用户名: 密码: 验证码:
Y/Gd掺杂与等价元素取代的BaSrCoFeO系SOFC阴极材料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因为能源危机与环境保护两大问题的日益严重,固体氧化物燃料电池(SolidOxide Fuel Cells, SOFC)作为一种高效、清洁的新型发电装置受至研究者的广泛关注。为了降低固体氧化物燃料电池商业化应用的技术难度,需要降低其工作温度,开发在中低温下具有良好性能的阴极材料是在各种降低电池工作温度的途经中有效的方法之一。
     本文采用改进的溶胶-凝胶法合成了A位掺小半径稀土元素的(Ba_(0.5)Sr_(0.5))_(1-x)Ln_xCo_(0.8)Fe_(0.2)O_(3-δ)(Ln=Y,Gd;分别简称BSYCFx和BSGCFx)阴极材料,并对两体系材料的系列物性以及电化学性能进行测试。研究结果表明,A位引入小半径稀土元素并没有改变BSCF原有的立方钙钛矿结构。随着稀土掺杂量的增加,晶胞参数变小,由于Y~(3+)离子半径小于Gd~(3+),BSYCF体系具有比BSGCF体系更小的晶胞体积,并导致BSYCF的热膨胀系数(TEC)高于BSGCF。Y~(3+)与Gd~(3+)部分取代A位离子显著提高了BSCF材料的电导率,随着掺杂量的增多相应的电导率增大,BSYCF20与BSGCF15样品的电导率最大值分别为121.4和148S·cm-1。
     对于BSGCF体系,通过对其材料关口尺寸的计算,发现具有最小关口尺寸的BSGCF05样品由于氧离子输运困难而致其在热膨胀性能,热重分析和电导率测试中出现的明显滞后于同系列其他样品的现象,并且导致其扩散系数和扩散活化能最小。热重分析实验结果得到了晶格氧的热解活动规律,它一方面是BSYCF和BSGCF材料热膨胀系数在350-500°C异常膨胀的原因,同时也是材料电导率出现峰值以及变温过程中出现电导弛豫现象的原因。
     通过碘滴定反应实验确定了BSCF与BSGCF15阴极材料的在室温下氧含量,结果表明:Gd~(3+)的引入降低B位离子的平均价态,相应的增加B~(3+)/B4+离子的比例,并且当温度升高时,伴随着材料中氧的脱离,氧空位浓度增加,材料中B位离子的平均价态进一步降低,使III价和IV价离子数趋于合理的比例,这是Gd掺杂提高材料电导率以及降低材料阴极扩散阻抗的主要原因。BSGCF15阴极被成功地应用在阳极支撑的SDC薄膜燃料电池上,在600oC电池的最大输出功率密度为551mW·cm~(-2),开路条件下阴极极化电阻0.16·cm~2。
     在发现A位Gd~(3+)掺杂能够明显改善BSCF电化学性能的基础上,我们尝试在A位少量Gd~(3+)掺杂(5%)的基础上改变A位Ba/Sr比例,制备出(Ba_xSr_(1-x))_(0.95)Gd_(0.05)Co_(0.8)Fe_(0.2)O_(3-δ)(0.1≤x≤0.9)阴极材料,重点考察少量Gd掺杂与Ba/Sr比例改变对材料各项性能的影响机制。实验结果表明,(Ba_xSr_(1-x))_(0.95)Gd_(0.05)Co_(0.8)Fe_(0.2)O_(3-δ)(0.1≤x≤0.7)具有立方钙钛矿结构,只有x=0.9的样品伴有少量的BaCoO3杂质,随Ba含量增多晶胞体积膨胀。通过碘滴定反应确定了材料中B位离子价态,结果表明,随着Ba/Sr比例的增加,样品中B位离子的平均价态升高。对材料晶格点阵能进行简单计算的结果显示,和材料中B位离子价态升高而导致材料结构收缩相比,Ba的离子半径大于其它离子半径才是其结构随着Ba/Sr比例的增加所致膨胀的主要原因,同时,为了补偿晶胞膨胀所导致的点阵能下降,B位离子的价态必须升高。Gd掺杂与Ba/Sr比例对材料的热膨胀系数影响不大,材料在50-800°C之间工程膨胀系数(t-TEC)都在20×10~(-6)K~(-1)左右。在5%的Gd掺杂的基础上改变Ba/Sr比例对于材料电导率有显著的影响,电导率随着Ba/Sr比例增加而减少,样品Ba10电导率可以达到σ=298.8S·cm-1。交流阻抗的结果分析表明材料的阻抗值随着Ba/Sr比例变化关系并不是单调的,而随之先增大再减少。在650°C下,x=0.1,_(0.2),0.3,_(0.5)和0.7的阴极材料的总阻抗Rel分别为0.043,0.061,0.065,0.14和_(0.05)9·cm2。
     在A位少量稀土元素Gd的掺杂基础上,改变B位Fe/Co比例得到(Ba_(0.5)Sr_(0.5))_(0.95)Gd_(0.05)Co_(1-x)FexO_(3-δ)(_(0.2)≤x≤1.0)阴极材料,研究其结构,高温热性能,电化学性能等。实验结果表明,(Ba_(0.5)Sr_(0.5))_(0.95)Gd_(0.05)Co_(1-x)FexO_(3-δ)仍具有立方钙钛矿结构,材料的晶胞体积随着Fe含量的增加基本呈减少趋势,但Fe0.4样品具有最大的晶胞常数。材料中B位离子Fe/Co比例改变也并没有使材料的热膨胀系数得到相应的降低,在50-900°C之间其热膨胀系数为20.7-22.4×10-6K-1。热重实验结果表明,随着Fe含量的增加,其在低温区氧化增重的程度明显增加,Fe0.4样品的失重量为最小,这与其具有最小的热膨胀系数相对应。通过对dTG曲线的分析和采用碘滴定法进行的价态测量,区分了材料中B位Co、Fe离子的氧化温区。改变材料中B位Fe/Co比例对于材料电导率的影响不大。随着材料中Fe含量的增加其电导率由64.54S·cm~(-1)减少到21.4S·cm~(-1)。材料的交流阻抗的实验结果表明,Fe0.4样品的电化学性能最好,其阻抗值在650°C为0.07·cm~2。并对Fe0.4在不同氧分压下的阻抗谱进行拟合分析,对于阴极反应机理进行研究。
The energy crisis and environmental development are becoming seriously, Solidoxide fuel cells (SOFCs) as a new kind of chemical device have attracted much attentiondue to their high-energy conversion efficiency and low pollution. With the developmentof practical application research in SOFC, lowering the operation temperature of SOFCsis the key point of the research now. Therefore, the development of new electrodes withhigh electro-catalytic activity for the oxygen-reduction reaction is one effective approachto lower down the operating temperature of SOFC.
     Complex oxides of (Ba_(0.5)Sr_(0.5))1xLnxCo_(0.8)Fe_(0.2)O_(3-δ)(Ln=Y, Gd; noted as BSYCFxand BSGCFx) were synthesized via the modified sol-gel method, and their series ofperformances and electrochemical properties were investigated. The results demonstratedthat the rare earth-doped in A-site does not destroy the single phase cubic perovskitestructure of BSCF. With increasing the rare earth-doped content, the lattice constant andunit cell volume shrink. The ion radius of the Y~(3+)is much smaller than that of the Gd~(3+),BSYCF have smaller cell volume and higher thermal expansion coefficient (TEC) thanBSGCF. The Y, Gd-doped greatly improve the electrical conductivity of BSCF. Themaximum conductivities of BSYCF20and BSGCF15are121.4and148S·cm-1.
     For BSGCF materials, the rcof BSGCF05is the smallest in all samples, whichmake that the starting temperature of weight loss, the temperature of the abnormalexpansion and the transition temperature of the electrical conductivity for the BSGCF05are higher than those of other samples, and the chemical diffusion coefficient (D~) ofoxygen and the diffusion active energy (Ea) of BSGCF05are the smallest in all samples.The results of thermograimetic measurements (TG) show the action of lattice oxygen,which is a major cause of abnormal expansion, the maximum conductivities at atemperature (350-500°C), and the electrical conductivity relaxation for BSYCF andBSGCF materials.
     The oxygen nonstoichiometries of BSCF and BSGCF15tested at room temperatureby the iodometry technique. A larger oxygen nonstoichiometry δ for BSGCF is observeddue to the existence of Gd~(3+)in the A-site. Partial substitution of Ba2+and Sr2+by Gd~(3+)results in the reduction of the valence state in the B-site to maintain the electricalneutrality. The quantity of Co4+and Fe4+in BSGCF is therefore smaller than that ofBSCF. With the increase of temperature, the average valence state in the B-site willcontinue to decrease for the oxygen vacancy concentration increases, which is majorcause that the Gd-doping greatly improves the electrical conductivity and decreases thediffusion resistance of BSCF. The performance of an anode-supported single cell withBSGCF15cathode showed good properties in single-cell. At600°C, the power densitiesis551mW·cm-2, the polarization resistance of cathode is0.16·cm~2.
     Then, base on the results of Gd-doped BSCF, we systematically evaluated theeffects of A-site rare earth metal (Gd~(3+)) doping and changing the ratio of Ba/Sr in A-siteon the performance of (Ba_xSr_(1-x))0.95Gd_(0.05)Co_(0.8)Fe_(0.2)O_(3-δ). The samples with x=0.1-0.7have a cubic ABO3perovskite-type structure, except x=0.9with a small amount ofBaCoO3impurity. The lattice parameter increases with doping content of Ba. The oxygennonstoichiometries_(3-δ) and the average valence state in the B-site were enhanced withthe increasing of Ba content from the results of iodometric titration. The crystal latticeenergy calculated results show that the cell expansion is due to the bigger ion radius ofBa2+than that of Sr2+. The Gd-doped and changing the ratio of Ba/Sr slightly reduce thethermal expansion character of BSCF. The thermal expansion coefficient (TEC) is around20×10-6K-1from50-800°C. The Gd-doped and changing the ratio of Ba/Sr greatlyimprove the electrical conductivity of BSCF. The maximum electrical conductivity ofBa10is298.8S·cm-1. the AC impedance results are clearly observed that the totalpolarization resistances (Rel) of (Ba_xSr_(1-x))0.95Gd_(0.05)Co_(0.8)Fe_(0.2)O_(3-δ)show a first increasewith the increasing content of Ba2+(from x=0.1to_(0.5)), reaching a maximum when x=_(0.5), and then a decrease with further increased in content of Ba2+(x=0.7). The Relvaluesare0.043,0.061,0.065,0.14, and_(0.05)9·cm2for x=0.1,_(0.2),0.3,_(0.5), and0.7at650°C,respectively.
     In order to ascertain the influence of Gd doping on the properties of the materialfurther, we systematically evaluated the effects of A-site rare earth metal (Gd~(3+)) dopingand changing the ratio of Fe/Co in B-site on the performance of(Ba_(0.5)Sr_(0.5))0.95Gd_(0.05)Co_(1-x)FexO_(3-δ)(_(0.2)≤x≤1.0). The results showed that, the(Ba_(0.5)Sr_(0.5))0.95Gd_(0.05)Co_(1-x)FexO_(3-δ)have a cubic perovskite-type structure, and the latticeparameters firstly increase with increasing Fe-doping amount from x=_(0.2) to0.4, andthen decrease with the further increase of x. The Gd-doped and changing the ratio ofFe/Co slightly reduce the thermal expansion character of BSCF. The thermal expansioncoefficient (TEC) is20.7-22.4×10-6K-1from50-900°C. The results of thermograimeticshowed that weight increase was more significant as Fe concentration increased, and theweight loss and TEC for Fe0.4are the smallest. The results of dTG curves and theaverage valence state in the B-site identify the oxidation temperature range of Fe/Co inB-site. The Gd-doped and changing the ratio of Fe/Co slightly changes the electricalconductivity of BSCF. The maximum electrical conductivities of(Ba_(0.5)Sr_(0.5))0.95Gd_(0.05)Co_(1-x)FexO_(3-δ)have declined from64.54S·cm-1to21.4S·cm-1withincreasing Fe content. Based on the results of the AC impedance, the electrochemistryproperties of Fe0.4are better than others. For example, the impedance of Fe0.4is0.07
     ·cm2at650°C. To distinguish the individual step of the electrode reaction, impedancespectra of Fe0.4symmetrical cell was measured with oxygen partial pressure from0.022 to0.86atm.
引文
1克里斯多夫·鲁尔.风雨60年BP世界能源统计年鉴(1951-2011).2011
    2T. A. Damberger. Fuel cells for hospital. J. Power Sorces.1998,71:45-50
    3A. U. Dufour. Fuel cells-a new contributor to stationare power. J. Power Sources.1998,71:19-25
    4韩敏芳.固体氧化物燃料电池材料及制备.科学出版社.2004
    5衣宝廉.燃料电池—高效、环境友好的发电方式.化学工业出版社.2000
    6李瑛,王林山.燃料电池.冶金工业出版社.2000
    7李艳.固体氧化物燃料电池复合阴极的制备及性能研究.哈尔滨工业大学硕士学位论文.2004
    8吕世权.中温固体氧化物燃料电池钻基阴极材料的性能研究.吉林大学博士学位论文.2011
    9肖钢.燃料电池技术.电子工业出版社.2009
    10江义,李文钊,王世忠.高温固体氧化物燃料电池(SOFC)进展.化学进展.1997,9:387-396
    11衣宝廉.燃料电池-原理-技术及应用.化学工业出版社.2003
    12N. Q. Minh. In: Science and Technology of Zirconia V. Badwal S P S, Bannister MJ, Hannink R H J eds. Technomic Publishing Company, Lancaster, PA,1993,652
    13韩敏芳,彭苏萍,王立刚.固体氧化物燃料电池组结构特点和制备方法.功能材料.2001,132:1189-1194
    14N. Q. Minh. Ceramic Fuel-Cells. J. Am. Ceram. Soc.1993,76:563-567
    15S. C. Singhal, K. Kendall,韩敏芳,蒋先峰译,彭苏萍校.高温固体氧化物燃料电池原理、设计和应用.2007
    16K. Huang, J. Wan, J. B Goodenough. Oxide-ion Conducting Ceramics for SolidOxide Fuel Cells. J. Mater. Sci.2001,36:1093-1098
    17B. C. H. Steele. Appraisal of Ce1-yGdyO2-y/2Electrolytes for IT-SOFC Operation at500°C. Solid State Ionics.2000,129:95-110
    18R. Doshi, V. L. Richards, J. D. Carter, X. P. Wang. M. Krumpelt, Development ofSolid-Oxide Fuel Cells that Operate at500°C. J. Electrochem. Soc.1999,146:1273-1278
    19I. Hideski, T. Hiroaki. Ceria-based Solid Electrolytes. Solid State Ionics.1996,83(1-2):1-16
    20B. Zhu, X. T. Yang, J. Xu, Z. G. Zhu, S. J. Ji, M. T. Sun, J. C. Sun. Innovative LowTemperature SOFCs and Advanced Materials. J. Power Sources.2003,118:47-53
    21G. Pudmich, B. A. Boukamp, M. Gonzalez-Cuenca. Chrimite/titanate basedPerovskite for Application as Anodes in Solid Oxide Fuel Cell. Solid state ionics,2000,135:433-438
    22李松丽,王绍荣,聂怀文,等. La0.95Sr0.15Cr0.9Ni0.1O3-δ-Ce0.8Sm0.2O1.9作为阳极材料的研究.无机材料学报.2006,21(5):1121-1126
    23J. C. Ruiz-Morales, J. Canales-Vázquez, C. Savaniu. Disruption of ExtendedDefects in Solid Oxide Fuel Cell Anodes for Methane Oxidation. Nature.2006,439:568-571
    24J. W. Fergus. Metallic Interconnects for Solid Oxide Fuel Cells. Mater. Sci. Eng.A-Struct. Mater. Prop. Microstruct.Process.2005,397:271-283
    25K. S. Weil. The State-of-the-Art in Sealing Technology for Solid Oxide Fuel Cells.JOM.2006,58:37-44
    26贾旭平.美国Bloom energy公司推出固体氧化物燃料电池微型电站.电源技术.2010,34:525-528
    27C. W. Sun, R. Hui, J. Roller. Cathode Materials for Solid Oxide Fuel Cells: a review.J. Solid State Electrochem.2010,14:1125-1144
    28J. Fleig. Solid oxide fuel cell cathodes: Polarization Mechanisms and Modeling ofthe Electrochemical Performance. Annu. Rev. Mater. Res.2003,33:361-382
    29S. P. Jiang, W. Wang. Sintering and Grain Growth of (La, Sr)MnO3Electrodes ofSolid Oxide Fuel Cells under Polarization. Solid State Ionics.2005,76:1185-1191
    30X. J. Chen, K. A. Khor, S. H. Chan. Electrochemical Behavior of La(Sr)MnO3Electrode under Cathodic and Anodic Polarization. Solid State Ionics.2004,167:379-387
    31B. A. Boukamp. Fuel cells: The Amazing Perovskite Anode. Nat. Mater.2003,2:294-296
    32S. W. Tao, J. T. S. Irvine. A Redox-stable Efficient Anode for Solid-oxide Fuel Cells.Nat. Mater.2003,2:320-323
    33P. Tsiakaras, C. Athanasiou, G. Marnellos, M. Stoukides, J. E. ten Elshof, H. J. M.Bouwmeester. Methane Activation on a La0.6Sr0.4Co0.8Fe0.2O3Perovskite: Catalyticand Electrocatalytic Results. Applied Catalysis A: General.1998,169:249-261
    34T. Yao, Y. Uchimoto, T. Sugiyama, Y. Nagai. Synthesis of (La, Sr)MeO3(Me=Cr,Mn, Fe, Co) solid solutions from aqueous solutions. Solid State Ionics.2000,135:359-364
    35H. Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto. Ln0.4Sr0.6Co0.8Fe0.2O3-δ(Ln=La, Pr,Nd, Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ionics.1999,117:277-281
    36X. G. Zhang, M. Robertson, S. Yick, C. De es-Petit, E. Styles, W. Qu, Y. S. Xie, R.Hui, J. Roller, O. Kesler, R. Maric, D. Ghosh. Sm0.5Sr0.5CoO3+Sm0.2Ce0.8O1.9composite cathode for cermet supported thin Sm0.2Ce0.8O1.9electrolyte SOFCoperating below600°C. J. Power Sources.2006,160:1211-1216
    37C. R. Xia, W. Rauch, F. L. Chen, M. L. Liu. Sm0.5Sr0.5CoO3cathodes forlow-temperature SOFCs. Solid State Ionics.2002,149:11-19
    38K. Yasumoto, Y. Inagaki, M. Shiono, M. Dokiya. An (La, Sr)(Co, Cu)O3-δcathodefor reduced temperature SOFCs. Solid State Ionics.2002,148:545-549
    39W. X. Chen, T. L. Wen, H. W. Nie, R. Zheng. Study of Ln0.6Sr0.4Co0.8Mn0.2O3-δ(Ln=La, Gd, Sm or Nd) as the cathode materials for intermediate temperature SOFC.Mater. Res. Bull.2003,38:1319-1326
    40Z. P. Shao, S. M. Haile. A High-Performance Cathode for the Next Generation ofSolid-Oxide Fuel Cells. Nature.2004,431:170-173
    41L. Tan, X. H. Gu, L. Yang, W. Q. Jin, L.X. Zhang, N. P. Xu. Influence of powdersynthesis methods on microstructure and oxygen permeation performance ofBa0.5Sr0.5Co0.8Fe0.2O3-δperovskite-type membranes. J. Membr. Sci.2003,212:157-165
    42L. Tan, X. H. Gu, L. Yang, L. X. Zhang, C. Q. Wang, N. P. Xu. Influence ofsintering condition on crystal structure, microstructure, and oxygen permeability ofperovskite-related type Ba0.8Sr0.2Co0.8Fe0.2O3-δmembranes. Sep. Purif. Technol.2003,32:307-312
    43Z. S. Duan, A. Y. Yan, Y. L. Dong, Y. Cong, M. J. Cheng, W. S. Yang. IntermediateTemperature Solid Oxide Fuel Cell with Ba0.5Sr0.5Co0.8Fe0.2O3-δCathode. Chin. J.Catal.2005,10:829-831
    44S. Lee, Y. Lim, E. A Lee, H. J. Hwang, J. Moon. Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) andLa0.6Ba0.4Co0.2Fe0.8O3-δ(LBCF) cathodes prepared by combined citrate-EDTAmethod for IT-SOFCs. J. Power Sources.2006,157:848-854
    45A. Y. Yan, M. J. Cheng, Y. L. Dong, W. S. Yang, V. Maragou, S. Q. Song, P.Tsiakaras. Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3-δbased cathode IT-SOFC: I. Theeffect of CO2on the cell performance. Applied Catalysis B: Environmental.2006,66:64-71
    46K. Wang, R. Ran, W. Zhou, H. X. Gu, Z. P. Shao. J. Ahn. Properties andperformance of Ba0.5Sr0.5Co0.8Fe0.2O3δ+Sm0.2Ce0.8O1.9composite cathode. J. PowerSources.2008,179:60-68
    47B. Wei, Z. Lü, X. Huang, S. Li, G. Ai, Z. G. Liu, W. H. Su. Electrochemicalcharacteristics of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Sm0.2Ce0.8O1.9composite materials forlow-temperature solid oxide fuel cell cathodes. Mater. Lett.2006,60:3642-3646
    48S. Y. Li, Z. Lü, B. Wei, X. Q. Huang, J. P. Miao, Z. G. Liu, W. H. Su. Performancesof Ba0.5Sr0.5Co0.6Fe0.4O3-δ-Ce0.8Sm0.2O1.9composite cathode materials for IT-SOFC. J.Alloys Compd.2008,448:116-121
    49B. Liu, Y. Zhang, L. Zhang. Characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δcomposite cathode for solid oxide fuel cell. J. Power Sources.2008,175:189-195
    50B. Lin, H. Ding, Y. Dong, S.Wang, X. Zhang, D. Fang, G. Meng.Intermediate-to-low temperature protonic ceramic membrane fuel cells withBa0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.2O3-δcomposite cathode. J. Power Sources.2009,168:58-61
    51Z. V. Marinkovi, L. Man i, J.-F. Cribier, S. Ohara, T. Fukui, O. Milo evi. Natureof structural changes in LSM-YSZ nanocomposite material during thermal treatments.Mater.Sci. Eng.2004, A375-377:615-619
    52C. R. Xia, W. Rauch, F. L. Chen, M. L. Liu. Sm0.5Sr0.5CoO3cathodes forlow-temperature SOFCs. Solid State Ionics.2002,149:11-19
    53V. Dusastre, J. A. Kilner. Optimisation of composite cathodes for intermediatetemperature SOFC applications. Solid State Ionics.1999.126:163-174
    54A. Esquirol, J. Kilner, N. Brandon. Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ/Ce0.8Ge0.2O2-xcomposite cathode for IT-SOFCs. Solid State Ionics.2004,175:63-67
    55S. Y. Li, Z. Lü, X. Q. Huang, B. Wei, W. H. Su. Electrical and thermal properties of(Ba0.5Sr0.5)1-xSmxCo0.8Fe0.2O3-δperovskite oxides. Solid State Ionics.2007,178:417-422
    56S. Y. Li, Z. Lü, N. Ai, K. F. Chen, W. H. Su. Electrochemical performance of(Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3-δas an intermediate temperature solid oxide fuel cellcathode. J. Power Sources.2007,165:97-101
    57S. Y. Li, Z. Lü, X. Q. Huang, W. H. Su. Thermal, electrical, and electrochemicalproperties of Nd-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δas a cathode material for SOFC. SolidState Ionics.2008,178:1853-1858
    58S. Y. Li, Z. Lü, X. Q. Huang, B. Wei, W. H. Su. Thermal, electrical, andelectrochemical properties of Lanthanum-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ. J. Phys.Chem. Solid.2007,68:1707-1712
    59H. Zhao, D. Teng, X. Zhang, C. Zhang, X. Li. Structural and electrochemical studiesof Ba0.6Sr0.4Co1yTiyO3δas a new cathode material for IT-SOFCs. J. Power Sources.2009,186:305-310
    60李淑彦.稀土掺杂BaSrCoFeO阴极材料高温物性及电化学性能.哈尔滨工业大学博士学位论文.2008
    61J. H. Piao, K. N. Sun, N. Q. Zhang, X. B. Chen, S. Xu, D. R. Zhou. Preparation andcharacterization of Pr1-xSrxFeO3cathode material for intermediate temperature solidoxide fuel cells. J. Power Sources.2007,172:633-640
    62L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Sehlin. Structureand electrical properties of La1-xSrxCo1-yFeyO3. Part1. The systemLa0.8Sr0.2Co1-yFeyO3. Solid State Ionics.1995,76:259-271
    63A. Petric, P. Huang, F. Tietz. Evaluation of La-Sr-Co-Fe-O perovskites for solidoxide fuel cells and gas separation membranes. Solid State Ionics.2000,135:719-725
    64Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe. Influence ofconstituent metal cations in substituted LaCoO3on mixed conductivity and oxygenpermeability. Solid State Ionics.1991.48:207-212
    65H. Ullmann, N. Trofimenko, F. Tietz, D. St ver, A. Ahmad-Khanlou. Correlationbetween thermal expansion and oxide ion transport in mixed conductingperovskite-type oxides for SOFC cathodes. Solid State Ionics.2000,138:79-90
    66L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Sehlin. Structureand electrical properties of La1-xSrxCo1-yFeyO3. Part2. The systemLa1xSrxCo0.2Fe0.8O3. Solid State Ionics.1995,76:273-283
    67T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, V. Takita.Intermediate temperature Solid Oxide Fuel Cells using a new LaGaO3based oxideion conductor. PT.1. Doped SmCoO3as a new cathode material. J. Electrochem. Soc.1998,145:3177-3183
    68B. Wei, Z. Lü, X. Q. Huang, J. P. Miao, X. Q. Sha, X. S. Xin, W. H. Su. Crystalstructure, thermal expansion and electrical conductivity of perovskite oxidesBaxSr1-xCo0.8Fe0.2O3-δ(0.3≤x≤0.7). J. Eur. Ceram. Soc.2006,26:2827-2832
    69G. Kim, S. Wang, A. J. Jacobson. Oxygen exchange kinetics of epitaxialPrBaCo2O5+δthin films. Appl. Phys. Lett.2006,88:024103
    70G. Kim, S. Wang, A. J. Jacobson, Y. Ando, A. L. ET. Rapid oxygen ion diffusion andsurface exchange kinetics in PrBaCo2O5+xwith a perovskite related structure andordered a cations. J. Mater. Chem.2007,17:2500-2505
    71A. A. Taskin, A. N. Lavrov, Y. Ando. Achieving fast oxygen diffusion in perovskitesby cation ordering. Appl. Phys. Lett.2005,86:091910.
    72E. N. Naumovich, M. V. Patrakeev, V. V. Kharton, A. A. Yaremchenko, D. I.Logvinovich, F.M.B. Marques. Oxygen nonstoichiometry in La2Ni(M)O4+δ(M=Cu,Co) under oxidizing conditions. Solid State Sci.2005,7:1353-1362
    73E. Boehm, J. M. Bassat, M. C. Steil. Oxygen transport properties of La2Ni1-xCuxO4+δmixed conducting oxides. Solid State Sci.2003,5:973-981
    74J. Wan, J. B. Goodenough, J. H. Zhu. Nd2-xLaxNiO4+δ, a mixed ionic/electronicconductor with interstitial oxygen a cathode material. Solid State Ionics.2007,178:281-286
    75G. KJM, A. J. Jacobson. Electrochemical characterization of La2-xPrxNiO4+xforapplication as cathodes in Intermediate Temperature SOFCs. Mater. res. Soc. Symp.Proc.2007,972:175-180
    76W. Preis, E. Bucher, W. Sitte. Oxygen exchange measurements on perovskites ascathode materials for solid oxide fuel cells. J. Power Sources.2002,106:116-121
    77S. Pei, M. S. Kleefisch, T. P. Kobylinski, J. Faber, C. A. Udovich, M. V. Zhang, B.Dabrowski, U. Balachandran, R. L. Mieville, R. B. Poeppel. Failure mechanisms ofceramic membrane reactors in partial oxidation of methane to synthesis gas. Catal.Letters.1995,30:201-212
    78Z. P. Shao, G. X. Xiong, J. H. Tong, H. Dong, W. S. Yang. Ba effect in dopedSr(Co0.8Fe0.2)O3-δon the phase structure and oxygen permeation properties of thedense ceramic membranes. Sep. Purif. Technol.2001,25:419-429
    79N. Ai, Z. Lü, K. F. Chen, X. Q. Huang, B. Wei, Y. H. Zhang, S. Y. Li, X. S. Xin, X.Q. Sha, W. H. Su. Low temperature solid oxide fuel cells based on Sm0.2Ce0.8O1.9filmfabrication by slurry spin coating. J. Power Source.2006,159:637-640
    80Z. P. Shao, W. S. Yang, Y. Cong, H. Dong, J. H. Tong, G. X. Xiong. Investigation ofthe permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δoxygen membrane.J. Membr. Sci.2000,172:177-188
    81K. Kammer. Studies of Fe-Co based perovskite cathodes with different A-sitecations. Solid State Ionics.2006,177:1047-1051
    82L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda. Ln1-xSrxCo1-yFeyO3-δ(Ln=Pr,Nd, Gd; x=0.2,0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics.2003,158:55-65
    83F. Riza, Ch. Ftikos, F. Tietz, W. Fischer. Preparation and characterization ofLn0.8Sr0.2Fe0.8Co0.2O3-x(Ln=La, Pr, Nd, Sm, Eu, Gd). J. Eur. Ceram. Soc.2001,21:1769-1773
    84J. Liu, A. C. Co, S. Paulson, V. I. Birss. Oxygen reduction at sol-gel derivedLa0.8Sr0.2Co0.8Fe0.2O3cathodes. Solid State Ionics.2006,177:377-387
    85J. Pe a-Martínez, D. Marrero-López, D. Pérez-Coll, J. C. Ruiz-Morales, P. Nú ez.Performance of XSCoF (X=Ba, La and Sm) and LSCrX (X'=Mn, Fe and Al)perovskite-structure materials on LSGM electrolyte for IT-SOFC. Electrochim. Acta.2007,52:2950-2958
    86N. E. Trofimenko, J. Paulsen, H. Ullmann, R. Miiller. Structure, oxygenstoichiometry and electrical conductivity in the system Sr-Ce-Co-O. Solid Statelonics.1997,100:183-191
    87S. Hébert, A. Maignan, V. Caignaert, V. Pralong, D. Pelloquin, B. Raveau.Ferromagnetism and metallicity in the modulated Sr1-xThxCoO3-δoxygen deficientperovskites with x~0.1. Solid State Commun.2005,134:815-820
    88D. J. Goossens, K. F. Wilson, M. James. Structure and magnetism in Ho1-xSrxCoO3-δ.J. Phys. Chem. Solids.2005,66:169-175
    89S. Y. Li, Z. Lü, B. Wei, X. Q. Huang, J. P. Miao, G. Cao, R. B. Zhu, W. H. Su. Astudy of (Ba0.5Sr0.5)1-xSmxCo0.8Fe0.2O3-δas a cathode material for IT-SOFCs. J. AlloysCompd.2006,426:408-414
    90A. Maignan, S.Hébert, V. Caignaert, V. Pralong, D. Pelloquin. Sr2/3Y1/3CoO8/3+δ:Transition from insulating antiferromagnet to metallic ferromagnet by control of theoxygen content. J. Solid State Chem.2005,178:868-873
    91D. J. Goossens. Structural and magnetic properties of Y0.33Sr0.67CoO2.79. PhysicalReview B.2004,69:134411-6
    92S. Y. Istomin, O. A. Drozhzhin, G. Svensson, E. V. Antipov. Synthesis andcharacterization of Sr1-xLnxCoO3-δ, Ln=Y, Sm-Tm,0.1≤x≤0.5. Solid State Sci.2004,6:539-546
    93T. J. B. Holland, S. A. T. Redfern. UNITCELL: a nonlinear least-squares programfor cell-parameter refinement and implementing regression and deletion diagnostics.J. Appl. Crystallogr.1997,30:84-84
    94B. Wei, Z. Lü, S. Y. Li, Y. Q. Liu, K. Y. Liu, W. H. Su. Thermal and electricalproperties of new cathode material Ba0.5Sr0.5Co0.8Fe0.2O3-δfor Solid Oxide Fuel Cells.Electrochem. Solid State Lett.2005,8: A428-A431
    95Z. Q. Li, B. Wei, Z. Lü, X. Q. Huang, W. H. Su. Structure, electrical and thermalproperties of (Ba0.5Sr0.5)1-xGdxCo0.8Fe0.2O3-δperovskite as a solid-oxide fuel cellcathode. Solid State Ionics.2012,207:38-43
    96R. D. Shannon. Revised Effective Ionic Radii and Systematic Studies of InteratomieDistances in Halides and Chaleogenides. Acta Cryst.1976, A32:751-767
    97G. V. Kostogloudis, P. Fertis, C. Ftikos. The perovskite oxide systemPr1-xSrxCo1-yMnyO3-δ: crystal structrue and thermal expansion. J. Eur. Ceram. Soc.1998,18:2209-2215
    98A. L. Shaula, V. V. Kharton, N. P. Vyshatko, E.V. Tsipis, M. V. Patrakeev, F. M. B.Marques, J. R. Frade. Oxygen ionic transport in SrFe1-yAlyO3-δandSr1-xCaxFe0.5Al0.5O3-δceramics. J. Eur. Ceram. Soc.2005,25:489-499
    99K. Tabata, S. Kohiki. Catalytic Properties and Surface States of La1-x(Th,Sr)xCoO3. J.Mater. Sci.1987,22:3781-3783
    100B. Wei, Z. Lü, X. Q. Huang, M. L. Liu, N. Li, W. H. Su. Synthesis, electrical andelectrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3-δperovskite oxide for IT-SOFCcathode. J. Power Sources.2008,176:1-8
    101J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L. R. Pederson, W. J. Weber.Electrochemical properties of mixed conducting perovskite La1-xMxCo1-yFeyO3-δ(M=Sr, Ba, Ca). J. Electrochem. Soc.1996,143:2722-2729
    102J. B. Goodenough. Covalency Criterion for Localized vs Collective Electrons inOxides with the Perovskite Structure. J. Appl. Phys.1966,37:1415-1422
    103C. Y. Huang, T. J. Huang. Effect of Co substitution for Mn on Y1-xSrxMnO3properties for SOFC cathode material. J. Mater. Sci.2002,37:4581-4587
    104Y. Matsuzaki, I. Yasuda. Relationship between the steady-state polarization of theSOFC air electrode, La0.6Sr0.4MnO3+δ/YSZ, and its complex impedance measured atthe equilibrium potential. Solid State Ionics.1999,126:307-313
    105黄昆.固体物理学.人民教育出版社.1966,82
    106B. Ma, U. Balachandran, J. H. Park, C. U. Segre. Determination of chemicalcoeffcient of SrFeCo0.5Oxby the conductivity relaxation method. Solid State Ionics.1996,83:65-71
    107M. T. Katsuki, S. R. Wang, M. Y. Dokiya, T. K. Hashimoto. High TemperatureProperties of La0.6Sr0.4Co0.8Fe0.2O3-δOxygen Nonstoichiometry and ChemicalDiffusion Constant. Solid State Ionics.2003,156:453-461
    108M. T. Katsuki, S. R. Wang, K. J. Yasumoto, M. Y. Dokiya. The Oxygen Transportin Gd-Doped Ceria. Solid State Ionics.2002,154-155:589-595
    109J. Crank. The Mathematics of Diffusion. Oxford University Press. New Youk.1975
    110F. Mauvy, J. M. Bassat, E. Boehm, P. Dordor, J. C. Grenier, J. P. Loup. ChemicalOxygen Diffusion Coefficient Measurement by Conductivity Relaxation-Correlationbetween Tracer Diffusion Coefficient and Chemical Diffusion Coefficient. J. Eur.Ceram. Soc.2004,24:1265-1269
    111张国光,刘卫,谢津桥,陈初升,彭定坤. SrFe1.5-xCoxOy混合导体的制备及氧化扩散研究.硅酸盐学报.2000,28:20-24
    112J. E. Bauerle. Study of solid electrolyte polarization by a complex admittancemethod. J. Phys. Chem. Solids.1969,30(12):2670-2675
    113H. S. Maiti, R. N. Basu. Complex-plane impedance analysis for semiconductingbarium titanate Mater. Res. Bull.1986,21(53):1107-1114
    114张中太,齐建全. BaTiO3系PTCR材料电学性能的复阻抗解析.硅酸盐学报.1996,24(1):100-104
    115李长玉,吕喆,苗继鹏,沙雪清,贾莉,刘玉强,苏文辉.硝酸盐-柠檬酸法制备Ce0.8Sm0.2O1.9及其性能研究.哈尔滨工业大学学报.2006,38:357-361
    116F. Heuveln, H. Bouwmeester. Electrode Properties of Sr-Doped LaMnO3onYttria-Stabilized Zirconia. J. Electrochem. Soc.1997,144:134-140
    117Y. Leng, S. Chan, K. Khor, S. Jiang. Performance evaluation of anode-supportedsolid oxide fuel cells with thin film YSZ electrolyte. Int. J. Hydrogen Energy.2004,29:1025-1033
    118M. J rgensen, M. Mogensen. Impedance of solid oxide fuel cell LSM/YSZcomposite cathodes, J. Electrochem. Soc.2001,148: A433-442
    119S. Adler. Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δelectrodes. Solid State Ionics,1998:111:125-134
    120S. Adler, J. Lane, B. Steele. Electrode Kinetics of Porous Mixed-ConductingOxygen Electrodes. J. Electrochem. Soc.1996,143:3554-3564
    121X. Chen, S. Chan, K. Khor. Simulation of a composite cathode in solid oxide fuelcells. Electrochim. Acta,2004,49:1851-1861
    122V. M. Goldschmidt. Akad. Oslo I. Mat. Natur.1926,2:7-11
    123A. S. Harvey, F. J. Litterst, Z. Yang, J. L. M. Rupp, A. Infortunaa, L. J. Gauckler.Oxidation states of Co and Fe in Ba1-xSrxCo1-yFeyO3-δ(x, y=0.2-0.8) and oxygendesorption in the temperature range300-1273K. Phys. Chem. Chem. Phys.2009,11:3090-3098
    124Y. Teraoka, M. Yoshimatsu, N. Yamazoe, T. Seiyama. Oxygen-sorptive propertiesand defect structure of perovskite-type oxides. Chem.Lett.1984,13:893-896
    125H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya. Thermodynamic stabilities ofperovskite oxides for electrodes and other electrochemical materials. Solid StateIonics.1992,52:43-56
    126M. A. Alaee, T. Mohammadi. Preparation and characterisation ofBaxSr1-xCo0.8Fe0.2O3-δperovskite-type membranes: Part II. Membrane Technology.2009,3:7-11
    127A. R. Ruffa. Thermal expansion in insulating materials. J. Mater. Sci.1980,15:2258-2267
    128A. R. Ruffa. Empirical determination of thermal expansion in insulators with noexperimental input. J. Mater. Sci.1980,15:2268-2274
    129廖立兵,李锁在.矿物热膨胀系数计算的修正Ruffa法及其应用.矿物学报.2003,23:349-354
    130A. R. Ruffa. Temperature dependence of the elastic shear modudi of the cubicmetals. Phys. Rev. B.1977,16(6):2504-2514
    131A. R. Ruffa. Calculation of thermal expansion in insulating and ceramic materials[A]. Larsen D C.Thermal Expansion7[C]. New York: Plenum,1981.139-154
    132K. Fueki, Y. Idemoto, H. Idhixuks. Oxygen nonstoichiometry of aY(Ba1-xSrx)2Cu3O7-δsuperconductor. Physica C.1990,166:261-265
    133K. Conder, S. Rusiecki, E. Kaldis. High accuracy volumetric determination ofoxygen in Y-Ba-Cu-O superconductors: YBa2Cu3O6.5+x. Mater. Res. Bull.1989,24:581-587
    134L. H. Liu, C. Dong, J. C. Zhang, H. Chen, L. Chen. A simple volumetric methodfor oxygen content determination in high-Tc doped YBCO compositions. Physic C.2002,383:17-22
    135S. K. Chen, L. Zhou, K. G. Wang. Measurement of the oxygen content inYBa2Cu3Oxby X-RAY diffraction. China journal of low temperature physics.24:67-73
    136D. Jorgensen, B. W. Veal, W. K. Kwok. Structural and superconducting propertiesof orthorhombic and tetragonal YBa2Cu3O7-x: The effect of oxygen stoichiometry andordering on superconductivity. Physical Review B.1987,36:5731-5734
    137S. McIntosh, J. F. Vente, W. G. Haije, D. H. A. Blank, H. J. M. Bouwmeester.Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3-δand Ba0.5Sr0.5Co0.8Fe0.2O3-δ.Solid State Ionics.2006,177:1737-1742
    138路庆凤,杜保力,刘英豪.高温氧化物超导体氧含量的测定.河南大学学报(自然科学版).2003,31:58-60
    139上海化工学院分析化学都研组,成都工学院分析化学者研组.分析化学.人民教育出版社.1979,207-214
    140Z. H. Chen, R. Ran, W. Zhou, Z. P. Shao, S. M. Liu. Assessment ofBa0.5Sr0.5Co1-yFeyO3-δ(y=0.0-1.0) for prospective application as cathode forIT-SOFCs or oxygen permeating membrane. Electrochim. Acta,2007,52:7343-7351
    141J. Jung, S. Misture, D. Edwards. Oxygen stoichiometry, electrical conductivity, andthermopower measurements of BSCF (Ba0.5Sr0.5CoxFe1-xO3-δ,0≤x≤0.8) in air. SolidState Ionics.2010,181:1287-1293
    142S. Adler. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes.Chem. Rev.2004,104:4791-4843
    143艾娜. Sm0.2Ce0.8O1.9电解质薄膜燃料电池及电极性能优化研究.哈尔滨工业大学博士学位论文.2008
    144K. F. Chen, Z. Lü, N. Ai, X. Q. Huang, Y. H. Zhang, X. Xin, R. Zhu, W. H. Su.Development of yttria-stabilized zirconia thin films via slurry spin coating forintermediate-to-low temperature solid oxide fuel cells. J. Power. Sources.2006,160:436-438
    145Z. Q. Li, B. Wei, Z. Lü, Y. H. Zhang, K. F. Chen, J. P Miao, W. H. Su. Evaluationof (Ba0.5Sr0.5)0.85Gd0.15Co0.8Fe0.2O3-δcathode for intermediate temperature solid oxidefuel cell. Ceram. Int.2012,38:3039-3046
    146S. Souza, S. Visco, L. De Jonghe. Reduced-Temperature Solid Oxide Fuel CellBased on YSZ Thin-Film Electrolyte. J. Electrochem. Soc.1997,144: L35-37
    147C. Xia, M. Liu. Microstructures, conductivities, and electrochemical properties ofCe0.9Gd0.1O2and GDC-Ni anodes for low-temperature SOFCs. Solid State Ionics.2002,152:423-430
    148W. Zhou, R. Ran, Z. Shao, W. Jin, N. Xu. Evaluation of A-site cation-deficient(Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-δ(x>0) perovskite as a solid-oxide fuel cell cathode. J.Power Sources.2008,182:24-31
    149W. Zhou, R. Ran, Z. Shao, W. Zhuang, J. Jia, H. Gu, W. Jin, N. Xu. Barium-andstrontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3-δoxides as high-performance cathodesfor intermediate-temperature solid-oxide fuel cells, Acta Mater.2008,56:2687-2698
    150H. L. Zhao, W. Shen, Z. M. Zhu, X. Li, Z. F. Wang. Preparation and properties ofBaxSr1-xCoyFe1-yO3-δcathode material for intermediate temperature solid oxide fuelcells. J. Power Sources.2008,182:503-509
    151A. R. West著,苏勉曾等译.固体化学及其应用.复旦大学出版社.1989
    152D. Petrov, B. Angelov. Lattice energies and crystal-field parameters of lanthanidemonosulphides. Physica B.2010,405:4051-4053
    153S. Uhlenbruck, F.Tietz. High-temperature thermal expansion and conductivity ofcobaltites: potentials for adaptation of the thermal expansion to the demands for solidoxide fuel cells. Mater. Sci. Eng. B.2004,107:277-282
    154J. Jung, S. Misture, D. Edwards. Seebeck coefficient and electrical conductivity ofBSCF (Ba0.5Sr0.5CoxFe1-xO3-δ,0≤x≤0.8) as a function of temperature and partialoxygen pressure. Solid State Ionics.2012,206:50-56
    155E. P. Murray, T. Tsai, S. A. Barnett. Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2cathode: an impedance spectroscopy study. SolidState Ionics.1998,110:235-243.
    156M. J. Escudero, A. Aguadero, J. A. Alonso, L. Daza. A kinetic study of oxygenreduction reaction on La2NiO4cathodes, by means of impedance spectroscopy J.Electroanal. Chem.2007,611:107-116
    157Y. Takeda, R. Kanno, M. Noda, Y. Tomida, O. Yamamoto. Cathodic PolarizationPhenomena of Perovskite Oxide Electrodes with Stabilized Zirconia. J. Electrochem.Soc.1987,134:2656-2661
    158D. Chen, R. Ran, K. Zhang, J. Wang, Z. Shao. Intermediate-temperatureelectrochemical performance of a polycrystalline PrBaCo2O5+δcathode onsamarium-doped ceria electrolyte. J. Power Sources.2009,188:96-105
    159Y. Wang, H. Zhang, F. Chen, C. Xia. Electrochemical characteristics ofnano-structured PrBaCo2O5+xcathodes fabricated with ion impregnation process. J.Power Sources.2012,203:34-41
    160T. Nakamura, G. Petzow, L. J. Gauckler. Stability of the perovskite phase LaBO3(B=V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results. Mater. Res.Bull.1979,14:649-659
    161J. Pe a-Martínez, D. Marrero-López, J. C. Ruiz-Morales, P.Nú ez, C.Sánchez-Bautista, A. J. D. Santos-García, J. Canales-Vázquez. OnBa0.5Sr0.5Co1-yFeyO3-δ(y=0.1-0.9) oxides as cathode materials forLa0.9Sr0.1Ga0.8Mg0.2O2.85based IT-SOFCs. Int. J. Hydrogen Energy.2009,34:9486-9495
    162E. Magnone, E. Traversa, M. Miyayama. Synthesis and thermal analysis of thesrontium and Iron-doped Lanthanum Cobaltite nano-powder precursors. J. Ceram.Soc. Jpn.2007,115(7):402-408
    163E. Magnone, E. Traversa, M. Miyayama. Nano-sized Pr0.8Sr0.2Co1-xFexO3powdersprepared by single-step combustion synthesis for solid oxide fuel cell cathodes. JElectroceram.2010,24:122-135
    164H. Lv, Y. J. Wu, B. Huang, B. Y. Zhao, K. Hu. Structure and electrochemicalproperties of Sm0.5Sr0.5Co1-xFexO3-δcathodes for solid oxide fuel cells. Solid StateIonics.2006,177:901-906
    165C. R. Dyck, R. C. Peterson, Z. B. Yu, V. D. Krstic. Crystal structure, thermalexpansion and electrical conductivity ofdual-phase Gd0.8Sr0.2Co1-yFeyO3-δ(0≤y≤1.0).Solid State Ionics.2005,176:103-108
    166S. McIntosh, J. F. Vente, W. G. Haije, D. H. A. Blank, H. J. M. Bouwmeester.Oxygen Stoichiometry and Chemical Expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-δMeasuredby in Situ Neutron Diffraction. Chem. Mater.2006,18:2187-2193
    167Q. Zhu, T. Jin T, Y. Wang. Thermal expansion behaviour and chemicalcompatibility of BaxSr1-xCo1-yFeyO3-δwith8YSZ and20GDC. Solid State Ionics.2006,177:1199-1204
    168J. Ovenstone, J. Jung, JS. White, DD. Edwards, ST. Misture. Phase stability ofBSCF in low oxygen partial pressures. J. Solid State Chem.2008,181:576-586
    169A. S. Harvey, Z. Yang, A. Infortuna, D. Beckel, J. A. Purton, L. J. Gauckler,Development of electron holes across the temperature-induced semiconductor–metaltransition in Ba1-xSrxCo1-yFeyO3-δ(x, y=0.2-0.8): a soft x-ray absorptionspectroscopy study. J. Phys.: Condens. Matter.2009,21:015801(10pp)
    170T. Ishihara, T. kudo, H. Matsuda, Y. Takita. Doped PrMnO3Perovskite Oxide as aNew Cathode of Solid Oxide Fuel Cells for Low Temperature Operation. J.Electrochem. Soc.1995,142:1519-1524
    171S. Kim, S. Wang, X. Chen, Y. L. Yang, N. Wu, A. Ignatiev, A. J. Jacobson, B.Abeles. Oxygen Surface Exchange in Mixed Ionic Electronic Condutors: Applicationto La0.5Sr0.5Fe0.8Ga0.2O3-δ. J. Electrochem. Soc.2000,147:2398-2406
    172T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, T. Kawada, T. Kato. Oxygenreduction sites and diffusion paths at La0.9Sr0.1MnO3x/yttria-stabilized zirconiainterface for different cathodic overvoltages by secondary-ion mass spectrometry.Solid State Ionics.2000,127:55-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700