. Chem. Phys. 2007,20(3): 291-296.
    [22]郑弘泰.第一原理理论计算作为科学发现的工具[J]:磁铁矿(magnetite)之电荷-轨道秩序(charge-orbital ordering)和Verwey相变.物理双月刊(台湾). 2005, 27(4):587-591.
    [23] J. Liu, X. M. Chen, Y. Liu, H.N. Dong.First Principle Calculation on Electronic and Magnetic Properties of new Half-metal TiFe2O4[J]. Physica Scripta, 2007, T129:144-149.
    [24]刘俊,陈希明,董会宁.新半金属LaFe2O4磁电性能的第一性原理计算[J].无机化学学报, 2007, 23(11):1857-1863.
    [25]蔡建旺,赵见高,詹文山,沈保根.磁电子学中的若干问题[J].物理学进展,1997,17(3):119-149.
    [26] E. N. Mitchell, H. B. Haukaas, H. D. Bale and J. B. Streeper.Compositional and Thickness Dependence of the Ferromagnetic Anisotropy in Resistance of Iron-Nickel Films[J]. J.Appl. Phys., 1964, 35: 2604-2908.
    [27] P. Grunberg, R. Schreiber,Y. Pang, M. B. Brodsky and H. Sowers. Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers[J]. Phys. Rev. Lett., 57(1986): 2442-2445.
    [28] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyeu Van Dau and F. Perroff. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices[J]. Phys.Rev.Lett, 1988,61:2472.
    [29] R. B. Van Dover, E. M. Gyorgy, R. J. Cava, J. J. Krajewski, R. J. Felder and W. F. Peck. Magnetoresistance of SmMn2Ge2-a layered antiferromagnet[J]. Phys. Rev. B., 1993, 47(10): 6134-6137.
    [30] S. Jin, T. H. Tiefel, M. Mccormack. Colossal magnetoresistance in La-Ca-Mn-O ferromagneticthin films[J]. J. Appl. Phys, 1994,76 (10): 6929-6933.
    [31] T. Miyazaki and N. Tezuka, Giant magnetic tunneling effecin Fe / Al2O3 / Fe junction[J]. J. Magn. Magn.Mater., 1995,139 (3): L231-L234.
    [32] T. Miyazaki and N. Tezuka. Spin Polarized Tunneling in Ferromagnet/Insulator/Ferromagnet Junctions[J]. J. Magn. Magn.Mater., 1995,151(3): 403-410.
    [33]翟宏如,鹿牧,赵宏武,夏钶.多层膜的巨磁电阻[J].物理学进展, 1997,17(2): 159-179.
    [34]张栋杰,都有为.磁性多层膜的正巨磁电阻特性[J].功能材料. 2003,34(6):652-653.
    [35] M. J. Caruso. Application of Magnetoresistive Sensors in Navigation Systems[J]. Sensor and Actuators, 1997,SAE SP-1220: 15-21.
    [36] C. Tsang, M. M. Chen, T. Yogi and K. Ju. Gigabit density recording using dual-element MR/inductive heads onthin-film disks[J]. IEEE Trans. Magn., 1990, 26(5):1689-1693.
    [37] C. Tsang, T. Lin, S. MacDonald, M. Pinarbasi, N. Robertson, H.Santini, M.Doerner, T.Reith, V.Lang; T.Diola and P.Arnett. 5 Gb/in2 recording demonstration with conventional AMR dual element heads and thin film disks[J]. IEEE. Trans. Magn., 1997, 33(5): 2866-2871.
    [38] N. Smith, A. Zeltser, M. Parker. GMR multilayers and head Design for ultrahigh density magnetic recording[J]. IEEE. Trans. Magn., 1996, 32(1):135-151.
    [39] D. D. Tang,P. K. Wang, V. S. Speriosu S. Le and K. K. Kung.Spin-valve RAM cell [J]. EEE. Trans. Magn., 1995, 31(6):3206-3208.
    [40] K.Schulz, G. Kaindl, M. Domke, J. D. Bozek, P. A. Heimann, A. S. Schlachter and J. M. Rost. Observation of New Rydberg Series and Resonances in Doubly Excited Helium at Ultrahigh Resolution[J].Phys. Rev. Lett., 1996, 77 (15): 3086-3089.
    [41] M. Johnson. Bipolar spin switch.Science, 1993, 260(5106): 320-323.
    [42] S. Rudin, G. Samsonidze, F. Crowne.Nonlinear response of two-dimensional electron plasmas in the conduction channels of field effect transistor structures[J]. J. Appl. Phys. 1999, 86(4):2083-2088.
    [43] S. Datta, B. Das. Electronic analog of the electro-optic modulator[J]. Appl. Phys. Lett., 1990, 56(7):665-667.
    [44] D. C. Dixon, K. R. Wald, P. L. McEuen and M.R.Melloch. Dynamic nuclear polarization at the edge of a two-dimensional electron gas[J]. Phys. Rev. B., 1997, 56(8):4743-4750.
    [45] V. Y. Irkhin, M. I. Katsnel’son. Half-metallic ferromagnets[J]. Physics-Uspekhi, 1994, 37: 659-676.
    [46]蔡建旺.磁电子学器件应用原理[J].物理学进展, 2006, 26(2):180-227.
    [47] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K.H.J. Buschow. New class of materials: Half- metallic ferromagnets[J]. Phys. Rev. Lett., 1983, 50:2024-2027.
    [48] W. E. Pickett, J. S. Moodera. Half metallic magnets[J]. Physics Today., 2001, 54:39-44.
    [49] G. D. Liu, X. F. Dai, S. Y. Yu, Z. Y. Zhu, J. L. Chen, G. H. Wu, H. Zhu, J.Q. Xiao. Physical and electronic structure and magnetism of Mn2NiGa: Experiment and density-functional theory calculations[J]. Phys. Rev. B., 2006, 74:054435-054442.
    [50] G. D. Liu, J. L. Chen, Z. H. Liu, X. F. Dai, G. H. Wu, B. Zhang, X. X. Zhang. Martensitictransformation and shape memory effect in a ferromagnetic shape memory alloy: Mn2NiGa[J]. Appl. Phys. Lett., 2005.87(26):262504:1-3.
    [51]刘国栋,王新强,代学芳,柳祝红,于淑云,陈京兰,吴光恒. Si掺杂的铁磁性形状记忆合金Co50Ni21Ga29Six的物性研究[J].物理学报, 2007, 56(3):1686-1690.
    [52]刘国栋,王新强,代学芳,柳祝红,于淑云,陈京兰,吴光恒. Fe和Co元素在铁磁性形状记忆合金Mn50Ni25-xFe(Co)xGa25中的作用[J].物理学报, 2006, 55(9):4883-4887.
    [53]刘国栋. Mn2基Heusler合金的物性研究.重庆大学博士学位论文, 2007年4月.
    [54] R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak. Measuring the spin polarization of a metal with a superconducting point contact[J]. Science, 1998. 282(5386):85-88.
    [55] Y. Ji, G. J. Strijkers, F. Y. Yang, C. L. Chien, J. M. Byers, A. Anguelouch, Gang Xiao, A. Gupta. Determination of the spin polarization of half-metallic CrO2 by point contact Andreev reflection[J]. Phys. Rev. Lett., 2001.86.5585-5588.
    [56] E. J. W. Verwey and E. L. Heilmann. Physical Properties and Cation Arrangement of Oxides with Spinel Structures I. Cation Arrangement in Spinels[J]. J Chem. Phys., 1947,15(4):174-180.
    [57] E. J. W. Verwey, P. W. Haayman and F. C. Romeijin. Physical Properties and Cation Arrangement of Oxides with Spinel Structures II. Electronic Conductivity[J]. J. Chem. Phys. 1947,15(4): 181-187.
    [58] A. Yanase and K. Siratori. Band Structure in the High Temperature Phase of Fe3O4 [J]. J. Phys. Soc. Jap. 1984, 53 (1): 312-317.
    [59] H. T. Jeng and G. Y. Guo. First-principles investigations of the electronic structure and magneto-crystalline anisotropy in strained magnetite Fe3O4 [J]. Phys. Rev. B., 2002, 65(9), 094429:1-9.
    [60] Z. Szotek, W. M. Temmerman, A. Svane, L. Petit, G.M. Stocks and H. Winter. Ab initio study of charge order in Fe3O4 [J]. Phys. Rev. B, 2003, 68:054415:1-6.
    [61] V. I. Anisimov, I. S. Elfimov, N. Hamada and K. Terakura. Charge-ordered insulating state of Fe3O4 from first-principles electronic structure calculations [J]. Phys. Rev. B, 1996, 54(7):4387-4390.
    [62] H. Zenia, G. A. Gehring, G. Banach and W. M. Temmerman. Electronic and magnetic properties of the (001) surface of hole-doped manganites [J]. Phys.Rev.B, 2005, 71, 024416:1-7.
    [63] S. Isida, M.Suzuki, S.Todo1, N. Mori1 and K. Siratori. Ultrasonic Study of the High Temperature Phase of Fe3O4 [J]. J. Phys. Soc. Jap., 1998, 67(9):3125-3129.
    [64] Jon P. Wright,J. Paul Attfield and Paolo G. Radaelli. Charge ordered structure of magnetite Fe3O4 below the Verwey transition [J]. Phys. Rev. B, 2002,66:214422:1-15.
    [65] Z. Szotek, W. M. Temmerman, A. Svane, L. Petit, P. Strange, G.M. Stocks, D. K odderitzsch, W. Hergert and H. Winter. Electronic Structure of Half-Metallic Ferromagnets and Spinel Ferromagnetic Insulators [J]. J. Phys.: Condens. Matter., 2004,16(48): S5587- S5600.
    [66] U. Lüders, A. Barthélémy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.-P. Contour, J.F. Bobo, J. Fontcuberta and A. Fert. NiFe2O4: A Versatile Spinel Material Brings New Opportunities for Spintronics [J]. Advanced Materials, 2006, 18 (13):1733-1736.
    [67] C. M. Fang, G. A. de Wijs and R. A. de Groot.Spin Polarization in Half-Metals[J].J. Appl. Phys., 2002, 91(10) :8340-8344.
    [68] P. A. Dowben and R. Skomski, Are half-metallic ferromagnets half metals? (invited) [J]. J. APPL. Phys. 2004, 95(11): 7453-7458.
    [69] Hiroyuki Hoshiya and Katsumi Hoshino.Current-perpendicular-to-the-plane giant magnetoresistance in structures with half-metal materials laminated between CoFe layers[J]. J. Appl. Phys. 2004, 95(11): 6774-6776.
    [70] C.Y. Fong, M. C. Qian, J. E. Pask and and L.H.Yang.Electronic and magnetic properties of zinc blende half-metal superlattices[J]. APPL.Phys.Lett.2004, 84(2): 239-241.
    [71] D. Mathias, B. Julien, P. Christian, R. Martin, K. Nadejda, E. Dieter,K. Peter, M. Karl-Hartmut, L. Michael.Search for half-metallic antiferromagnetism using pulsed magnetic fields: experimental investigation of Mn3Si,CuMnSb and PdMnTe [J]. Physica B: Phys. Cond. Mat. 2004, 346-347:137-141.
    [72] J. M. D. Coey, M. Venkatesan. Half-metallic ferromagnetism: Example of CrO2 (invited) [J], J. APPl. Phys., 2002, 91(10):8345-8350.
    [73] J. M. D. Coey, J. J. Versluijs, M. Venkatesan. Half-metallic oxide point contacts[J]. J. Phys. D: Appl. Phys., 2002, 35: 2457-2466.
    [74] J. J. Versluijs, M. A. Bari, J. M. D. Coey.Magnetoresistance of Half-Metallic Oxide Nanocontacts [J]. Phys. Rev. Lett., 2001, 87(2): 026601(1-4).
    [75] C. Jiang, M. Venkatesan, J. M. D. Coey. Transport and magnetic properties of Mn2VAl: Search for half-metallicity [J]. Sol. Stat. Commun. 2001.118: 513-516.
    [76] I. Leonov, A. N. Yaresko, V. N. Antonov, M. A. Korotin, and V. I. Anisimov. Charge and Orbital Order in Fe3O4 [J]. Phys. Rev. Lett., 2004, 93:146404(1-4).
    [77] M. Penicaud, B. Siberchiot, C. B. Sommers and J. Kubler. Electronic structure of half-Metallic ferromagnets and spinel ferromagnetic insulators[J]. J.Magn.Mater.Mater. 1992,103:212-215.
    [78] A. Kida, C. Yamamoto, M. Doi.Magnetoresistance of trilayer flms with Fe3O4 [J]. J. Magn. Magn. Mater., 2004, 272–276: e1559-e1561.
    [79] W. Kim, K. Kawagachi, N. Koshizaki, M. SOHMA, T. MASUMOTO. Fabrication and magnetoresistance of tunnel junctions using half-metallic Fe3O4 [J]. J. Appl. Phys., 2003, 93(10): 8032-8034.
    [80]张国民,潘礼庆,王志远,范崇飞.高温退火Fe3O4薄膜的结构和磁输运性质的研究[J].中央民族大学学报(自然科学版)[J]. 2004,13(2):114-118.
    [81] C. D. Park, J. G. Zhu, Y. G. Peng,.Inverse Magnetoresistance in Magnetic Tunnel Junction With an Fe3O4 Electrode[J]. IEEE TRAN. MAG., 2005,41(10):2691-2693.
    [82] K. Ghosh, S. B. Ogale, S. P. Pai, M. Robson, E. Li, I. Jin, Z. W. Dong, R. L. Greene, R. Ramesh, T. Venkatesan and M Johnson. Positive giant magnetoresistance in a Fe3O4/SrTiO3/La0.7Sr0.3MnO3 hetcrostructure[J]. Appl. Phys. Lett., 1998, 73(5): 689-691.
    [83] M. S. Park, S. K. Kwon, S. J. Youn, and B. I. Min. Half-metallic electronic structures of giant magnetoresistive spinels: Fe1-xCuxCr2S4(x=0.0,0.5,1.0)[J]. Phys. Rev. B, 1999, 59(15), 10018-10024.
    [84] P. Chen, D. Y. Xing, Y. W. Du, J. M. Zhu, and D. Feng. Giant Room-Temperature Magnetoresistance in Polycrystalline Zn0.41Fe2.59O4 withα-Fe2O3 Grain[J]. Phys. Rev. Lett., 2001, 87(10):107202:1-4.
    [85] P. Chen, D. Y. Xing, and Y. W. Du. Positive magnetoresistance from quantum interfere effect in pervskite-type mangnites[J] Phys. Rev. B., 2001, 64:104402(1-5).
    [86]周晶晶,高涛,张传瑜,张云光.Al的微观组态与LaNi3.75Al1.25的结构和弹性第一性原理研究[J].物理学报, 2007, 56(4):2311-2317.
    [87]郑蕾,蒋成保,尚家香,朱小溪,徐惠彬.立方结构Fe基磁性材料弹性系数第一性原理计算[J].物理学报, 2007, 56(3):1532-1537.
    [88]徐凌,唐超群,戴磊,唐代海,马新国.N掺杂锐钛矿TiO2电子结构的第一性原理研究[J].物理学报, 2007, 56(2):1048-1053.
    [89]宋红州,张平,赵宪庚.Be(0001)薄膜中的量子尺寸效应与吸附氢的第一性原理计算[J].物理学报, 2007, 56(2):465-473.
    [90]宋红州,张平,赵宪庚.原子氢在Be(1010^-)薄膜上吸附的第一性原理计算[J].物理学报, 2006, 55(11):6025-6031.
    [91] C. M. Aerts, P. Strange, M. Horne, W. M. Temmerman, Z. Szotek and A. Svane. Half-metallic to insulating behavior of rare-earth nitrides[J]. Phys. Rev. B., 2004, 69:045115(1-4).
    [92] D. Kodderitzsch, W. Hergert, Z. Szotek and W. M. Temmerman. Vacancy-induced half-metallicity in MnO and NiO[J]. Phys. Rev. B., 2003, 68:125114(1-5).
    [93] S. F. Matar. Ab initio investigations in magnetic oxides[J]. Prog. Sol. Stat. Ch. 2003, 31:239-299.
    [94]肖慎修等.密度泛函理论的离散变分方法在化学和材料物理学中的应用[M].北京:科技出版社.1998.
    [95]张敬来.密度泛函理论在π电子共轭体系中的运用[M].郑州:河南大学出版社, 2004.
    [96]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社. 2000.
    [97] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais. Phys. Rev. B 46, 6671(1992); 48, 1999, 4978 (E).
    [98] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne. First-principles simulation: ideas,illustrations and the CASTEP code[J]. J. Phys.: Cond. Matt., 2002, 14(11):2717-2743.
    [99]黄美纯.密度泛函理论的若干进展[J].物理学进展, 2000, 20(3):199-219.
    [100] D. Walker, P. K. Verma, L. M. D. Cranswick, R. L. Jones, S. M. Clark and S. Buhre. Halite-sylvite thermoelasticity [J]. Am. Mineral., 2004, 89: 204-210.
    [101] B. Winkler, C. J. Pickard, V. Milman. Applicability of a quantum mechanical‘virtual crystal approximation’to study Al/Si-disorder’[J], Chem. Phys. Lett., 20023, 62: 266-270.
    [102] B. Winkler, C. J. Pickard, M. D. Segall, V. Milman. Density functional study of charge ordering in Cs2Au(I)Au(III)Cl6 under pressureJ]. Phys. Rev. B, 2001, 63, 14103 (1-4).
    [103] Z.G. Wang, X.T. Zu, Fei Gao, J. William. Weber Atomic-level study of melting behavior of GaN nanotubes[J]. J. Appl. Phys., 2006, 100 (6): 063503(1-6).
    [104]张加宏,刘甦,顾芳,杨丽娟,刘楣.Gd2CO2Al电子结构和磁性的第一性原理研究[J].物理学报,2006, 55(6): 2928-2935.
    [105]邢伯蕾,吴棱,秦改萍,李奕,章永凡,李俊篯.钙钛矿型复合稀土铁氧化物电子结构的第一性原理研究[J].化学学报,2007, 65(17):1773-1778.
    [106]唐成春,吴光恒,李养贤,詹文山. CeYFe2的电子结构和磁性质[J].物理学报, 2001, 50(1)132-138.
    [107] R. H. Zhang. The Chemistry of The Rare Earth Elements[M].Tianjin:Tianjin Science and Technology Press. 1987.
    [108] Z.G. Wang, X.T. Zu, F. Gao, W.J. Weber, Brittle to Ductile Transition in GaN Nanotubes[J], Appl. Phys. Lett., 2006, 89(24): 243123(1-3).
    [109] Z.G. Wang, X.T. Zu, F. Gao, W.J. Weber, Atomistic Simulation on the Size and Orientation Dependence of Thermal Conductivity of GaN Nanowires[J], Appl. Phys. Lett., 2007, 90(16): 161923(1-3).
    [110] Z. G. Wang, X.T. Zu, L. Yang, F. Gao, W.J. Weber, Atomistic simulations on the size,orientation and temperature dependence of tensile behavior in GaN nanowires[J], Phys. Rev. B, 2007, 76: 045310(1-9).
    [111] L. Yang, X. T. Zu, H.Y. Xiao, F. Gao, H.L. Heinisch, and R.J. Kurtz, K.Z. Liu, Atomistic simulation of helium-defect interaction in alpha-iron[J], Appl. Phys. Lett.,2006, 88 (9):091915(1-3).
    [112]苏小云,臧祥生.工科无机化学(第三版)[M].上海:华东理工大学出版社. 2004.
    [113]张永安.无机化学.北京:北京师范大学出版社. 1998.
    [114]孙为银.配位化学[M].北京:化学工业出版社. 2004.
    [115]申泮文.无机化学[M].北京:化学工业出版社. 2002.
    [116]游效曾,孟庆金,韩万书.配位化学进展[M].北京:高等教育出版社. 2000.
    [117]邵学俊,董平安,魏益海.无机化学(第二版)[M].武汉:武汉大学出版社. 2002.
    [118]杨宏孝.无机化学(第三版) [M].北京:高等教育出版社. 2002.
    [119]孟庆金,戴安邦.配位化学的创始与现代化[M].北京:高等教育出版社. 1998.
    [120]汤昊,冯传启,刘浩文,雷太鸣,张克立,孙聚堂.掺杂Y3+的锂锰尖晶石的合成及其电化学性能研究[J].化学学报, 2003, 21(1):47-50.
    [121]杨书廷,贾俊华,郑立庆,曹朝霞.稀土掺杂对锂离子电池正极材料LiMn2O4结构及电性能的影响[J].中国稀土学报, 2003, 21 (4): 413-416.
    [122]彭正顺.钕,铈掺杂的正极材料尖晶石型LiMn2O4的制备及性能[J].中国稀土学报, 2000, 18(1):48-51.
    [123] N. Koshizuka, S. Ushioda, T. Tsushima. Resonance Raman scattering in CdCr2S4: Magnetic-circular-polarization properties. Phys. Rev. B 21(3):1316 - 1322 (1980).
    [129] S. Nagata, N. Matsumoto, Y. Kato,T. Furubayashi,T. Matsumoto,J. P. Sanchez,P. Vulliet. Metal-insulator transition in the spinel-type CuIr2(S1-xSex)4 system[J]. Phys. Rev. B, 1998, 58(11): 6844-6854.
    [130] V. N. Antonov, V. P. Antropov, B. N. Harmon, A. N. Yaresko, A. Y. Perlov. Fully relativistic spin-polarized LMTO calculations of the magneto-optical Kerr effect of d and f ferromagnetic materials. I. Chromium spinel chalcogenides[J]. Phys. Rev. B, 1999, 59(22):14552-14560.
    [131] M. S. Park, S. K. Kwon, B. I. Min, N. Koshizuka, S. Ushioda. Half-metallic antiferromagnets in thiospinels[J]. Phys. Rev. B, 2001, 64(10): 100403(1-4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700