用户名: 密码: 验证码:
阳离子掺杂SrTiO_3磁光薄膜晶体结构和物理性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成电路是二十世纪最重要的科技成果之一,其推动了电子技术的高速发展。然而,由于工作时的电子迁移速率、功耗和散热等的制约,集成电路渐渐的不能满足人们对高速运算、低功耗以及大信息量传输的要求。和电子相比,光子不具有质量,且传输速率是电子的1500倍,因此光学器件的发展将对解决目前电子领域所面对的性能提升、功耗及散热等瓶颈具有革命性的影响。集成光学器件相对于分立元件构成的系统具有更高的效率,运算速度和经济性。因此伴随着光通信产业的快速发展,将所有的光学元件(如:激光发生器,调制器,波导和探测器等)集成到Si或者是III-V半导体平台上的光电集成技术引起了持续的关注。然而,非可逆光学器件,尤其是集成光隔离器,由于缺乏一种可以与半导体基体匹配良好的高品质因子的磁光材料,成为集成光学器件中唯一缺失的器件。
     本文采用激光脉冲沉积技术,在(LaAlO_3)_(0.3)(Sr_2AlTaO_6)_(0.7)--LSAT基体上制备了Fe掺杂SrTiO_3钙钛矿磁光薄膜,研究了不同Fe掺杂含量、激光能量密度和沉积厚度对薄膜的晶体结构、磁性、光学性能和磁光性能的影响。Fe掺杂SrTiO_3薄膜中Fe原子取代了B位的Ti原子,薄膜的晶格结构为钙钛矿外延结构,无第二相及杂质相的存在。随着Fe掺杂含量的升高,晶格常数c而变大,c/a同时变大,薄膜整体受压应力;同时Sr(Ti_(1-x)Fe_x)O_3薄膜的饱和磁化强度(Ms)随之升高,当Fe掺杂含量达到40%达到最大值。薄膜的矫顽力和各向异性场随着Fe含量的升高而变大。铁磁性产生的机理主要是由于Fe-O-Fe离子对之间存在的超交换(super-exchange)及双交换(double-exchange)效应。饱和法拉第旋光随着Fe含量的增加而增强,变化规律与磁化曲线一致。随着Fe含量的增加,Sr(Ti_(1-x)Fe_x)O_3薄膜在可见光和红外部分的光透过率随之增加,同时薄膜的能带间隙随着Fe含量的增加而变。Fe在B位掺杂含量达到40%的Sr(Ti_(0.6)Fe_(0.4))O_3--STF40薄膜具有较高的品质因子,约为1.1-1.3deg/dB。
     随着激光能量密度的升高,Sr(Ti_(0.6)Fe_(0.4))O_3薄膜的晶格常数c及异方度(c/a)随之降低;同时,薄膜的饱和磁化强度、矫顽力、薄膜的各向异性场以及饱和法拉第旋光也随之降低。随激光能量密度的升高,薄膜在可见光及红外部分的光学透过率随之提高。当薄膜厚度较小时,薄膜为单峰结构;当薄膜厚度超过临界值时,由于应力松弛,出现了双峰结构。
     钙钛矿薄膜可以通过缓冲层CeO2/YSZ在Si基片上延生长,其生长在CeO2上不是“cubic-on-cubic”的生长方式,而是旋转45°后STF40的晶格的对角线与CeO2晶格的邻边上的原子相互匹配。薄膜与基体均为外延生长的钙钛矿结构,薄膜无第二相和杂质相的存在。在CeO_2/YSZ/Si生长的薄膜的磁性能与LSAT基片上生长的薄膜具有相似的磁性能。
     在Sr(Ti_(0.6)Fe_(0.4))O_3薄膜的基础上,通过阳离子掺杂方法在A位掺杂La、Ce原子及在B位掺杂Zr、Ga原子,研究其对薄膜的晶格结构、物理性能以及品质因子的影响。结果发现,A位掺杂Ce、La原子,薄膜为钙钛矿外延结构,晶格常数c随着Ce、La掺杂含量的升高而变大,c/a同时变大。薄膜中无第二相及团簇存在;元素分布均匀,界面处无元素扩散。XPS结果发现,A位掺杂La、Ce元素取代了钙钛矿晶格结构中的A位的Sr2+,并作为施主为薄膜提供了自由电子。薄膜的导电性随着La、Ce掺杂含量的增多而升高;同时,薄膜的光学能隙变大,费米能级向高能级移动;Fe与Ti的价态向低价态转变。薄膜的磁性能及磁光性能随着Ce、La掺杂含量的升高而变大;而光学透光率随着Ce、La掺杂含量的升高而变小。薄膜的低温磁性能表明,薄膜具有自旋玻璃态(spin-glass)行为。薄膜的零场冷却曲线的峰值温度随着磁场强度的升高而降低,且与薄膜所受的应力状态有关。A位施主掺杂由于光学透过率的下降,并未提高薄膜的品质因子。
     B位Ga原子掺杂Sr(Ti_(0.6)Fe_(0.4))O_3薄膜为受主掺杂,其晶格常数c、饱和磁化强度、矫顽力、各向异性场以及饱和磁光性能随着Ga掺杂含量的升高而降低。由于随着Ga含量的升高,Fe及Ti的价态向高价态变化,薄膜的光学透过率随之升高。B位Zr原子掺杂Sr(Ti_(0.6)Fe_(0.4))O_3薄膜,由于Zr离子的平均价态高于Ti离子,表现为施主掺杂。薄膜为钙钛矿外延薄膜,且薄膜的晶格常数c随着Zr含量的升高而变大,c/a同时变大。薄膜随着Zr含量的增多,薄膜中Fe和Ti的价态随之降低。薄膜的饱和磁化强度及法拉第旋光性能先升高后降低,在Zr含量为20at.%时候达到最高值。薄膜的光学性能随着Zr原子的掺杂而降低。
     研究表明,Fe:SrTiO_3薄膜的品质因子受到Fe及Ti元素的价态影响显著。施主掺杂由于降低了薄膜中Fe及Ti离子的价态,从而严重影响了光学透过率,降低了薄膜的品质因子。受主掺杂可以提高薄膜的光学透过率,从而提高了薄膜的品质因子。Sr(Ti_(0.2)Ga_(0.4)Fe_(0.4))O_3薄膜具有较高的品质因子,约为4~6.7deg/dB,可以成为集成光隔离器的重要候选材料。
The integrated circuit, which is one of the most important scientific andtechnological achievements of the20thcentury, promoted the rapid development ofelectronic technology. However, due to the constraints of the electron mobility in thework rate, power consumption and heat dissipation, etc., integrated circuitsgradually can not meet the requirements for high-speed operation, low powerconsumption, as well as a large amount of information transmission.Compared withelectrons, photons have no mass and the transmission rate is1500times than theelectron, so the development of optical devices will have the revolutionary influenceto solve the present power consumption, heat dissipation and bottleneck ofperformance improvement. Integrated optical device have higher efficiency,operation speed and economy advantage compare with system composed by discretecomponents. Therefore, to integrate the optical device elements such as lasergenerator, modulator, optical waveguide and detector on Si or III-V semiconductorsubstrates has attracted wide attention. However, Nonreciprocal photonic devicesincluding optical isolators and optical circulators are the only absent integratedoptical device due to absence of magneto-optical materials which both have thegood figure of merit and matching ability with semiconductor substrates such as Si.
     In the present work, the crystal structure, magnetic, optical and magntoopticalproperties of Fe:SrTiO_3perovskite films grown on (LaAlO_3)_(0.3)(Sr_2AlTaO_6)_(0.7)--LSATsubstrate with different Fe contents, laser energy density and depositional thicknesswere investigated. The Fe doped SrTiO_3films which B sites substituted by differentFe contents, were perovskite-structureepitaxial films and no second phase orimpurity phase. With increasing Fe concentration, lattice parameters c and c/a ratiowere increased. The films showed in-plane compressive stress. The saturationmagnetization (Ms), increased with increasing Fe concentration and reachedmaximum when Fe concentration was40%. The coercivity fields and anisortropyincreased with Fe content. The mechanism for room temperature ferromagnetismwas mainly Super-exchange and Double-exchange effects between Fe-O-Fe ionpairs. The saturation Faraday rotation increased with increasing Fe content whichconsistent with magnetization curve. The optical transmittance at both visible andinfrared wavelength increased with increasing Fe content, meanwhile, the band gapincreased. The Sr(Ti_(0.6)Fe_(0.4))O_3--STF40film which40at.%Fe doped into B siteshave good figure of merit,~1.1-1.3deg/dB.
     With the increasing laser energy density, the lattice parameters c and c/a ratioof STF40film decreased, meanwhile, the saturation magnetization, coercivity fields,anisortropy and saturation Faraday rotation were also decreased. The optical transmittance at both visible and infrared wavelength increased with increasing laserenergy density. The XRD of film was single peak when the depositional thicknesswas thin. When the film thickness exceeded a critical value, the strain was partiallyrelaxed and became double peaks in XRD.
     The STF40perovskite film grown on Si substrate by CeO2/YSZ buffer layerwhich lattice diagonal atoms of films after rotate45°matched with lattice adjacentedges instead of cubic on cubic method. Both the film and substrate wereperovskite-structure epitaxial films without second phase or impurity phase. Thefilms grown on CeO2/YSZ/Si had similar magnetic properties with that on LSAT.
     The effect of A site La,Ce and B site Zr, Ga doped Sr(Ti_(0.6)Fe_(0.4))O_3by cationdoping method on crystal structure, physical properties and figure of merit wereinvestigated. The results showed that the A site La, Ce doped Sr(Ti_(0.6)Fe_(0.4))O_3filmswere perovskite epitaxial films. The lattice parameters c and c/a ratio of the filmsincreased with increasing La,Ce concentration.There were no second phase andcluster in the films, the elements distribution of films were homogeneous withoutelements diffusionat the interface of films and substrates. The XPS results show thatCe ions showed a dominant3+valence state, and acted as donors on the Sr2+site (Asite) in the perovskite lattice.Ce Theoptical band gap widened and the Fermi levelmoved toward the vacuum level with increased or La content;meanwhile the Ti andparticularly the Fe ions were driven to a lower valence state. The saturation Faradayrotation increased with increasing La, Ce concentration which consistent withmagnetization curve. The optical transmittance at both visible and infraredwavelength decreased with increasing La, Ce content. The low temperaturemagnetic properties of the films showed spin-glass behavior. The peak position ofzero-field-cooling curves of films shifted with strain state. The figure of merit of Asite La, Ce doped Sr(Ti_(0.6)Fe_(0.4))O_3were not improved due to rapid decreasing ofoptical transmittance.
     The lattice parameters c, the saturation magnetization,coercivity fields,anisortropy and saturation Faraday rotationof Ga Substituted Sr(Ti_(0.6)Fe_(0.4))O_3in Bsite which acted as acceptors decreased with increasing Ga concentration. The Tiand the Fe ions were driven to a higher valence state, and the optical transmittanceincreased with increasing Ga contents. The Zr Substituted Sr(Ti_(0.6)Fe_(0.4))O_3in Bsiteacted as donors due to the average valence state of Zr was higher than that of Ti.The films were perovskite films, and the lattice parameters c and c/a ratioincreased with increasing Zr contents. The Ti and the Fe ions were driven to a highervalence state. The saturation magnetization increased at first and then decreasedwhich reach the maximum at20at.%Zr content. The optical transmittance decreased with increasing Zr contents.
     In conclusion, the Fe and Ti valence state played a important role in figure ofmerit of the Fe doped SrTiO_3perovskite films. The figure of merit and opticaltransmittance of donor doped Fe:SrTiO_3decreased due to the Ti andFe ions weredriven to a lower valence state. The figure of merit a of acceptor doped Fe:SrTiO_3increased due to the improvement of optical transmittance. The figure of merit ofSr(Ti_(0.2)Ga_(0.4)Fe_(0.4))O_3could reach4~6.7deg/dB which could be important candidatefor integrated optical isolators.
引文
[1] Levy M. The on-chip integration of magnetooptic waveguide isolators[J].Selected IEEE Journal of Topics in Quantum Electronics.2002,8(6):1300-1306.
    [2] Raymond W. Thin films for non-reciprocal magneto-optic devices[J]. ThinSolid Films.1992,216(1):184-188.
    [3] Hutchings D C. Prospects for the implementation of magneto-optic elementsin optoelectronic integrated circuits: a personal perspective[J]. Journal ofPhysics D-Applied Physics.2003,36(18):2222-2229.
    [4] Lei B. Magneto-Optical Oxide Thin Films and Integrated NonreciprocalPhotonic Devices[D].MIT thesis.2011:1-140.
    [5] Shoji Y, Mizumoto T, Yokoi H, et al. Magneto-optical isolator with siliconwaveguides fabricated by direct bonding[J].Applied Physics Letters.2008,92(7):071117-3.
    [6] Yu Z F, Fan S H. Complete optical isolation created by indirect interbandphotonic transitions[J]. Nature Photonics.2009,3(2):91-94.
    [7] Krause M, Renner H, Brinkmeyer E. Optical isolation in silicon waveguidesbased on nonreciprocal Raman amplification[J]. Electronics Letters.2008,44(11):691-U646.
    [8] Hamrle J, Blomeier S, Gaier O, et al. Huge quadratic magneto-optical Kerreffect and magnetization reversal in the Co2FeSi Heusler compound[J].Journal of Physics D-Applied Physics.2007,40(6):1563-1569.
    [9] Muduli P K, Rice W C, He L, et al. Study of magnetic anisotropy andmagnetization reversal using the quadratic magnetooptical effect inepitaxial CoxMnyGez(111) films[J]. Journal of Physics-Condensed Matter.2009,21(29):1-12.
    [10] Weinberger P. John Kerr and his effects found in1877and1878[J].Philosophical Magazine Letters.2008,88(12):897-907.
    [11] Magneto-optical effects[EB/OL].(2002-10-24)[2012-3-12].http://www.readbag.com/dpepfl-ch-cours-ansermet-magweb-magnetooptic.
    [12] Circular polarization[EB/OL].[2012-3-26].http://en.wikipedia.org/wiki/Circular_polarization.
    [13] Argyres P N. Theory of Faraday and Kerr Effects in Ferromagnetics[J].Physical Review.1955,97:334.
    [14] Erskine J L, Stern E A. Magneto-Optic Kerr Effects in Gadolinium[J].Physical Review B.1973,8:1239.
    [15] Faraday effect[EB/OL].[2012-3-28].http://en.wikipedia.org/wiki/Faraday_effect.
    [16] Hulme H R. Farady effect in ferromagnetics[M].London: Proceedings ofRoyal Society.1932, A135:237.
    [17] Swindell W. Polarized Light[M]. New York: Halsted,1975:104-123.
    [18] Stone J M. Radiation and Optics[M].New York: McGraw-Hill,1963:445.
    [19] Zvezdin A K, Kotov V A. Modern Magnetooptics and MagnetoopticalMaterials[M].Institute of Physics Publishing, Bristol and Philadelphia,1997:123-176.
    [20] Dotsch H, Bahlmann N, Zhuromskyy O, etal. Applications of magneto-optical waveguides in integrated optics: review[J]. Journal of the OpticalSociety of America B-Optical Physics.2005,22(1):240-253.
    [21] James C S. Faraday and Kerr Effects in Magnetic Compounds[J]. IEEETransactions on Magnetics1972, K4G-8:95.
    [22] Matsμmoto T. Polarization-Independent Isolators for Fiber Optics[J].Transactions IEICE, Japan.1979,62:515-517.
    [23] T. R. Zaman, X. Guo, R. J. Ram. Semiconductor Waveguide Isolators[J].Journal of Lightwave technology.2008,26(2):291-301.
    [24] Shiraishi K, Chuzenji T, Kawakami S. Polarization-independent in-lineoptical isolator with lens-free configuration[J]. Journal of LightwaveTechnology.1992,10(12):1839-1842.
    [25] Iwamura H, Iwasaki H, Kubodera K, et al.Simple polarisation-independentoptical circulator for optical transmission systems[J]. Electronics Letters.1979,15:830-831.
    [26] B. E. A. Saleh, M. C. Teich. Fundamentals of photonics,Wiley series in pureand applied optics[J]. New York: John Wiley&Sons.1991:101-180.
    [27] Manipatruni S, Robinson J T, Lipson M. Optical Nonreciprocity inOptomechanical Structures[J].Physical Review Letters.2009,102(21):213903.
    [28] Dionne G F. Magnetic Oxides[M]. Springer,2009:54-104.
    [29] Dionne G F, Allen G A. Intersublattice magneto-optical transitions indiluted ferrimagnetic garnets[J]. Journal of Applied Physics.2004,95(11):7333-7335.
    [30] Gomi M, Furuyama H, Abe M. Strong magnetooptical enhancement inhighly ce-substituted iron-garnet films prepared by sputtering[J]. Journal ofApplied Physics.1991,70(11):7065-7067.
    [31] Adachi N, Denysenkov V P, Khartsev S I, et al.Epitaxial Bi3Fe5O12(001)films grown by pulsed laser deposition and reactive ion beam sputteringtechniques[J]. Journal of Applied Physics.2000,88(5):2734-2739.
    [32] Chern M Y, Liaw J S. Study of BixY3-xFe5O12thin films grown by pulsedlaser deposition[J]. Japanese Journal of Applied Physics Part1-RegularPapers Short Notes&Review Papers.1997,36(3A):1049-1053.
    [33] Dionne G F, Allen G A. Spectral origins of giant faraday-rotation andellipticity in bisubstituted magnetic garnets[J]. Journal of Applied Physics.1993,73(10):6127-6129.
    [34] Stadler B, Vaccaro K, Yip P, et al. Integration of magneto-optical garnetfilms by metal-organic chemical vapor deposition[J]. IEEE Transactions onMagnetics.2002,38(3):1564-1567.
    [35] Gomi M, Satoh K, Abe M. Giant faraday-potation of Ce-substitutedYIG-films epitaxially grown by RF sputtering[J]. Japanese Journal ofApplied Physics Part2-Letters.1988,27(8):1536-1538.
    [36] Shintaku T. Integrated optical isolator based on nonreciprocal higher-ordermode conversion[J]. Applied Physics Letters.1995,66(21):2789-2791.
    [37] Levy M, Osgood R M, Hegde H, et al. Integrated optical isolators withsputter-deposited thin-film magnet[J]. IEEE Photonics Technology Letters.1996,8(7):903-905.
    [38] Wolfe R, Dillon J F, Lieberman R A, et al. Broad-band magnetoopticwave-guide isolator. Applied Physics Letters.1990,57(10):960-962.
    [39] Sugimoto N, Terui H, Tate A, et al. A hybrid integrated waveguide isolatoron a silica-based planar lightwave circuit[J]. Journal of LightwaveTechnology.1996,14(11):2537-2546.
    [40] Wolfe R, Lieberman R A, Fratello V J, et al. Etch-tuned ridged wave-guidemagnetooptic isolator.Applied Physics Letters.[J].1990,56(5):426-428.
    [41] Espinola R L, Izuhara T, Tsai M C, et al. Magneto-optical nonreciprocalphase shift in garnet/silicon-on-insulator waveguides[J]. Optics Letters.2004,29(9):941-943.
    [42] Boudiar T, Payet-Gervy B, Blanc-Mignon M F, et al. Magneto-opticalproperties of yttrium iron garnet (YIG) thin films elaborated by radiofrequency sputtering[J]. Journal of Magnetism and Magnetic Materials.2004,284:77-85.
    [43] Kumar N, Misra D S, Venkataramani N, et al. Magnetic properties of pulsedlaser ablated YIG thin films on different substrates[J]. Journal ofMagnetism and Magnetic Materials.2004,272:899-900.
    [44] Tabor W J, Anderson A W, Van Uitert L G. Visible and infrared Faradayrotation and birefringence of single-crystal rare-earth ortho ferrites[J].Journal of Applied Physics.1970,41:7.
    [45] Wood D L, Remeika J P. Effect of Impurities on the Optical Properties ofYttrium Iron Garnet[J].Journal of Applied Physics.1967,38:3.
    [46] Tepper T, Ross C A, Dionne G F. Microstructure and optical properties ofpulsed-laser-deposited iron oxide films[J]. IEEE Transactions on Magnetics.2004,40(3):1685-1690.
    [47] Simsa Z, Gerber R, Reid T, et al. Optical absorption and Faraday rotation ofbarium hexaferrite films prepared by laser ablation deposition[J]. Journal ofPhysics and Chemistry of Solids.1998,59(1):111-119.
    [48] Kahn F J, Pershan P S, Remeika J P. Ultraviolet magnetooptical propertiesof singlecrystal orthoferrites, garnets and other ferric oxide compounds[J].Physical Review.1969,186:891-893.
    [49] Dumont Y, Vedpathak M, Keller N, et al. Evidence of hetero-epitaxy ofSm-orthoferrite on MgO(001) substrates by the pulsed laser depositiontechnique[J]. Journal of Crystal Growth.2002,244(3-4):274-280.
    [50] Schmool D S, Keller N, Guyot M, et al. Magnetic and magneto-opticproperties of orthoferrite thin films grown by pulsed-laser deposition[J].Journal of Applied Physics.1999,86(10):5712-5717.
    [51] Maier R, Cohn J L. Ferroelectric and ferrimagnetic iron-doped thin-filmBaTiO3: Influence of iron on physical properties[J]. Journal of AppliedPhysics.2002,92(9):5429-5436.
    [52] Didosyan Y S, Barash V Y. Faraday-effect in yttrium orthoferrite in therange280-1600nm[J]. Journal of Magnetism and Magnetic Materials.1995,51(1-2):207-210.
    [53] Tebble R S, Craik D J. Magnetic Materials[M]. New York: Wiley-Interscience,1969:30-153.
    [54] Cho J Y, Gomi M, Abe M. Ferromagmetic(La,Sr)MnO3films deposited byRF-sputtering[J]. Japanese Journal of Applied Physics Part1-RegularPapers Short Notes&Review Papers.1990,29(9):1686-1689.
    [55] Rajamani A, Dionne G F, Bono D, et al. Faraday rotation, ferromagnetism,and optical properties in Fe-doped BaTiO3[J]. Journal of Applied Physics.2005,98(6):063907-4.
    [56] Andreozzi G B, Halenius U, Skogby H. Spectroscopic active Fe-IV(3+)-Fe-VI(3+) clusters in spinel-magnesioferrite solid solution crystals: a potentialmonitor for ordering in oxide spinels[J]. Physics and Chemistry of Minerals.2001,28(7):435-444.
    [57] Ziolo R F, Giannelis E P, Weinstein B A, et al. Matrix-mediated synthsis ofnanocrystalline gamma-Fe2O3-anew optically transparent magneticmaterial[J]. Science.1992,257(5067):219-223.
    [58] Choueikani F, Royer F, Jamon D, et al. Magneto-optical waveguides madeof cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganicmatrix[J].Applied Physics Letters.2009,94(5):051113-3.
    [59] Shimizu H, Miyamura M, Tanaka M. Magneto-optical properties of a GaAs:MnAs hybrid structure sandwiched by GaAs/AlAs distributed Braggreflectors: Enhanced magneto-optical effect and theoretical analysis[J].Applied Physics Letters.2001,78(11):1523-1525.
    [60] Zaman T R, Guo X Y, Ram R J. Semiconductor waveguide isolators[J].Journal of Lightwave Technology.2008,26(1-4):291-301.
    [61] Stadler B, Vaccaro K, Yip P, et al. Integration of magneto-optical garnetfilms by metal-organic chemical vapor deposition[J]. IEEE Transactions onMagnetics.2002,38(3):1564-1567.
    [62] Matsumoto Y, Murakami M, Shono T, et al. Room-temperatureferromagnetism in transparent transition metal-doped titanium dioxide[J].Science.2001,291(5505):854-856.
    [63] Ueda K, Tabata H, Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films[J]. Applied Physics Letters.2001,79(7):988-990.
    [64] Ogale S B, Choudhary R J, Buban J P, et al. High temperatureferromagnetism with a giant magnetic moment in transparent Co-dopedSnO2-[J]. Physical Review Letters.2003,91(7):077205-12.
    [65] Beckers L, Schubert J, Zander W, et al. Structural and opticalcharacterization of epitaxial waveguiding BaTiO3thin films on MgO[J].Journal of Applied Physics.1998,83(6):3305-3310.
    [66] Gottmann J, Kreutz E W. Controlling crystal quality and orientation ofpulsed-laser-deposited BaTiO3thin films by the kinetic energy of thefilm-forming particles[J]. Applied Physics a-Materials Science&Processing.2000,70(3):275-281.
    [67] Kim D H, Kwok H S. Pulsed-laser deposition of BaTiO3thin-films and theiroptical properties[J]. Applied Physics Letters.1995,67(13):1803-1805.
    [68] Schlom DG, Chen LQ, Eom C B, et al. Strain tuning of ferroelectric thinfilms[J]. Annual Review Materials Research.2007,37:589-626.
    [69] Inam A, Hegde M S, Wu X D, et al. As deposited high-TC and JCsuperconducting thin-films made at low-temperatures[J]. Applied PhysicsLetters.1988,53(10):908-909.
    [70] Eason R. Pulsed Laser Deposition[M]. New York:Wiley-Intersciencepublication,2007:24-56.
    [71] Frantz J A, Shaw L B, Sanghera J S, et al. Waveguide amplifiers insputtered films of Er3+doped gallium lanthanum sulfide glass[J]. OpticsExpress.2006,14(5):1797-1803.
    [72] Hu J J, Tarasov V, Carlie N, et al. Si-CMOS-compatible lift-off fabricationof low-loss planar chalcogenide waveguides[J]. Optics Express.2007,15(19):11798-11807.
    [73] Fagaly R L. Superconducting quantum interference device instruments andapplications[J]. Review of Scientific Instruments.2006,77(10):101101-45.
    [74] Walker F J, McKee R A, Yen H W, et al. Optical clarity and wave-guideperformance of thin-film perovskites on MgO[J]. Applied Physics Letters.1994,65(12):1495-1497.
    [75] W hlecke M, Marrello V, Onton A. Refractive index of BaTiO3andSrTiO3films[J].Journal of Applied Physics.1977,48(4):1748-1750.
    [76] Kim H S, Bi L, Dionne G F, et al. Magnetic and magneto-optical propertiesof Fe-doped SrTiO3films[J]. Applied Physics Letters.2008,93(9):092506-3
    [77] Keith G M, Sarma K, Alford N M, et al. Electrical properties of6H-BaTi0.95M0.05O3-ceramics where M=Mn, Fe, Co and Ni[J]. Journal ofElectroceramics.2004,13(1-3):305-309.
    [78] Vanderah T A, Loezos J M, Roth R S. Magnetic dielectric oxides:Subsolidus phase relations in the BaO:Fe2O3:TiO2system[J]. Journal ofSolid State Chemistry.1996,121(1):38-50.
    [79] Grey I E, Li C, Cranswick D L, et al. Structure analysis of the6H-Ba(Ti,Fe3+,Fe4+)O3-solid solution[J]. Journal of Solid State Chemistry.1998,135(2):312-321.
    [80] Eerenstein W, Morrison F D, Dho J, et al. Comment on Epitaxial BiFeO3multiferroic thin film heterostructures[J]. Science.2005,307(5713):1203-1203.
    [81] Park J, An K J, Hwang Y S, et al. Ultra-large-scale syntheses ofmonodisperse nanocrystals[J]. Nature Materials.2004,3(12):891-895.
    [82] Peng X G, Manna L, Yang W D, et al. Shape control of CdSenanocrystals[J]. Nature.2000,404(6773):59-61.
    [83] Slonczewski J C. Origin of magnetic anisotropy in cobalt-substitutedmagnetite[J]. Physical Review.1958,101:1341.
    [84] Dionne G F, West R G. Nickel zinc microwave ferrite with stress-insensitive square hysteresis loop[J]. Applied Physics Letters.1986,48(21):1488-1490.
    [85] Kim D H, Bi L, Jiang P, et al. Magnetoelastic effects in SrTi1-xMxO3(M=Fe, Co, or Cr) epitaxial thin films[J]. Physical Review B.2011,84(1):67051-4.
    [86] Li Y, Guo Q, Kalb J A, Thompson C V. Matching Glass-Forming Abilitywith the Density of the Amorphous Phase[J]. Science,2008(322):1816-1819.
    [87]张丽. Fe基双相纳米复合材料的制备与高频性能的研究[D].成都:电子科技大学,2011:91-110.
    [88]宛德福,马兴隆.磁性物理学.北京:电子工业出版社,1999:195-205.
    [89] Nix W D. Mechanical propertiesof thin films[J]. Metallurgical Transcations.1989:2217-2245.
    [90] Huang J D, Kuok M H, Lim H S, et al.Velocity angular dispersion ofsurface and bulk acoustic modes inSrTiO3[J]. Journal of Applied Physics.2003,94:7336-7341.
    [91] Funakubo H, Otsu M, Inagaki Y, et al. General rule for the determination ofc-axis orientation of Pb-based tetragonal ferroelectric oxide film preparedby CVD[J]. Journal of Materials Science Letter.1995,14:629-632.
    [92] Vlassak J J, Nix W D. A new bulge test technique for the determination ofYoung's modulus and Poisson's ratio of thin films[J]. Journal of MaterialsResearch.1992,7:3242-3249.
    [93] Kim H S, Bi L, Kim D H, et al. Ferromagnetism in single crystal andnanocomposite Sr(Ti,Fe)O3epitaxial films[J]. Journal of MaterialsChemistry.2011,21(28):10364-10369.
    [94] Shinde S R, Ogale S B, Higgins J S, et al. Co-occurrence of super-paramagnetism and anomalous Hall effect in highly reduced cobalt-dopedrutile TiO2-films[J]. Physical Review Letters.2004,92(16):166601-4.
    [95] Adler P, Eriksson S. Structural properties, Mossbauer spectra, andmagnetism of perovskite-type oxides SrFe1-xTixO3-y[J]. Z Anorg Allg Chem.2000,626(1):118-124.
    [96] Lin Y H, Zhang S Y, Deng C Y, et al. Magnetic behavior and thicknessdependence in Co-doped BaTiO3thin films[J]. Applied Physics Letters.2008,92(11):112501-3.
    [97] Matsui T, Sato R, Tsuda H. Valence state and spatial distribution of Fe ionsin ferromagnetic Ba(Fe1-xZrx)O3-single-crystal films on SrTiO3substrates[J]. Journal of Applied Physics.2008,103(7):07E304-3.
    [98] Bi L, Kim H S, Dionne G F, et al. Structure, magnetic properties andmagnetoelastic anisotropy in epitaxial Sr(Ti1-xCox)O3-films[J]. NewJournal of Physics.2010,12:043044-5.
    [99] Cullity B.D. Introduction to Magnetic Materials[M].MA: Addison-Wesley,1972:211-214.
    [100] Fannin P C, Slawska-Waniewska A, Didukh P, et al. Dynamic properties ofa system of cobalt nanoparticles[J]. European Physical Journal-AppliedPhysics.2002,17(1):3-9.
    [101] Jiang P, Bi L, Kim D H, et al. Enhancement of the magneto-opticalperformance of Sr(Ti0.6-xGaxFe0.4)O3-perovskite films by Ga substitution[J].Applied Physics Letters.2011,98(23):231909-3.
    [102] Rothschild A, Menesklou W, Tuller H. L, et al.Electronic structure, defectchemistry, and transport properties of SrTi1-xFexO3-ysolid solutions[J].Chemistry of Materials.2006,18:3651-3657.
    [103] Swanepoel R. Determination of the Thickness and Optical Constants ofAmorphous Silicon[J].Journal of Physics E: Scientific Instruments.1983,16:1216.
    [104] Hu B Q, Wang X M, Zhou T, et al. Transmittance and refractive index ofthe lanthanum strontium aluminium tantalum oxide crystal[J]. ChinesePhysics Letters.2001,18(2):278-279.
    [105] Ellipsometry configuration[EB/OL],[2012-4-1].http://www.jawoollam.com/tutorial_4.html.
    [106] Onoda M, Yasumoto M. Electronic states of perovskite-type Ce1-xSrxTiO3and CeTiO3+y/2systems with a metal-insulator transition[J]. Journal ofPhysics-Condensed Matter.1997,9(26):5623-5634.
    [107] Yamada Y F, Ohtomo A, Kawasaki M. Parallel syntheses andthermo-electric properties of Ce-doped SrTiO3-thin films[J]. AppliedSurface Science.2007,254(3):768-771.
    [108] Xiao W D, Guo Q L, Wang E G. Transformation of CeO2(111) toCe2O3(0001) films[J]. Chemical Physics Letters.2003,368(5-6):527-531.
    [109] Hüfner S. Photoelectron Spectroscopy. Berlin: Springer-Verlag2003:65.
    [110] Ino A, Mizokawa T, Fujimori A, et al. Chemical potential shift in overdopedand underdoped La2-xSrxCuO4[J]. Physical Review Letters.1997,79(11):2101-2104.
    [111] Lucari F, Terrenzio E, Tomassetti G. Magnetic linear dichroism in Sn dopedYIG[J].Journal of Applied Physics.1981,52(3):2301-2303.
    [112] Blasse G, Dirksen G J, Zonnevijlle F. The luminescence of some lanthanidedecatung states[J]. Chemical Physics Letters.1981,83(3):449-451.
    [113] Lucari F, Mastrogiuseppe C, Tomassetti G. Infrared absorption andmagnetic circular dichroism in tin-doped yttrium iron garnet[J].Journal ofPhysics C: Solid State Physics.1977,10:4869-4875.
    [114] Dionne G F, Bi L, Kim H S, et al. Spectral origins of high Faraday rotationat1.5-μm wavelength from Fe and Co in SrTiO3films[J]. Journal of AppliedPhysics.2011,109(7):07B761-3.
    [115] Takamura Y, Yang F, Kemik N, et al. Competing interactions in ferro-magnetic antiferromagnetic perovskite superlattices[J]. Physical Review B.2009,80(18):180417-4.
    [116] Takamura Y, Chopdekar R V, Scholl A, et al. Tuning magnetic domainstructure in nanoscale La0.7Sr0.3MnO3islands[J]. Nano Letters.2006,6(6):1287-1291.
    [117] Dionne G F, Kim H S. Magnetostriction effects of3d(4) and3d(6) ions indilute magnetic oxide films[J]. Journal of Applied Physics.2008,103(7):180417-4.
    [118] Geddo Lehmann A, Sanna C, Lampis N, et al. Effect of the substrateferroelastic transition on epitaxial La0.7Sr0.3MnO3films grown onLaAlO3[J]. European Physical Journal B.2007,55(4):337-345.
    [119] Xiong C S, Xiong Y H, Yi W, et al. A study of freezing temperature andmagnetic relaxation for epitaxial La0.67Sr0.33MnO3-films. Journal ofPhysics-Condensed Matter.2002,14(17):4309-4317.
    [120] Tejada J, Badia F, Martinez B. Magnetic-properties of compositionallymodulated thin-films of rare-earth and transition-metal[J]. Journal ofMagnetism and Magnetic Materials.1991,101(1-3):181-186.
    [121] Ogimoto Y, Nakamura M, Takubo N, et al. Magnetic-properties ofcompositionally modulated thin-films of rare-earth and transition-metal[J].Physical Review B.2005,71:181-187.
    [122] Sharma P A, Kim S B, Koo T Y, et al. Reentrant charge ordering transitionin the manganites as experimental evidence for a strain glass[J]. PhysicalReview B.2005,71(22):224416-5.
    [123] Cushing B L, Golub V O, Henry M, et al. Effects of annealing on themagnetic properties, size and strain of gold-coated Permalloynanopaticles[J]. Nanotechnology.2005,16(9):1701-1706.
    [124] Singh M K, Katiyar R S, Prellier W, et al. The Almeida-Thouless line inBiFeO3: is bismuth ferrite a mean field spin glass[J]. Journal of Physics-Condensed Matter.2009,21(4):2234-2240.
    [125] Hochepied J F, Pileni M. P. Magnetic properties of mixed cobalt-zinc ferritenanoparticles[J]. Journal of Applied Physics.2000,87(5):2472-2478.
    [126] Shand P M, Christianson A D, Pekarek T M, et al. Spin-glass ordering in thediluted magnetic semiconductor Zn1-xMnxTe[J]. Physical Review B.1998,58(19):12876-12882.
    [127] Yoon I T, Kang T W, Kim D J. Magnetic behavior of MnAs precipitates inGa1-xMnxAs diluted magnetic semiconductor[J]. Journal of Magnetism andMagnetic Materials.2008,320(5):662-665.
    [128] Hyun Y H, Park J S, Eom T W, et al. Evidence for Griffiths phase inLa0.4Ca0.6MnO3film with strip-domain inclusions[J]. Applied PhysicsLetters.2008,93(4):042515-3.
    [129] Kharel P, Talebi S, Ramachandran B, et al. Structural, magnetic, andelectrical studies on polycrystalline transition-metal-doped BiFeO3thinfilms[J]. Journal of Physics-Condensed Matter.2009,21(3):042515-3.
    [130] Casaca A, Borges R P, Ferreira P. Strain and interface effects on themagnetic and transport properties of La0.7Ca0.3MnO3/CaO multilayers[J].Journal of Physics-Condensed Matter.2009,153:242502-3.
    [131] Yang F, Kemik N, Biegalski M D, et al. Strain engineering to control themagnetic and magnetotransport properties of La0.67Sr0.33MnO3thin films[J].Applied Physics Letters.2010,97(9):092503-3.
    [132] Cheng C J, Lu C L, Chen Z H, et al. Thickness-dependent magnetism andspin-glass behaviors in compressively strained BiFeO3thin films[J].Applied Physics Letters.2011,98(24):012045-10.
    [133] Wang Y, Li Z, Lin Y H, et al. Magnetic-electric behaviors in BiFeO3filmsgrown on LaNiO3-buffered Si substrate[J]. Journal of Applied Physics.2009,106(7):2895-2899.
    [134] Prokhorov V G, Kaminsky G G, Kim J M, et al. Two-dimensional growth,anisotropic polaron transport, and magnetic phase segregation in epitaxialNd0.52Sr0.48MnO3films[J]. Low Temperature Physics.2011,37(2):112-119.
    [135] Giblin S R, Freeman P G, Hradil K, et al. Spin reorientation and glassydynamics in La1.55Sr0.45NiO4[J]. Physical Review B.2008,78(18):184423-9.
    [136] Jang S Y, Lee D, Lee J H, et al. Oxygen vacancy induced re-entrant spinglass behavior in multiferroic ErMnO3thin films[J]. Applied PhysicsLetters.2008,93(16):162507-3.
    [137] Dussan S, Kumar A, Scott J F, et al. Room temperature multiferroic effectsin superlattice nanocapacitors[J]. Applied Physics Letters.2010,97(25):198342.
    [138] Karhu E, Kahwaji S, Monchesky T L, et al. Structure and magneticproperties of MnSi epitaxial thin films[J]. Physical Review B.2010,82(18):184417-11.
    [139] Tepper T, Dionne G F, Ross C A. Microstructure and optical properties ofpulsed-laser-deposited iron oxide films[J]. IEEE Transactions on Magnetics.2004,40(3):1685.
    [140] Bi L, Kim H S, Dionne G F, et al. Structural, magnetic, and magneto-opticalproperties of Co-doped CeO2films[J].Journal of Applied Physics.2008,103(7):07D138-3.
    [141] Kim H S, Bi L, Dionne G F,et al. Structure, magnetic and optical properties,and Hall effect of Co-and Fe-doped SnO2films[J]. Physical Review B.2008,77(21):214-236.
    [142] Zhao W. Magneto-optic properties and sensing performance of garnetYbBi:YIG[J]. Sensors and Actuators A.2001,89(3):250-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700