用户名: 密码: 验证码:
TiO_2纳米管的结构修饰、改性及敏化太阳电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阳极氧化法制备的TiO_2纳米管阵列,具有较大的比表面积和优异的一维特性,因此,被广泛应用于多种敏化太阳电池中。然而,目前基于TiO_2纳米管的敏化太阳电池普遍存在光电转换效率低、电子传输性能差以及敏化剂昂贵等问题。本论文以提高光电转换效率和降低成本为目标,在TiO_2纳米管光阳极的结构修饰、改性以及光电器件应用等方面进行了系统的研究和探索。具体研究内容如下:
     在工艺方面,研究了电解液成分、阳极氧化时间以及氧化次数等可变参数对TiO_2纳米管形貌及结构的影响。利用优化的工艺条件,制备了TiO_2纳米管阵列,纳米管长度均一、残留碎片较少,呈高度有序垂直的管状结构。以优化的TiO_2纳米管阵列为光阳极,与优化前相比,其染料敏化太阳电池的光电转换效率提高了36%左右。
     开发了一种以双表面活性剂为模板,在TiO_2纳米管表面均匀组装TiO_2颗粒来制备复合光阳极的简单方法。利用这种表面活性剂辅助真空培育的方法(Surfactant-assisted Vacuum impregnation,SVI),既能在TiO_2纳米管内、外壁有效填充TiO_2纳米颗粒,又可以避免TiO_2纳米颗粒的团聚而堵塞TiO_2纳米管,从而有效提高光阳极的比表面积。实验结果表明,经过SVI处理,可以大大提高TiO_2纳米管基染料敏化太阳电池的光电转换效率,通过调节填充比例,其光电转换效率提高到原来的1.94倍。
     通过精细控制阳极氧化工艺以及晶化处理方法,成功地制备了【001】择优取向的TiO_2纳米管阵列。实验结果表明,这种【001】择优取向的TiO_2纳米管在电子传输方面显示出优异的性能。通过简单的化学方法,将TiO_2纳米管从钛片成功剥离,并将其转移至FTO玻璃上,制备了前照明染料敏化太阳电池。与普通TiO_2纳米管相比,【001】择优取向的TiO_2纳米管基染料敏化太阳电池的光电转换效率提高了29%左右。
     采用微波辅助法,合成了粒径大小分别为3.1nm、4.3nm以及17.0nm的Cu_2ZnSnS_4(CZTS)量子点。综合利用XRD、Raman、HRTEM及XPS等系统表征,确定了合成的纳米材料为Kesterite结构的CZTS量子点。此外,UV-Vis吸收光谱中,CZTS量子点的吸收蓝移的现象,证实了粒径为3.1nm的CZTS量子点具有量子限域效应。以合成的CZTS量子点为敏化剂,制备了CZTS/TiO_2纳米管阵列太阳电池,实验结果表明,这种量子点敏化太阳电池具有良好的光伏效应,且其短路电流密度将随CZTS量子点尺寸减小而增大。同时,我们也探讨了CZTS量子点分别用于敏化TiO_2纳米颗粒和TiO_2纳米管时,其器件在光电性能、电子传输等方面的区别。在此,我们预测这种环境友好型的低成本CZTS/TiO_2纳米管阵列结构,在新一代量子点敏化太阳电池中将有广阔的应用前景。
TiO_2nanotube arrays, which were prepared with anodization, were widelyused as photo-anode of dye-and quantum-dot-sensitized solar cells due to theirhigh specific surface area and excellent one-dimensional properties. However,low power conversion efficiency, poor electron transport and expensivesensitizer are still the issues for the TiO_2nanotube-based solar cells. In this work,aiming to improve the power conversion efficiency and lower the cost of theTiO_2nanotube-based solar cells, we investigated the decoration andmodification of photo-anode based on TiO_2nanotube arrays systematically.The details are as below.
     The influence of the composition of electrolyte, anodic duration and timeson the morphology and structure of TiO_2nanotube arrays have been investigated.The highly ordered TiO_2nanotube arrays with smoother surface and free debriswere obtained with a second-anodization under optimization. Compared withthat of the TiO_2nanotube arrays before optimization, the power conversionefficiency exhibits an enhancement of36%.
     We report for the first time a simple surfactant-assisted vacuumimpregnation (SVI) approach for controlling assembly of sub-10-nm TiO_2NCsinto NTAs as a more efficient photoanode for DSSCs. Double polymersurfactants were introduced to guide the NC assembly process and prohibit theNCs from over-agglomeration. Through the double-layer isolation by thelong-chain organic molecules, we are capable of achieving well-dispersed NCdeposition on the nanotube walls. The performance of DSSCs was greatimproved with the filled TiO_2nanotube arrays compared with that of un-filledone. By adjusting the content of filled nanoparticles, the power conversionefficiency was1.94times to that of the bare one.
     Highly [001] oriented TiO_2nanotube arrays were successfully prepared bycontrolling the recipe of anodization and process of post-treatment deliberately.The results reveal it shows excellent electron transport compare to non-orientedTiO_2nanotube arrays. It were detached and transferred to FTO successfully andunder front-illuminate, the enhancement of29%in power conversion efficiencywas obtained compared with non-oriented TiO_2nanotube arrays.
     Novel Cu_2ZnSnS_4(CZTS) quantum dots vary from3.1nm to17nm wereprepared with microwave-assisted route. The results of XRD, Raman, HRTEMand XPS show that it was the Kesterite CZTS quantum dot. The quantumconfinement effect was observed for CZTS quantum dots of3.1nm. CZTSquantum dots were used as sensitizer of TiO_2nanotube-solar cells and it showthat the short-circuit current density of the CZTS quantum-dot-sensitized solarcells increase with the decrease of diameter of quantum dots. Moreover, thedifference of J-V performance and electron transportation between TiO_2nanoparticle-and TiO_2nanotube-based solar cells sensitized with CZTSquantum dots were discussed. The prototype of the environmental friendlylow-cost CZTS quantum dot-sensitized solar cells was a promising structure inthe next-generation solar cells.
引文
【1】. Global Marker Outlook for Photovoltaics2013-2017(R),2013, European photovoltaicIndustry Association: Belgium.
    【2】. J ger-Waldau, A., PV Status Report2013(R),2013, Institute for Energy and Transport,Renewable Energy Unit: Italy.
    【3】. Saga, T., Advances in crystalline silicon solar cell technology for industrial massproduction. NPG Asia Mater [J], Vol.2, No.2010, pp.96-102.
    【4】. Ooyama, Y. and Y. Harima, Molecular Designs and Syntheses of Organic Dyes forDye-Sensitized Solar Cells. European Journal of Organic Chemistry [J], Vol.2009, No.18,2009, pp.2903-2934.
    【5】. Ip, A.H., S.M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina,L.R. Rollny, G.H. Carey, A. Fischer, K.W. Kemp, I.J. Kramer, Z. Ning, A.J. Labelle,K.W. Chou, A. Amassian, and E.H. Sargent, Hybrid passivated colloidal quantum dotsolids. Nat Nano [J], Vol.7, No.9,2012, pp.577-582.
    【6】. Liu, S.M., L.M. Gan, L.H. Liu, W.D. Zhang, and H.C. Zeng, Synthesis ofSingle-Crystalline TiO2Nanotubes. Chemistry of Materials [J], Vol.14, No.3,2002, pp.1391-1397.
    【7】.李晓红,张校刚, and力虎林, TiO2纳米管的模板法制备及表征.高等学校化学学报[J], Vol. No.01,2001, pp.130-132.
    【8】. Macak, J.,H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, andP. Schmuki, TiO2nanotubes: Self-organized electrochemical formation, properties and applications.Current Opinion in Solid State and Materials Science [J], Vol.11, No.1,2007, pp.3-18.
    【9】. Iijima, S., Helical microtubules of graphitic carbon. Nature [J], Vol.354, No.6348,1991, pp.56-58.
    【10】. Adachi, M., Y. Murata, M. Harada, and S. Yoshikawa, Formation of Titania Nanotubeswith High Photo-Catalytic Activity. Chemistry Letters [J], Vol.29, No.8,2000, pp.942-943.
    【11】. Chu, S.-Z., S. Inoue, K. Wada, D. Li, H. Haneda, and S. Awatsu, Highly Porous(TiO2SiO2TeO2)/Al2O3/TiO2Composite Nanostructures on Glass with EnhancedPhotocatalysis Fabricated by Anodization and Sol Gel Process. The Journal of PhysicalChemistry B [J], Vol.107, No.27,2003, pp.6586-6589.
    【12】. Varghese, O.K., D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, and C.A. Grimes,Extreme Changes in the Electrical Resistance of Titania Nanotubes with HydrogenExposure. Advanced Materials [J], Vol.15, No.7-8,2003, pp.624-627.
    【13】. Mor, G.K., M.A. Carvalho, O.K. Varghese, M.V. Pishko, and C.A. Grimes, Aroom-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively fromenvironmental contamination. Journal of Materials Research [J], Vol.19, No.02,2004,pp.628-634.
    【14】. Mor, G.K., K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes, EnhancedPhotocleavage of Water Using Titania Nanotube Arrays. Nano Letters [J], Vol.5, No.1,2004, pp.191-195.
    【15】. Mor, G.K., K. Shankar, O.K. Varghese, and C.A. Grimes, Photoelectrochemicalproperties of titania nanotubes. Journal of Materials Research [J], Vol.19, No.10,2004,pp.2989-2996.
    【16】. Mor, G.K., K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes, Use ofHighly-Ordered TiO2Nanotube Arrays in Dye-Sensitized Solar Cells. Nano Letters [J],Vol.6, No.2,2005, pp.215-218.
    【17】. Uchida, S., R. Chiba, M. Tomiha, N. Masaki, and M. Shirai, Application of TitaniaNanotubes to a Dye-sensitized Solar Cell. Electrochemistry [J], Vol.70, No.6,2002, pp.418-420.
    【18】. Grimes, C.A. and G.K. Mor, TiO2nanotube arrays: synthesis, properties, andapplications [M].Place Published:Springer,2009.
    【19】. Cai, Q., M. Paulose, O.K. Varghese, and C.A. Grimes, The effect of electrolytecomposition on the fabrication of self-organized titanium oxide nanotube arrays byanodic oxidation. Journal of Materials Research [J], Vol.20, No.1,2005, pp.230-236.
    【20】. Paulose, M., K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A.Latempa, A. Fitzgerald, and C.A. Grimes, Anodic Growth of Highly Ordered TiO2Nanotube Arrays to134μm in Length. The Journal of Physical Chemistry B [J], Vol.110, No.33,2006, pp.16179-16184.
    【21】. Yoriya, S., M. Paulose, O.K. Varghese, G.K. Mor, and C.A. Grimes, Fabrication ofVertically Oriented TiO2Nanotube Arrays Using Dimethyl Sulfoxide Electrolytes. TheJournal of Physical Chemistry C [J], Vol.111, No.37,2007, pp.13770-13776.
    【22】. Prakasam, H.E., K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes, A NewBenchmark for TiO2Nanotube Array Growth by Anodization. The Journal of PhysicalChemistry C [J], Vol.111, No.20,2007, pp.7235-7241.
    【23】. Nakayama, K., T. Kubo, A. Tsubokura, Y. Nishikitani, and H. Masuda, AnodicFormation of High-Aspect-Ratio Titania Nanotubes. Meeting Abstracts [J], Vol.MA2005-02, No.22,2006, pp.819.
    【24】. Hahn, R., J.M. Macak, and P. Schmuki, Rapid anodic growth of TiO2and WO3nanotubes in fluoride free electrolytes. Electrochemistry Communications [J], Vol.9,No.5,2007, pp.947-952.
    【25】. Allam, N.K., K. Shankar, and C.A. Grimes, Photoelectrochemical and waterphotoelectrolysis properties of ordered TiO2nanotubes fabricated by Ti anodization influoride-free HCl electrolytes. Journal of Materials Chemistry [J], Vol.18, No.20,2008,pp.2341-2348.
    【26】. Shankar, K., G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, and C.A.Grimes, Highly-ordered TiO2nanotube arrays up to220μm in length: use in waterphotoelectrolysis and dye-sensitized solar cells. Nanotechnology [J], Vol.18, No.6,2007, pp.065707-065717.
    【27】. Paulose, M., H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai,and C.A. Grimes, TiO2Nanotube Arrays of1000μm Length by Anodization ofTitaniumFoil: Phenol RedDiffusion. TheJournal of Physical Chemistry C[J], Vol.111,No.41,2007, pp.14992-14997.
    【28】. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2films. Nature [J], Vol.353, No.6346,1991, pp.737-740.
    【29】. Liu, B. and E.S. Aydil, Layered mesoporous nanostructures for enhanced lightharvesting in dye-sensitized solar cells. Journal of Renewable and Sustainable Energy[J], Vol.3, No.2011, pp.043106-043115.
    【30】. Yella, A., H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G.Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Gr tzel, Porphyrin-Sensitized Solar Cellswith Cobalt (II/III)–Based Redox Electrolyte Exceed12Percent Efficiency. Science [J],Vol.334, No.6056,2011, pp.629-634.
    【31】. Burschka, J., N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, andM. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitizedsolar cells. Nature [J], Vol.499, No.7458,2013, pp.316-320.
    【32】. Shockley, W. and H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n JunctionSolar Cells. Journal of Applied Physics [J], Vol.32, No.3,1961, pp.510-519.
    【33】. Wuister, S.F., A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, and A.Meijerink, Temperature Antiquenching of the Luminescence from Capped CdSeQuantum Dots. Angewandte Chemie International Edition [J], Vol.43, No.23,2004, pp.3029-3033.
    【34】. Shevchenko, E.V., M. Ringler, A. Schwemer, D.V. Talapin, T.A. Klar, A.L. Rogach, J.Feldmann, and A.P. Alivisatos, Self-Assembled Binary Superlattices of CdSe and AuNanocrystals and Their Fluorescence Properties. Journal of the American ChemicalSociety [J], Vol.130, No.11,2008, pp.3274-3275.
    【35】. Soloviev, V.N., A. Eichh fer, D. Fenske, and U. Banin, Size-Dependent OpticalSpectroscopy of a Homologous Series of CdSe Cluster Molecules. Journal of theAmerican Chemical Society [J], Vol.123, No.10,2001, pp.2354-2364.
    【36】. Tessler, N., V. Medvedev, M. Kazes, S. Kan, and U. Banin, Efficient near-infraredpolymer nanocrystal light-emitting diodes. Science [J], Vol.295, No.5559,2002, pp.1506-1508.
    【37】. Kan, S., T. Mokari, E. Rothenberg, and U. Banin, Synthesis and size-dependentproperties of zinc-blende semiconductor quantum rods. Nature Materials [J], Vol.2, No.3,2003, pp.155-158.
    【38】. Takagahara, T. andK. Takeda, Theory of thequantumconfinement effect onexcitons inquantum dots of indirect-gap materials. Physical Review B [J], Vol.46, No.23,1992, pp.15578-15581.
    【39】. Vogel, R., K. Pohl, and H. Weller, Sensitization of highly porous, polycrystalline TiO2electrodes by quantum sized CdS. Chemical Physics Letters [J], Vol.174, No.3–4,1990,pp.241-246.
    【40】. Vogel, R., P. Hoyer, and H. Weller, Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors. TheJournal of Physical Chemistry [J], Vol.98, No.12,1994, pp.3183-3188.
    【41】. Plass, R., S. Pelet, J. Krueger, M. Gr tzel, and U. Bach, Quantum dot sensitization oforganic-inorganic hybrid solar cells. The Journal of Physical Chemistry B [J], Vol.106,No.31,2002, pp.7578-7580.
    【42】. Peter, L.M., D.J. Riley, E.J. Tull, and K.U. Wijayantha, Photosensitization ofnanocrystalline TiO2by self-assembled layers of CdS quantum dots. ChemicalCommunications [J], Vol. No.10,2002, pp.1030-1031.
    【43】. Niitsoo, O., S.K. Sarkar, C. Pejoux, S. Rühle, D. Cahen, and G. Hodes, Chemical bathdeposited CdS/CdSe-sensitized porous TiO2solar cells. Journal of Photochemistry andPhotobiology A: Chemistry [J], Vol.181, No.2,2006, pp.306-313.
    【44】. Sun, W.-T., Y. Yu, H.-Y. Pan, X.-F. Gao, Q. Chen, and L.-M. Peng, CdS quantum dotssensitized TiO2nanotube-array photoelectrodes. Journal of the American ChemicalSociety [J], Vol.130, No.4,2008, pp.1124-1125.
    【45】. Pan, Z., H. Zhang, K. Cheng, Y. Hou, J. Hua, and X. Zhong, Highly Efficient InvertedType-I CdS/CdSe Core/Shell Structure QD-Sensitized Solar Cells. Acs Nano [J], Vol.6,No.5,2012, pp.3982-3991.
    【46】. Lu, X., Z. Zhuang, Q. Peng, and Y. Li, Wurtzite Cu2ZnSnS4nanocrystals: a novelquaternary semiconductor. Chemical Communications [J], Vol.47, No.11,2011, pp.3141-3143.
    【47】. Chen, S., A. Walsh, Y. Luo, J.-H. Yang, X.G. Gong, and S.-H. Wei, Wurtzite-derivedpolytypes of kesterite and stannite quaternary chalcogenide semiconductors. PhysicalReview B [J], Vol.82, No.19,2010, pp.195203-195210.
    【48】. Levcenco, S., D. Dumcenco, Y.P. Wang, Y.S. Huang, C.H. Ho, E. Arushanov, V.Tezlevan, and K.K. Tiong, Influence of anionic substitution on the electrolyteelectroreflectance study of band edge transitions in single crystal Cu2ZnSn(SxSe1x)4solid solutions. Optical Materials [J], Vol.34, No.8,2012, pp.1362-1365.
    【49】. Kamoun, N., H. Bouzouita, and B. Rezig, Fabrication and characterization ofCu2ZnSnS4thin films deposited by spray pyrolysis technique. Thin Solid Films [J], Vol.515, No.15,2007, pp.5949-5952.
    【50】. Wangperawong, A., J.S. King, S.M. Herron, B.P. Tran, K. Pangan-Okimoto, and S.F.Bent, Aqueous bath process for deposition of Cu2ZnSnS4photovoltaic absorbers. ThinSolid Films [J], Vol.519, No.8,2011, pp.2488-2492.
    【51】. Wang, X., Z. Sun, C. Shao, D.M. Boye, and J. Zhao, A facile and general approach topolynary semiconductor nanocrystals via a modified two-phase method.Nanotechnology [J], Vol.22, No.24,2011, pp.245605-245612.
    【52】. Fontané, X., L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J.R.Morante, D.M. Berg, P.J. Dale, and S. Siebentritt, In-depth resolved Raman scatteringanalysis for the identification of secondary phases: Characterization of Cu2ZnSnS4layers for solar cell applications. Applied Physics Letters [J], Vol.98, No.18,2011, pp.181905-181907.
    【53】. Yoo, H. and J. Kim, Growth of Cu2ZnSnS4thin films using sulfurization of stackedmetallic films. Thin Solid Films [J], Vol.518, No.22,2010, pp.6567-6572.
    【54】. Wang, K., B. Shin, K.B. Reuter, T. Todorov, D.B. Mitzi, and S. Guha, Structural andelemental characterization of high efficiency Cu2ZnSnS4solar cells. Applied PhysicsLetters [J], Vol.98, No.5,2011, pp.051912-051915.
    【55】. Ito, K. and T. Nakazawa, Electrical and optical properties of stannite-type quaternarysemiconductor thin films. Japanese Journal of Applied Physics [J], Vol.27, No. part1,1988, pp.2094-2097.
    【56】. Moriya, K., K. Tanaka, and H. Uchiki, Cu2ZnSnS4thin films annealed in H2Satmosphere for solar cell absorber prepared by pulsed laser deposition. Japanese Journalof Applied Physics [J], Vol.47, No.2008, pp.602-604.
    【57】. Tanaka, T., T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida,and H. Ogawa, Preparation of Cu2ZnSnS4thin films by hybrid sputtering. Journal ofPhysics and Chemistry of Solids [J], Vol.66, No.11,2005, pp.1978-1981.
    【58】. Rajeshmon, V.G., C.S. Kartha, K.P. Vijayakumar, C. Sanjeeviraja, T. Abe, and Y.Kashiwaba, Role of precursor solution in controlling the opto-electronic properties ofspray pyrolysed Cu2ZnSnS4thin films. Solar Energy [J], Vol.85, No.2,2011, pp.249-255.
    【59】. Liu, F., Y. Li, K. Zhang, B. Wang, C. Yan, Y. Lai, Z. Zhang, J. Li, and Y. Liu, In situgrowth of Cu2ZnSnS4thin films by reactive magnetron co-sputtering. Solar EnergyMaterials and Solar Cells [J], Vol.94, No.12,2010, pp.2431-2434.
    【60】. Nitsche, R., D.F. Sargent, and P. Wild, Crystal growth of quaternary I2-II-IV-VI4chalcogenides by iodine vapor transport. Journal of Crystal Growth [J], Vol.1, No.1,1967, pp.52-53.
    【61】. Katagiri, H., N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, and T. Yokota, Preparationand evaluation of Cu2ZnSnS4thin films by sulfurization of E-B evaporated precursors.Solar Energy Materials and Solar Cells [J], Vol.49, No.1,1997, pp.407-414.
    【62】. Dai, P., X. Shen, Z. Lin, Z. Feng, H. Xu, andJ. Zhan, Band-gaptunable(Cu2Sn)x/3Zn1-xSnanoparticles for solar cells. Chem Commun (Camb)[J], Vol.46, No.31,2010, pp.5749-51.
    【63】. Liu, W.C., B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak, and K.H. Wong, Facilehydrothermal synthesis of hydrotropic Cu2ZnSnS4nanocrystal quantum dots: band-gapengineering and phonon confinement effect. Journal of Materials Chemistry A [J], Vol.1, No.9,2013, pp.3182-3186.
    【64】. Zou, C., L. Zhang, D. Lin, Y. Yang, Q. Li, X. Xu, X.a. Chen, and S. Huang, Facilesynthesis of Cu2ZnSnS4nanocrystals. Crystengcomm [J], Vol.13, No.10,2011, pp.3310-3313.
    【65】. Flynn, B., W. Wang, C.-h. Chang, and G.S. Herman, Microwave assisted synthesis ofCu2ZnSnS4colloidal nanoparticle inks. physica status solidi (a)[J], Vol.209, No.11,2012, pp.2186-2194.
    【66】. Khare, A., A.W. Wills, L.M. Ammerman, D.J. Norris, and E.S. Aydil, Size control andquantum confinement in Cu2ZnSnS4nanocrystals. Chemical Communications [J], Vol.47, No.42,2011, pp.11721-11723.
    【67】. Xu, J., X. Yang, Q.-D. Yang, T.-L. Wong, and C.-S. Lee, Cu2ZnSnS4HierarchicalMicrospheres as an Effective Counter Electrode Material for Quantum Dot SensitizedSolar Cells. The Journal of Physical Chemistry C [J], Vol.116, No.37,2012, pp.19718-19723.
    【68】. Cattley, C.A., C. Cheng, S.M. Fairclough, L.M. Droessler, N.P. Young, J.H. Warner,J.M. Smith, H.E. Assender, and A.A. Watt, Low temperature phase selective synthesisof Cu2ZnSnS4quantum dots. Chem Commun (Camb)[J], Vol.49, No.36,2013, pp.3745-7.
    【69】. Yang, X., J. Xu, L. Xi, Y. Yao, Q. Yang, C.Y. Chung, and C.-S. Lee,Microwave-assisted synthesis of Cu2ZnSnS4nanocrystals as a novel anode material forlithium ion battery. Journal of Nanoparticle Research [J], Vol.14, No.6,2012, pp.14931-14936.
    【70】. Li, L., B.L. Zhang, M. Cao, Y. Sun, J.C. Jiang, P.F. Hu, Y. Shen, and L.J. Wang, Facilesynthesis of Cu2ZnSnS4nanocrystals and its use for dye-sensitized solar cellsapplications. Journal of Alloys and Compounds [J], Vol.551, No.2013, pp.24-29.
    【1】. Hayes, B.L., Recent advances in microwave-assisted synthesis. Aldrichimica Acta [J],Vol.37, No.2,2004, pp.66-77.
    【2】. de Pomerai, D.I., B. Smith, A. Dawe, K. North, T. Smith, D.B. Archer, I.R. Duce, D.Jones, and E.P.M. Candido, Microwave radiation can alter protein conformation withoutbulk heating. FEBS letters [J], Vol.543, No.1,2003, pp.93-97.
    【3】. Wang, Q., J.-E. Moser, and M. Gr tzel, Electrochemical impedance spectroscopicanalysis of dye-sensitized solar cells. The Journal of Physical Chemistry B [J], Vol.109,No.31,2005, pp.14945-14953.
    【1】. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2films. Nature [J], Vol.353, No.6346,1991, pp.737-740.
    【2】. Zhu, K., N.R. Neale, A. Miedaner, and A.J. Frank, Enhanced Charge-CollectionEfficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2Nanotubes Arrays. Nano Letters [J], Vol.7, No.1,2006, pp.69-74.
    【3】. Gong, D., C. Grimes, O.K. Varghese, W. Hu, R. Singh, Z. Chen, and E.C. Dickey,Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of MaterialsResearch [J], Vol.16, No.12,2001, pp.3331-3334.
    【4】. Macak, J.M., H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, SmoothAnodic TiO2Nanotubes. Angewandte Chemie International Edition [J], Vol.44, No.45,2005, pp.7463-7465.
    【5】. Macák, J.M., H. Tsuchiya, and P. Schmuki, High-Aspect-Ratio TiO2Nanotubes byAnodization of Titanium. Angewandte Chemie International Edition [J], Vol.44, No.14,2005, pp.2100-2102.
    【6】. Mor, G.K., K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes, EnhancedPhotocleavage of Water Using Titania Nanotube Arrays. Nano Letters [J], Vol.5, No.1,2004, pp.191-195.
    【7】. Kim, D., A. Ghicov, and P. Schmuki, TiO2Nanotube arrays: Elimination of disorderedtop layers (―nanograss‖) for improved photoconversion efficiency in dye-sensitizedsolar cells. Electrochemistry Communications [J], Vol.10, No.12,2008, pp.1835-1838.
    【8】. Zhu, K., T.B. Vinzant, N.R. Neale, and A.J. Frank, Removing Structural Disorder fromOriented TiO2Nanotube Arrays: Reducing the Dimensionality of Transport andRecombination in Dye-Sensitized Solar Cells. Nano Letters [J], Vol.7, No.12,2007, pp.3739-3746.
    【9】. Kuang, D., J.r.m. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M.Zakeeruddin, and M. Gra tzel, Application of Highly Ordered TiO2Nanotube Arrays inFlexible Dye-Sensitized Solar Cells. Acs Nano [J], Vol.2, No.6,2008, pp.1113-1116.
    【10】. Pu, P., H. Cachet, E. Ngaboyamahina, andE.M.M. Sutter, Relationbetween morphologyand conductivity in TiO2nanotube arrays: an electrochemical impedance spectrometricinvestigation. Journal of Solid State Electrochemistry [J], Vol.17, No.3,2012, pp.817-828.
    【11】. Nair, S.V., A. Balakrishnan, K.R.V. Subramanian, A.M. Anu, A.M. Asha, and B.Deepika, Effect of TiO2nanotube length and lateral tubular spacing on photovoltaicproperties of back illuminated dye sensitized solar cell. Bulletin of Materials Science [J],Vol.35, No.4,2012, pp.489-493.
    【12】. Mir, N., K. Lee, I. Paramasivam, and P. Schmuki, Optimizing TiO2Nanotube TopGeometry for Use in Dye-Sensitized Solar Cells. Chemistry-a European Journal [J], Vol.18, No.38,2012, pp.11862-11866.
    【13】. Zhu, K., N.R. Neale, A.F. Halverson, J.Y. Kim, and A.J. Frank, Effects of AnnealingTemperature on the Charge-Collection and Light-Harvesting Properties of TiO2Nanotube-Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C [J],Vol.114, No.32,2010, pp.13433-13441.
    【14】. Park, N.G., J. van de Lagemaat, and A.J. Frank, Comparison of Dye-Sensitized Rutile-and Anatase-Based TiO2Solar Cells. The Journal of Physical Chemistry B [J], Vol.104,No.38,2000, pp.8989-8994.
    【15】. Ohsaka, T., F. Izumi, and Y. Fujiki, Raman spectrum of anatase, TiO2. Journal of RamanSpectroscopy [J], Vol.7, No.6,1978, pp.321-324.
    【16】. Dai, S., J. Weng, Y. Sui, C. Shi, Y. Huang, S. Chen, X. Pan, X. Fang, L. Hu, F. Kong, andK. Wang, Dye-sensitized solar cells, from cell to module. Solar Energy Materials andSolar Cells [J], Vol.84, No.1–4,2004, pp.125-133.
    【1】. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2films. Nature [J], Vol.353, No.6346,1991, pp.737-740.
    【2】. Gratzel, M., Photoelectrochemical cells. Nature [J], Vol.414, No.6861,2001, pp.338-344.
    【3】. Hagfeldt, A., G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized SolarCells. Chemical Reviews [J], Vol.110, No.11,2010, pp.6595-6663.
    【4】. Hardin, B.E., H.J. Snaith, and M.D. McGehee, The renaissance of dye-sensitized solarcells. Nat Photon [J], Vol.6, No.3,2012, pp.162-169.
    【5】. Gr tzel, M., Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. InorganicChemistry [J], Vol.44, No.20,2005, pp.6841-6851.
    【6】. Yella, A., H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W. Diau,C.Y. Yeh, S.M. Zakeeruddin, and M. Gratzel, Porphyrin-sensitized solar cells withcobalt (II/III)-based redox electrolyte exceed12percent efficiency. Science [J], Vol.334,No.6056,2011, pp.629-34.
    【7】. Zukalova, M., A. Zukal, L. Kavan, M.K. Nazeeruddin, P. Liska, and M. Gratzel,Organized mesoporous TiO2films exhibiting greatly enhanced performance indye-sensitized solar cells. Nano Lett [J], Vol.5, No.9,2005, pp.1789-1792.
    【8】. Fisher, A.C., L.M. Peter, E.A. Ponomarev, A.B. Walker, and K.G.U. Wijayantha,Intensity Dependence of the Back Reaction and Transport of Electrons inDye-Sensitized Nanocrystalline TiO2Solar Cells. The Journal of Physical Chemistry B[J], Vol.104, No.5,2000, pp.949-958.
    【9】. Nakade, S., M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori,and S. Yanagida, Dependence of TiO2Nanoparticle Preparation Methods and AnnealingTemperature on the Efficiency of Dye-Sensitized Solar Cells. The Journal of PhysicalChemistry B [J], Vol.106, No.39,2002, pp.10004-10010.
    【10】. Oekermann, T., D. Zhang, T. Yoshida, and H. Minoura, Electron Transport and BackReaction in Nanocrystalline TiO2Films Prepared by Hydrothermal Crystallization. TheJournal of Physical Chemistry B [J], Vol.108, No.7,2004, pp.2227-2235.
    【11】. Benkstein, K.D., N. Kopidakis, J. van de Lagemaat, and A.J. Frank, Influence of thePercolation Network Geometry on Electron Transport in Dye-Sensitized TitaniumDioxide Solar Cells. The Journal of Physical Chemistry B [J], Vol.107, No.31,2003, pp.7759-7767.
    【12】. Miao, Q., L. Wu, J. Cui, M. Huang, and T. Ma, ANewTypeofDye-SensitizedSolar Cellwith a Multilayered Photoanode Prepared by a Film-Transfer Technique. AdvancedMaterials [J], Vol.23, No.24,2011, pp.2764-2768.
    【13】. Law, M., L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitizedsolar cells. Nat Mater [J], Vol.4, No.6,2005, pp.455-459.
    【14】. Kang, S.H., S.H. Choi, M.S. Kang, J.Y. Kim, H.S. Kim, T. Hyeon, and Y.E. Sung,Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency.Advanced Materials [J], Vol.20, No.1,2008, pp.54-58.
    【15】. Rho, C., J.-H. Min, and J.S. Suh, Barrier Layer Effect on the Electron Transport of theDye-Sensitized Solar Cells Based on TiO2Nanotube Arrays. The Journal of PhysicalChemistry C [J], Vol.116, No.12,2012, pp.7213-7218.
    【16】. Kang, S.H., H.S. Kim, J.-Y. Kim, andY.-E. Sung, An investigation on electron behavioremploying vertically-aligned TiO2nanotube electrodes for dye-sensitized solar cells.Nanotechnology [J], Vol.20, No.35,2009, pp.355307-355311.
    【17】. Roy, P., D. Kim, K. Lee, E. Spiecker, and P. Schmuki, TiO2nanotubes and theirapplication in dye-sensitized solar cells. Nanoscale [J], Vol.2, No.1,2010, pp.45-59.
    【18】. Macak, J.M., H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, SmoothAnodic TiO2Nanotubes. Angewandte Chemie International Edition [J], Vol.44, No.45,2005, pp.7463-7465.
    【19】. Jennings, J.R., A. Ghicov, L.M. Peter, P. Schmuki, and A.B. Walker, Dye-SensitizedSolar Cells Based on Oriented TiO2Nanotube Arrays: Transport, Trapping, and Transferof Electrons. Journal of the American Chemical Society [J], Vol.130, No.40,2008, pp.13364-13372.
    【20】. Mohammadpour, R., A. Iraji zad, A. Hagfeldt, and G. Boschloo, Comparison ofTrap-state Distribution and Carrier Transport in Nanotubular and Nanoparticulate TiO2Electrodes for Dye-Sensitized Solar Cells. Chemphyschem [J], Vol.11, No.10,2010, pp.2140-2145.
    【21】. Lin, J., J. Chen, and X. Chen, High-efficiency dye-sensitized solar cells based on robustand both-end-open TiO2nanotube membranes. Nanoscale Res Lett [J], Vol.6, No.2011,pp.475-479.
    【22】. Lei, B.-X., J.-Y. Liao, R. Zhang, J. Wang, C.-Y. Su, and D.-B. Kuang, OrderedCrystalline TiO2Nanotube Arrays on Transparent FTO Glass for EfficientDye-Sensitized Solar Cells. The Journal of Physical Chemistry C [J], Vol.114, No.35,2010, pp.15228-15233.
    【23】. Mor, G.K., O.K. Varghese, M. Paulose, and C.A. Grimes, Transparent Highly OrderedTiO2Nanotube Arrays via Anodization of Titanium Thin Films. Advanced FunctionalMaterials [J], Vol.15, No.8,2005, pp.1291-1296.
    【24】. Charoensirithavorn, P., Y. Ogomi, T. Sagawa, S. Hayase, and S. Yoshikawa,Improvement of Dye-Sensitized Solar Cell Through TiCl4-Treated TiO2NanotubeArrays. Journal of the Electrochemical Society [J], Vol.157, No.3,2010, pp.B354-B356.
    【25】. Ye, M., X. Xin, C. Lin, and Z. Lin, High Efficiency Dye-Sensitized Solar Cells Based onHierarchically Structured Nanotubes. Nano Lett [J], Vol.11, No.8,2011, pp.3214-3220.
    【26】. Padmanabhan, M., K. Roy, G. Ramalingam, S. Raghavan, and A. Ghosh,Electrochemical Integration of Graphene with Light-Absorbing Copper-Based ThinFilms. Journal of Physical Chemistry C [J], Vol.116, No.1,2012, pp.1200-1204.
    【27】. Pawar, B.S., S.M. Pawar, S.W. Shin, D.S. Choi, C.J. Park, S.S. Kolekar, and J.H. Kim,Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4(CZTS) thin films. Applied Surface Science [J], Vol.257, No.5,2010, pp.1786-1791.
    【28】. O'Regan, B.C., J.R. Durrant, P.M. Sommeling, and N.J. Bakker, Influence of the TiCl4Treatment on Nanocrystalline TiO2Films in Dye-Sensitized Solar Cells.2. ChargeDensity, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit.The Journal of Physical Chemistry C [J], Vol.111, No.37,2007, pp.14001-14010.
    【29】. Sommeling, P.M., B.C. O'Regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits,J.M. Kroon, and J.A.M. van Roosmalen, Influence of a TiCl4Post-Treatment onNanocrystalline TiO2Films in Dye-Sensitized Solar Cells. The Journal of PhysicalChemistry B [J], Vol.110, No.39,2006, pp.19191-19197.
    【30】. Vesce, L., R. Riccitelli, G. Soscia, T.M. Brown, A. Di Carlo, andA. Reale, Optimizationof nanostructured titania photoanodes for dye-sensitized solar cells: Study andexperimentation of TiCl4treatment. Journal of Non-Crystalline Solids [J], Vol.356, No.37–40,2010, pp.1958-1961.
    【31】. Xu, W., S. Dai, L. Hu, C. Zhang, S. Xiao, X. Luo, W. Jing, and K. Wang, Influence ofDifferent Surface Modifications on the Photovoltaic Performance and Dark Current ofDye-Sensitized Solar Cells. Plasma Science and Technology [J], Vol.9, No.5,2007, pp.556-559.
    【32】. Yu, H., S. Zhang, H. Zhao, B. Xue, P. Liu, and G. Will, High-Performance TiO2Photoanode with an Efficient Electron Transport Network for Dye-Sensitized SolarCells. The Journal of Physical Chemistry C [J], Vol.113, No.36,2009, pp.16277-16282.
    【33】. Luo, J., L. Gao, J. Sun, and Y. Liu, A bilayer structure of a titaniananoparticle/highly-ordered nanotube array for low-temperature dye-sensitized solarcells. RSC Advances [J], Vol.2, No.5,2012, pp.1884-1889.
    【34】. Roy, P., D. Kim, I. Paramasivam, and P. Schmuki, Improved efficiency of TiO2nanotubes in dye sensitized solar cells by decoration with TiO2nanoparticles.Electrochemistry Communications [J], Vol.11, No.5,2009, pp.1001-1004.
    【35】. Yan, X., D. Pan, Z. Li, Y. Liu, J. Zhang, G. Xu, and M. Wu, Controllable synthesis andphotocatalytic activities of water-soluble TiO2nanoparticles. Materials Letters [J], Vol.64, No.16,2010, pp.1833-1835.
    【36】. Koide, N., A. Islam, Y. Chiba, and L. Han, Improvement of efficiency of dye-sensitizedsolar cells based on analysis of equivalent circuit. Journal of Photochemistry andPhotobiology A: Chemistry [J], Vol.182, No.3,2006, pp.296-305.
    【37】. Fabregat-Santiago, F., J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt,Influence of electrolyte in transport and recombination in dye-sensitized solar cellsstudied by impedance spectroscopy. Solar Energy Materials and Solar Cells [J], Vol.87,No.1–4,2005, pp.117-131.
    【38】. Kim, J.-Y., K.J. Lee, S.H. Kang, J. Shin, and Y.-E. Sung, Enhanced PhotovoltaicProperties of a Cobalt Bipyridyl Redox Electrolyte in Dye-Sensitized Solar CellsEmploying Vertically Aligned TiO2Nanotube Electrodes. The Journal of PhysicalChemistry C [J], Vol.115, No.40,2011, pp.19979-19985.
    【39】. Lee, K.-M., V. Suryanarayanan, J.-H. Huang, K.R.J. Thomas, J.T. Lin, and K.-C. Ho,Enhancing the performance of dye-sensitized solar cells based on an organic dye byincorporating TiO2nanotube in a TiO2nanoparticle film. Electrochimica Acta [J], Vol.54, No.16,2009, pp.4123-4130.
    【40】. Dai, G., L. Zhao, J. Li, L. Wan, F. Hu, Z. Xu, B. Dong, H. Lu, S. Wang, and J. Yu, Anovel photoanode architecture of dye-sensitized solar cells based on TiO2hollowsphere/nanorod array double-layer film. Journal of Colloid and Interface Science [J], Vol.365, No.1,2012, pp.46-52.
    【41】. Park, H., W.-R. Kim, H.-T. Jeong, J.-J. Lee, H.-G. Kim, and W.-Y. Choi, Fabrication ofdye-sensitized solar cells by transplanting highly ordered TiO2nanotube arrays. SolarEnergy Materials and Solar Cells [J], Vol.95, No.1,2011, pp.184-189.
    【42】. Lee, S., I.-S. Cho, J.H. Lee, D.H. Kim, D.W. Kim, J.Y. Kim, H. Shin, J.-K. Lee, H.S.Jung, N.-G. Park, K. Kim, M.J. Ko, and K.S. Hong, Two-Step Sol Gel Method-BasedTiO2Nanoparticles with Uniform Morphology and Size for Efficient Photo-EnergyConversion Devices. Chemistry of Materials [J], Vol.22, No.6,2010, pp.1958-1965.
    【43】. Fan, K., C. Gong, T. Peng, J. Chen, and J. Xia, A novel preparation of small TiO2nanoparticle and its application to dye-sensitized solar cells with binder-free paste at lowtemperature. Nanoscale [J], Vol.3, No.9,2011, pp.3900-3906.
    【1】. Shankar, K., G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, and C.A.Grimes, Highly-ordered TiO2nanotube arrays up to220μm in length: use in waterphotoelectrolysis and dye-sensitized solar cells. Nanotechnology [J], Vol.18, No.6,2007, pp.065707-065717.
    【2】. Kuang, D., J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M.Zakeeruddin, and M. Gratzel, Application of highly ordered TiO2nanotube arrays inflexible dye-sensitized solar cells. Acs Nano [J], Vol.2, No.6,2008, pp.1113-1116.
    【3】. Chen, Q.W. and D.S. Xu, Large-Scale, Noncurling, and Free-Standing Crystallized TiO2Nanotube Arrays for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C [J],Vol.113, No.15,2009, pp.6310-6314.
    【4】. Chun, K.Y., B.W. Park, Y.M. Sung, D.J. Kwak, Y.T. Hyun, and M.W. Park, Fabricationof dye-sensitized solar cells using TiO2-nanotube arrays on Ti-grid substrates. ThinSolid Films [J], Vol.517, No.14,2009, pp.4196-4198.
    【5】. Liu, Z.Y., V. Subramania, and M. Misra, Vertically Oriented TiO2Nanotube ArraysGrown on Ti Meshes for Flexible Dye-Sensitized Solar Cells. Journal of PhysicalChemistry C [J], Vol.113, No.31,2009, pp.14028-14033.
    【6】. Liu, Z.Y. and M. Misra, Dye-Sensitized Photovoltaic Wires Using Highly Ordered TiO2Nanotube Arrays. Acs Nano [J], Vol.4, No.4,2010, pp.2196-2200.
    【7】. Roy, P., D. Kim, K. Lee, E. Spiecker, and P. Schmuki, TiO2nanotubes and theirapplication in dye-sensitized solar cells. Nanoscale [J], Vol.2, No.1,2010, pp.45-59.
    【8】. Lee, C.H. and H.W. Choi, Enhanced Efficiency in Dye-Sensitized Solar Cells Based onTiO2Nanotube Scattering Layer. Molecular Crystals and Liquid Crystals [J], Vol.565,No.2012, pp.124-130.
    【9】. Mir, N., K. Lee, I. Paramasivam, and P. Schmuki, Optimizing TiO2Nanotube TopGeometry for Use in Dye-Sensitized Solar Cells. Chemistry-a European Journal [J], Vol.18, No.38,2012, pp.11862-11866.
    【10】. Ping Wu, H., L. Lin Li, C. Chon Chen, and E.W. Guang Diau, Anodic TiO2NanotubeArrays for Dye-Sensitized Solar Cells Characterized by Electrochemical ImpedanceSpectroscopy. Ceramics International [J], Vol.38, No.8,2012, pp.6253-6266.
    【11】. Wang, S., W. Tan, J. Zhang, and Y. Lin, High conversion efficiency of pristine TiO2nanotube arrays based dye-sensitized solar cells. Chinese Science Bulletin [J], Vol.57,No.8,2012, pp.864-868.
    【12】. Lin, C.-J., W.-Y. Yu, and S.-H. Chien, Effect of anodic TiO2powder as additive onelectron transport properties in nanocrystalline TiO2dye-sensitized solar cells. AppliedPhysics Letters [J], Vol.91, No.23,2007, pp.233120.
    【13】. Ai, G., W.T. Sun, Y.L. Zhang, and L.M. Peng, Nanoparticleand nanorod TiO2compositephotoelectrodes with improved performance. Chem Commun (Camb)[J], Vol.47, No.23,2011, pp.6608-10.
    【14】. Xu, H., X. Tao, D.-T. Wang, Y.-Z. Zheng, and J.-F. Chen, Enhanced efficiency indye-sensitized solar cells based on TiO2nanocrystal/nanotube double-layered films.Electrochimica Acta [J], Vol.55, No.7,2010, pp.2280-2285.
    【15】. Agarwala, S. and G.W. Ho, Self-ordering anodized nanotubes: Enhancing theperformance by surface plasmon for dye-sensitized solar cell. Journal of Solid StateChemistry [J], Vol.189, No.2012, pp.101-107.
    【16】. Charoensirithavorn, P., Y. Ogomi, T. Sagawa, S. Hayase, and S. Yoshikawa,Improvement of Dye-Sensitized Solar Cell Through TiCl4-Treated TiO2NanotubeArrays. Journal of the Electrochemical Society [J], Vol.157, No.3,2010, pp. B354.
    【17】. Lee, C.H., S.W. Rhee, and H.W. Choi, Preparation of TiO2nanotube/nanoparticlecomposite particles and their applications in dye-sensitized solar cells. NanoscaleResearch Letters [J], Vol.7, No.2012, pp.48.
    【18】. Luo, J., L. Gao, J. Sun, and Y. Liu, A bilayer structure of a titaniananoparticle/highly-ordered nanotube array for low-temperature dye-sensitized solarcells. RSC Advances [J], Vol.2, No.5,2012, pp.1884-1889.
    【19】. Zhu, K., N.R. Neale, A. Miedaner, and A.J. Frank, Enhanced Charge-CollectionEfficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2Nanotubes Arrays. Nano Letters [J], Vol.7, No.1,2006, pp.69-74.
    【20】. Vittadini, A., A. Selloni, F.P. Rotzinger, and M. Gr tzel, Structure and Energetics ofWater Adsorbed at TiO2Anatase\(101\) and\(001\) Surfaces. Physical Review Letters[J], Vol.81, No.14,1998, pp.2954-2957.
    【21】. Herman, G.S., M.R. Sievers, and Y. Gao, Structure Determination of the Two-Domain(1×4) Anatase TiO2(001) Surface. Physical Review Letters [J], Vol.84, No.15,2000,pp.3354-3357.
    【22】. Jun, Y.-w., M.F. Casula, J.-H. Sim, S.Y. Kim, J. Cheon, and A.P. Alivisatos,Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling theShapes of TiO2Nanocrystals. Journal of the American Chemical Society [J], Vol.125,No.51,2003, pp.15981-15985.
    【23】. Zhang, H., S. Dai, and K. Wang, First-Principles Investigation of (001) Surface of TiO2.Plasma Science and Technology [J], Vol.6, No.5,2004, pp.2467.
    【24】. Gong, X.-Q. and A. Selloni, Reactivity of Anatase TiO2Nanoparticles: The Role of theMinority (001) Surface. The Journal of Physical Chemistry B [J], Vol.109, No.42,2005,pp.19560-19562.
    【25】. Yang, H.G., C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, and G.Q. Lu,Anatase TiO2single crystals with a large percentage of reactive facets. Nature [J], Vol.453, No.7195,2008, pp.638-41.
    【26】. Ariga, H., T. Taniike, H. Morikawa, M. Tada, B.K. Min, K. Watanabe, Y. Matsumoto, S.Ikeda, K. Saiki, and Y. Iwasawa, Surface-Mediated Visible-Light Photo-oxidation onPure TiO2(001). Journal of the American Chemical Society [J], Vol.131, No.41,2009,pp.14670-14672.
    【27】. Dai, Y., C.M. Cobley, J. Zeng, Y. Sun, and Y. Xia, Synthesis of Anatase TiO2Nanocrystals with Exposed {001} Facets. Nano Letters [J], Vol.9, No.6,2009, pp.2455-2459.
    【28】. Han, X., Q. Kuang, M. Jin, Z. Xie, and L. Zheng, Synthesis of Titania Nanosheets with aHigh Percentage of Exposed (001) Facets and Related Photocatalytic Properties. Journalof the American Chemical Society [J], Vol.131, No.9,2009, pp.3152-3153.
    【29】. Xiang, Q. and J. Yu, Photocatalytic Activity of Hierarchical Flower-Like TiO2Superstructures with Dominant {001} Facets. Chinese Journal of Catalysis [J], Vol.32,No.3–4,2011, pp.525-531.
    【30】. Tian, F., Y. Zhang, J. Zhang, and C. Pan, Raman Spectroscopy: A New Approach toMeasure the Percentage of Anatase TiO2Exposed (001) Facets. The Journal of PhysicalChemistry C [J], Vol.116, No.13,2012, pp.7515-7519.
    【31】. Yan, X., D. Pan, Z. Li, Y. Liu, J. Zhang, G. Xu, and M. Wu, Controllable synthesis andphotocatalytic activities of water-soluble TiO2nanoparticles. Materials Letters [J], Vol.64, No.16,2010, pp.1833-1835.
    【32】. Diebold, U., The surface science of titanium dioxide. Surface Science Reports [J], Vol.48, No.5–8,2003, pp.53-229.
    【33】. Fabregat-Santiago, F., E.M. Barea, J. Bisquert, G.K. Mor, K. Shankar, and C.A. Grimes,High Carrier Density and Capacitance in TiO2Nanotube Arrays Induced byElectrochemical Doping. J Am Chem Soc [J], Vol.130, No.34,2008, pp.11312-11316.
    【34】. Wang, Q., S. Ito, M. Gr tzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho,and H. Imai, Characteristics of High Efficiency Dye-Sensitized Solar Cells. The Journalof Physical Chemistry B [J], Vol.110, No.50,2006, pp.25210-25221.
    【35】. Richter, C. and C.A. Schmuttenmaer, Exciton-like trap states limit electron mobility inTiO2nanotubes. Nat Nano [J], Vol.5, No.11,2010, pp.769-772.
    【1】. Kan, S., T. Mokari, E. Rothenberg, and U. Banin, Synthesis and size-dependentproperties of zinc-blende semiconductor quantum rods. Nature Materials [J], Vol.2, No.3,2003, pp.155-158.
    【2】. Hanna, M. and A. Nozik, Solar conversion efficiency of photovoltaic andphotoelectrolysis cells with carrier multiplication absorbers. Journal of Applied Physics[J], Vol.100, No.7,2006, pp.074510-074517.
    【3】. Beard, M.C., Multiple Exciton Generation in Semiconductor Quantum Dots. TheJournal of Physical Chemistry Letters [J], Vol.2, No.11,2011, pp.1282-1288.
    【4】. Shockley, W. and H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n JunctionSolar Cells. Journal of Applied Physics [J], Vol.32, No.3,1961, pp.510-519.
    【5】. González-Pedro, V., X. Xu, I. Mora-Sero, and J. Bisquert, Modeling high-efficiencyquantum dot sensitized solar cells. Acs Nano [J], Vol.4, No.10,2010, pp.5783-5790.
    【6】. Chang, J.A., J.H. Rhee, S.H. Im, Y.H. Lee, H.-j. Kim, S.I. Seok, M.K. Nazeeruddin, andM. Gratzel, High-performance nanostructured inorganic organic heterojunction solarcells. Nano Letters [J], Vol.10, No.7,2010, pp.2609-2612.
    【7】. Zhang, Q., X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, andQ. Meng,Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural propertiesof compact porous TiO2photoelectrodes. Physical Chemistry Chemical Physics [J], Vol.13, No.10,2011, pp.4659-4667.
    【8】. Gonzalez-Pedro, V., C. Sima, G. Marzari, P.P. Boix, S. Gimenez, Q. Shen, T. Dittrich,and I. Mora-Sero, High performance PbS Quantum Dot Sensitized Solar Cellsexceeding4%efficiency: the role of metal precursors in the electron injection andcharge separation. Physical Chemistry Chemical Physics [J], Vol.15, No.33,2013, pp.13835-13843.
    【9】. Li, T.-L., Y.-L. Lee, and H. Teng, High-performance quantum dot-sensitized solar cellsbased on sensitization with CuInS2quantum dots/CdS heterostructure. Energy&Environmental Science [J], Vol.5, No.1,2012, pp.5315-5324.
    【10】. Santra, P.K. andP.V. Kamat, Mn-DopedQuantumDot Sensitized Solar Cells:AStrategyto Boost Efficiency over5%. Journal of the American Chemical Society [J], Vol.134,No.5,2012, pp.2508-2511.
    【11】. Chang, J.A., S.H. Im, Y.H. Lee, H.-j. Kim, C.-S. Lim, J.H. Heo, and S.I. Seok,Panchromatic Photon-Harvesting by Hole-Conducting Materials in Inorganic–OrganicHeterojunction Sensitized-Solar Cell through the Formation of Nanostructured ElectronChannels. Nano Letters [J], Vol.12, No.4,2012, pp.1863-1867.
    【12】. Guo, Q., H.W. Hillhouse, and R. Agrawal, Synthesis of Cu2ZnSnS4Nanocrystal Ink andIts Use for Solar Cells. Journal of the American Chemical Society [J], Vol.131, No.33,2009, pp.11672-11673.
    【13】. Riha, S.C., B.A. Parkinson, and A.L. Prieto, Solution-Based Synthesis andCharacterization of Cu2ZnSnS4Nanocrystals. Journal of the American ChemicalSociety [J], Vol.131, No.34,2009, pp.12054-12055.
    【14】. Barkhouse, D.A.R., O. Gunawan, T. Gokmen, T.K. Todorov, and D.B. Mitzi, Devicecharacteristics of a10.1%hydrazine-processed Cu2ZnSn(Se,S)4solar cell. Progress inPhotovoltaics: Research and Applications [J], Vol.20, No.1,2012, pp.6-11.
    【15】. Cao, Y., Y. Xiao, J.Y. Jung, H.D. Um, S.W. Jee, H.M. Choi, J.H. Bang, and J.H. Lee,Highly electrocatalytic Cu2ZnSn(S1-xSex)4counter electrodes forquantum-dot-sensitized solar cells. ACS Appl Mater Interfaces [J], Vol.5, No.3,2013,pp.479-84.
    【16】. Cattley, C.A., C. Cheng, S.M. Fairclough, L.M. Droessler, N.P. Young, J.H. Warner, J.M.Smith, H.E. Assender, and A.A. Watt, Low temperature phase selective synthesis ofCu2ZnSnS4quantum dots. Chem Commun (Camb)[J], Vol.49, No.36,2013, pp.3745-7.
    【17】. Dai, P., X. Shen, Z. Lin, Z. Feng, H. Xu, and J. Zhan, Band-gap tunable (Cu2Sn)x/3Zn1-xSnanoparticles for solar cells. Chem Commun (Camb)[J], Vol.46, No.31,2010, pp.5749-51.
    【18】. Khare, A., A.W. Wills, L.M. Ammerman, D.J. Norris, and E.S. Aydil, Size control andquantum confinement in Cu2ZnSnS4nanocrystals. Chem Commun (Camb)[J], Vol.47,No.42,2011, pp.11721-3.
    【19】. Lu, X., Z. Zhuang, Q. Peng, and Y. Li, Wurtzite Cu2ZnSnS4nanocrystals: a novelquaternary semiconductor. Chem Commun (Camb)[J], Vol.47, No.11,2011, pp.3141-3.
    【20】. Tosun, B.S., B.D. Chernomordik, A.A. Gunawan, B. Williams, K.A. Mkhoyan, L.F.Francis, and E.S. Aydil, Cu2ZnSnS4nanocrystal dispersions in polar liquids. ChemCommun (Camb)[J], Vol.49, No.34,2013, pp.3549-51.
    【21】. Zou, C., L. Zhang, D. Lin, Y. Yang, Q. Li, X. Xu, X.a. Chen, and S. Huang, Facilesynthesis of Cu2ZnSnS4nanocrystals. Crystengcomm [J], Vol.13, No.10,2011, pp.3310-3313.
    【22】. Li, L., B.L. Zhang, M. Cao, Y. Sun, J.C. Jiang, P.F. Hu, Y. Shen, and L.J. Wang, Facilesynthesis of Cu2ZnSnS4nanocrystals and its use for dye-sensitized solar cellsapplications. Journal of Alloys and Compounds [J], Vol.551, No.2013, pp.24-29.
    【23】. Liu, W.C., B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak, and K.H. Wong, Facilehydrothermal synthesis of hydrotropic Cu2ZnSnS4nanocrystal quantum dots: band-gapengineering and phonon confinement effect. Journal of Materials Chemistry A [J], Vol.1,No.9,2013, pp.3182-3186.
    【24】. Kang, C.-C., H.-F. Chen, T.-C. Yu, and T.-C. Lin, Aqueous synthesis of wurtziteCu2ZnSnS4nanocrystals. Materials Letters [J], Vol.96, No.2013, pp.24-26.
    【25】. Zhao, Y., W.-H. Zhou, J. Jiao, Z.-J. Zhou, and S.-X. Wu, Aqueous synthesis andcharacterization of hydrophilic Cu2ZnSnS4nanocrystals. Materials Letters [J], Vol.96,No.2013, pp.174-176.
    【26】. Chesman, A.S.R., N.W. Duffy, S. Peacock, L. Waddington, N.A.S. Webster, and J.J.Jasieniak, Non-injection synthesis of Cu2ZnSnS4nanocrystals using a binary precursorand ligand approach. Rsc Advances [J], Vol.3, No.4,2013, pp.1017.
    【27】. Kornhuber, K., J. Kavalakkatt, X. Lin, A. Ennaoui, and M.C. Lux-Steiner, In situmonitoring of electrophoretic deposition of Cu2ZnSnS4nanocrystals. Rsc Advances [J],Vol.3, No.17,2013, pp.5845.
    【28】. Yang, Z., Z. Ma, D. Pan, D. Chen, F. Xu, and S. Chen, Enhancing the performance offront-illuminated dye-sensitized solar cells with highly [001] oriented,single-crystal-like TiO2nanotube arrays. Ceramics International [J], Vol.40, No.1, PartA,2014, pp.173-180.
    【29】. Guo, Q., H.W. Hillhouse, and R. Agrawal, Synthesis of Cu2ZnSnS4Nanocrystal Ink andIts Use for Solar Cells. J Am Chem Soc [J], Vol.131, No.33,2009, pp.11672-11673.
    【30】. Wang, X., D. Pan, D. Weng, C.-Y. Low, L. Rice, J. Han, andY. Lu, AGeneral Synthesisof Cu In S Based Multicomponent Solid-Solution Nanocrystals with Tunable BandGap, Size, and Structure. The Journal of Physical Chemistry C [J], Vol.114, No.41,2010, pp.17293-17297.
    【31】. Riha, S.C., B.A. Parkinson, and A.L. Prieto, Solution-Based Synthesis andCharacterization of Cu2ZnSnS4Nanocrystals. J Am Chem Soc [J], Vol.131, No.34,2009, pp.12054-12055.
    【32】. Fernandes, P.A., P.M.P. Salomé, and A.F. da Cunha, Growth and Raman scatteringcharacterization of Cu2ZnSnS4thin films. Thin Solid Films [J], Vol.517, No.7,2009, pp.2519-2523.
    【33】. Wang, K., O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi, and S.Guha, Thermally evaporated Cu2ZnSnS4solar cells. Applied Physics Letters [J], Vol.97,No.14,2010, pp.143508-143510.
    【34】. Persson, C., Electronic and optical properties of Cu2ZnSnS4and Cu2ZnSnSe4. Journal ofApplied Physics [J], Vol.107, No.5,2010, pp.053710-053717.
    【35】. Mellor, A., A. Luque, I. Tobi as, and A. Marti, The influence of quantum dot size on thesub-bandgap intraband photocurrent in intermediate band solar cells. Applied PhysicsLetters [J], Vol.101, No.13,2012, pp.133909.
    【36】. Bisquert, J., A. Zaban, and P. Salvador, Analysis of the Mechanisms of ElectronRecombination in Nanoporous TiO2Dye-Sensitized Solar Cells. NonequilibriumSteady-State Statistics and Interfacial Electron Transfer via Surface States. The Journalof Physical Chemistry B [J], Vol.106, No.34,2002, pp.8774-8782.
    【37】. Zaban, A., M. Greenshtein, and J. Bisquert, Determination of the electron lifetime innanocrystalline dye solar cells by open-circuit voltage decay measurements.Chemphyschem [J], Vol.4, No.8,2003, pp.859-64.
    【38】. Bisquert, J., A. Zaban, M. Greenshtein, and I. Mora-Seró, Determination of RateConstants for Charge Transfer and the Distribution of Semiconductor and ElectrolyteElectronic Energy Levels in Dye-Sensitized Solar Cells by Open-Circuit PhotovoltageDecay Method. Journal of the American Chemical Society [J], Vol.126, No.41,2004,pp.13550-13559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700