用户名: 密码: 验证码:
废水处理系统中降解基因的克隆新技术研究及多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂环芳香族化合物是工业废水处理过程中的主要污染有机物。目前已有很多相关的高效去除这些污染物的研究报道,但是人们对参与生物处理的主要功能菌以及降解相关基因知之甚少。本研究主要采用微生物分子生态学技术及基因克隆技术,对降解喹啉和焦化废水的生态系统中的主要功能菌进行研究,并进行克隆降解基因的方法探索。
     喹啉是含氮杂环化合物的典型代表,用途极其广泛,由于这类化合物水溶性较强,已成为环境中普遍存在的污染物。我们建立了一个实验室规模反硝化喹啉降解生物反应器,经过约12个月的驯化后,喹啉去除率达到约80%以上。
     研究显示在本实验室生物反应器190-600天的运行过程,反应器中bcrA和oxoO两个功能基因的克隆文库基因序列的系统发育分析表明,bcrA基因克隆文库中部分序列与Thauera等菌株的bcrA基因的相似性为97%以上,其余序列与已知bcrA基因序列的相似性为74-86%;oxoO基因克隆文库中部分序列与Pseudomonas putida的oxoO基因相似性为99%,而其余序列和已知的oxoO基因的序列相似性较低。说明喹啉驯化的反硝化反应器系统中,bcrA和oxoO基因的多样性较丰富,且具有一些新的未知的类型。带有oxoO基因的功能菌数量随反应器的运行逐渐减少,带有bcrA基因功能菌数量逐渐增多。间接说明bcrA基因可能参与了喹啉的厌氧降解。由于它们数量变化与反应器的降解过程及运行状态密切关联,因此这两个基因可以作为一种潜在的分子标记,用于监测含喹啉废水处理系统的状态。
     本研究中构建了一套启动子捕获质粒系统。初步摸索了该系统的筛选方法,并尝试利用该系统,以底物诱导的基因表达筛选方式,从焦化废水处理系统中克隆具有不同启动子活性的基因片段。研究显示通过筛选系统的筛选,8121个克隆的文库中筛选获得两种类型的克隆,其中一类克隆由于在载体的致死基因sacB中插入了IS-2转座子导致基因的失活突变,从而被筛选系统筛选到。由于转座子IS2在E.coli K-12菌系的菌株中普遍存在,本研究的发现为今后类似的以致死基因进行克隆的研究工作中提供了借鉴,用于克隆的宿主E.coli菌株的选择将是一个重要的考虑因素。另外一类克隆中具有启动子活性的基因片段,但克隆获得的启动子为未知序列,还需后续的深入研究。
Heterocyclic aromatic hydrocarbons are major pollutants in industrial wasterwater treatment. Many efficient pollutant treating techniques have been reported, but we know little about the microbial major functional species and degrading-related genes. In this study, molecular microbial ecology technology and genomic technology were used to analyze the microbial communities in heterocyclic aromatic hydrocarbons (such as quinoline) containing industrial wasterwater treatment. Functional species were studied and a promoter trap plasmid system was constructed for cloning degrading-related genes.
     Quinoline is the typical pollutants in industrial wasterwater treatment. Due to its strong water solubility, it has become widespread pollutant. We had set up a lab scale denitrifying Quinoline-degrading bioreactor. After 12 months of acclimation, it reached high quinoline removal efficience of about 80%. The study showed that in the process of bioreactor, there are high diverse bcrA and oxoO genes at the bioreactor. The number of bacteria with oxoO gene decreased while the bacteria with bcrA gene increase gradually during the running of the bioreactor. It indirectly proved that bcrA gene participates in the anaerobic degradion of quinoline. Because the bundance of these functional genes closely related with the degradation rate in the process of bioreactor, we can use these two genes as a biomarker to monitor the quinoline degradation in wastewater treatment system.
     In order to intensively investigate the functional genes related to heterocyclic aromatic hydrocarbons degrading, a promoter trap plasmid system was constructed. The screening method was initially explored for cloning gene fragments with different promoter activity from the wasterwater treatment system based on the substrate-induced gene expression screening. Two types of clones were screened out from the clone library containing 8121 clones. One type of clone was screened due to the IS2 insertion fragment which has destroied the suicide gene function of plasmid. Because the IS2 from E.coli K-12 strains, the result indicate the choose of E.coli strain will be a important factor should be considered for the similar research in future. Another type of clone had the insertion and showed promoter activity.But the structure of promoter in this insertion fragment still unknown due to the limit of software for promoters searching.
引文
Amann R,Ludwing W. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology[J]. FEMS Microbiol Rev,2000,24.
    Amann RI, Ludwig W, Schleifer KH:Phylogenetic identification and in situ detection of individiual microbial cells without cultivation. Microbiol Rev 1995,59:143-169.
    Amann RL,Stromley J,Devereux R,Key R,Stohl DA. Molecular and microscopic identificaton of sulfate-reducing bacteria in multispecies biofilms[J]. Appl Environ Microbiol.1992,58:614-623.
    Andreoni and Gianfreda.Bioremediation and monitoring of aromatic-polluted habitats. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY,2007,76(2):287-308
    Atlas RM,Sayler QBurlage RS. Molecular approaches for environmental monitoring of microorganisms. Biotechniques.1992,12(5):706
    Attaway, H.H., Schmidt, M.G.Tandem biodegradation of BTEX components by two Pseudomonas sp. Current Microbiol.2002,45,30-36.
    Baker G C, Gaiar S, Cowan D A, et al.Bacterial community analysis of Indonesian hot springs[J]. FEMS Microbiology Letters,2001,200:103-109.
    Barrick R C, Furlong E T, Carpenter R. Hydrocarbon and azaarene markers of coal transport to aquatic sediments [J].Environ. Sci. Technol.,1984,18:846-854.
    Becker S,Bger P,Oehlmann R, et al. PCR bias in ecological analysis:a case study for quantitative Taq nuclease assays in analysises of microbial communities[J]. Applied and Environmental Microbiology,2000,66 (11):4945-4953.
    Beller, H.R.indicators for detecting in situ anaerobic alkylbenzene degradation. Biodegradation.2000,11,125-139.
    Bond P L, Keller P H J, Blackall L L.Bacterial community structures of phosphate removing and non-phosphate-removing activated sludges from sequencing batch reactors[J]. Appl Environ Microbiol,1995,61:1910-1916.
    Bott QSchmidt M,et al.MICROBIAL-METABOLISM OF QUINOLINE AND RELATED-COMPOUNDS.5. DEGRADATION OF 1H-4-OXOQUINOLINE BY PSEUDOMONAS-PUTIDA33/1.BIOLOGICALCHEMISTRYHOPPE-SEYLER,199 0,371(10):999-1003.
    Brady SF, Clardy J. Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA. Journal of the American chemical society,2000,122(51):12903-12904.
    Brambilla E, Hippe H, Hagelstein A, et al.16 S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica [J]. Extremophiles,2001,5(1):23-33.
    Carl, B.,Arnold, A.,Hauer, B., etc., Sequence and transcriptional analysis of a gene cluster of Pseudomonas putida 86 involved in quinoline degradation[J]. Gene,2004,331 pp 177-188.
    Carl, B.,Fetzner, S., Transcriptional activation of quinoline degradation operons of Pseudomonas putida 86 by the AraC/XylS-type regulator OxoS and cross-regulation of the PqorM promoter by XylS[J]. Applied and Environmental Microbiology, Dec,2005, 71 (12),pp 8618-8626.
    Cerniglia, C.E. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl.Microbiol.1984,30,31-71
    Chauhan NS, Ranjan R, Purohit HJ, et al. Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library [J]. FEMS Microbiol Ecol,2009,67 (1):130-139
    Coates, J.D., Chakraborty, R., McInerney, M.J.Anaerobic benzene biodegradation-a new era. Res. Microbiol.2002,153,621-628.
    Corseuil, H.X., Alvarez, P.J.J.Natural bioremediation perspective for BTX contaminated ground water in brazil:effect of ethanol. Water Sci. Technol.1996,34,311-318.
    Corseuil, H.X., Hunt, C.S., Ferreira dos Santos, R.C., Alvarez, P.J.J.The influence of the gasoline oxygenate ethanol on aerobic and anaerobic BTX biodegradation. Water Res. 32,1998,2065-2072.
    Cowan DA:Microbial genomes-the untapped resource.Trends Biotechnol 2000, 18:14-16.
    Darby A C, Birkle L M, Tumer S L, et al. An aphid-borne bacterium allied to the secondary symbionts of whitefly [J]. FEMS Microbiol Ecol,2001,36:43-50.
    Deeb RA,Scow KM,et al.Aerobic MTBE biodegradation:an examination of past studies, current challenges and future research directions. BIODEGRADATION,2000,11.
    Deeb, R.A., Alvarez-Cohen, L.Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous. Biotechnol.Bioeng.1999,62,526-536.
    DiazTorres ML, McNab R, Spratt DA, et al. Novel tetracycline resistance determinant from the oral metagenome. Antimicrob Agents Chemother,2003,47(4):1430-1432.
    Dott, W., Feidieker, D., Steiof, M., Becker, P.M., Ka'mpfer, P.Comparison of ex situ and in situ techniques for bioremediation of hydrocarbon-polluted soils. Int. Biodeterior. Biodeg.1995,35,301-316.
    Dyreborg S, Arvin E, Broholm K. Biodegradation of NSO-compounds under different redox-conditions[J].Journal of contaminant hydrology.1997,25:177-197.
    Felske A, Wolterink A, van Lis R, et al.Searching for predominant soil bacteria:16S rDNA cloning versus strain cultivation[J]. FEMS Microbiology Ecology,1999,30:138-145
    Fiala, Z. et al. Polycyclic aromatic hydrocarbons I. Environmental contamination and environmental exposure. Acta Medica,1999,42,77-89
    Finlayson-Pitts, B.J. and Pitts, J.N., Jr.Tropospheric air pollution:ozone, airborne toxics,polycyclic aromatic hydrocarbons and particles. Science,1997,276,1045-1052
    Fischer, S. G, and L. S. Lerman. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:correspondence with melting theory. Proc Natl Acad Sci USA,1983,80:1579-83.
    Gillespie DE, Brady SF, Bettermann AD, et al. Isolation of anti-biotics turbomycin A and B from a metagenomic library of soil microbial DNA[J]. Appl Environ Microbiol,2002, 68(9):4301-4306.
    Goldman, R. et al. Smoking increase carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Cancer Res.2001,61,6367-6371
    Guo, C. et al. Hybridization analysis of microbial DNAfrom fuel oil-contaminated and noncontaminated soil. Microbial Ecol.1997,34,178-187
    Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes:a new f rotier for natural p roduct s[J].Chemistry & Biology,1998,5 (10):R245-R249.
    Hedlund, B.P. and James, T.S. Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int. J. Sys. Evol. Microbiol.2001,51, 61-66
    Heider, J., Spormann, A.M., Beller, H.R., Widdel, F.Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol. Rev.1999,22,459-473.
    Heider, J.Adding handles to unhandy substrates:anaerobic hydrocarbon activation mechanisms. Curr. Opin. Chem. Biol.2007,11,188-194.
    Hirao K, Shinohara Y, Tsuda H, et al. Carcinogenic activity of quinoline on rat liver [J]. Cancer Res.,1976,36:329-335.
    Holliger, C., Gaspard, S., Glod, G., Heijman, C., Schumacher, W.,Schwarzenbach, R.P., Vazquez, F.Contaminated environments in the subsurface and bioremediation:organic contaminants. FEMS Microbiol. Rev.1997,20,517-523.
    Hosoda, A.,Kasai, Y.,Hamamura, N., etc., Development of a PCR method for the detection and quantification of benzoyl-CoA reductase genes and its application to monitored natural attenuation[J]. Biodegradation,2005,16 (6),pp 591-601.
    Hugenholtz P, Goebel B M, Pace N R.1998. Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity [J]. J Bacteriology,1998,180: 4765-4774.
    Jiae Yun, Sangryeol Ryu. Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microbial Cell Factories,2005,4:8
    Jindrova E,Chocova M,et al.Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene. FOLIA MICROBIOLOGICA.2002,47(2):83-93
    Johanson S S, Licht D, Arvin E, et al. Metabolic pathways of quinoline, indole and their methylated analogs by Desulfobacterium indolicum(DSM3383)[J].Appl Microbiol Biotechnol,1997,47:292-300.
    Johri, A.K. et al. Characterization and regulation of catabolic genes. Crit. Rev.Microbiol.1999,25,245-273
    Juhasz, A.L. et al. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003.Lett. Appl. Microbiol.2000,30,396-401
    Kaiser, J. Endocrine disrupters:Synergy paper questioned at toxicology meeting.Science,1997,275,1879-1880
    Kanaly, R.A. and Harayama, S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria J. Bacteriol.2000,182,2059-2067
    Kanaly, R.A. and Harayama, S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol.2000,182,2059-2067
    Kanaly, R.A. et al. Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Appl. Environ. Microbiol.2000,66,4205-4211
    Kanaly, R.A. et al. Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Appl. Environ. Microbiol.2000,66,4205-4211
    KAZUNARI SEI, KEN-ICHIRO ASANO, NAOHIRO TATEISHI, KAZUHIRO MORI,MICHIHIKO IKE, AND MASANORI FUJITA*.Design of PCR Primers and Gene Probes for the General Detection of Bacterial Populations Capable of Degrading Aromatic Compounds via Catechol Cleavage Pathways. JOURNAL OF BIOSCIENCE AND BIOENGINEERING 1999,88(5):542-550.
    Kiyohara, H. et al. Degradation of phenanthrene through o-phthalate by a Aeromonas sp. Agr. Biol. Chem.1976,40,1075-1082
    Kowalchuk, G. A., J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp-Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol,1997,63:1489-1497.
    Laurie, A.D. and Jones, GL. Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl. Environ. Microbiol.2000,66,1814-1817
    LaVoie E J, Shigematsu A, Adams E A, et al. Tumor initiating activity of quinoline and methylated quinolines on the skin of SENCAR mice [J]. Cancer Lett., 1984,22:269-273.
    Lerman, L. S., S. G Fischer, I. Hurley, K. Silverstein, and N. Lumelsky. Sequence-determined DNA separations. Annu Rev Biophys Bioeng,1984,13:399-423.
    LEVEAU J H J, GERARDS S, de BOER W, et al. Phylogeny-function analysis of (meta) genomic libraries:screening for expression of ribosomal RNA genes by large-insert library fluorescent in situ hybridization(LIL-FISH) [J]. Microbiology,2004,6(9): 990-998.
    Li, M., et al., Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA,2008,105(6):2117-2122.
    Liu, B.B., et al.Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison. FEMS Microbiology Ecology,2006.55(2):274-286.
    Liu, K. et al. Polycyclic aromatic hydrocarbon (PAH) emissions from a coal fired pilot FBC system. J. Hazard. Mater.2001,84,175-188
    Mao, Y, et al., Development of group-specific PCR-DGGE fingerprinting for monitoring structural changes of Thauera spp. in an industrial wastewater treatment plant responding to operational perturbations. J Microbiol Methods,2008.75(2):p.231-6.
    Mastrangela, G et al. Polycyclic aromatic hydrocarbons and cancer in man. Environ. Health Perspect.1997,104,1166-1170
    Mesarch MB,Nakatsu CH,et al.Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation. WATER RESEARCH,2004,38(5):1281-1288
    Minako N, Takio Y, Yuko S, et al. Mutagenicities of quinoline and its derivatives [J]. Mutat. Res.,1977,42:335-342.
    Mueller J G, Chapman P J, Pritchard P H. Creosote-contaminated sites:their potential for bioremediation [J]. Environ. Sci. Technol.,1989,23:1197-1201.
    Myers, R. M., S. G Fischer, L. S. Lerman, and T. Maniatis.1985a. Nearly all single base
    Myers, R. M., S. G Fischer, T. Maniatis, and L. S. Lerman.1985b. Modification of the melting roperties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3111-29.
    Nadim, F., Hoag, GE., Liu, S., Carley, R.J., Zack, P.Detection and remediation of soil and aquifer systems contaminated with petroleum products:an overview. J. Petrol. Sci. Eng.2000,26,169-178.
    Nakhla, GBiokinetic modeling of in situ bioremediation of BTX compounds-impact of process variables and scale up implications.Water Res.2003,37,1296-1307.
    Nielsen, D.R., McLellan, P.J., Daugulis, A.J.Direct estimation of the oxygen requirements of Achromobacter xylosoxidans for aerobic degradation of monoaromatic hydrocarbons (BTEX) in a bioscrubber.Biotechnol. Lett.2006,28,1293-1298.
    Nubel U, GarciaPichel, F,et al.PCR primers to amplify 16S rRNA genes from cyanobacteria. APPLIED AND ENVIRONMENTAL MICROBIOLOGY.1997,68(3):3327-3332
    Olsen, R.H., Mikesell, M.D., Kukor, J.J., Byrne, A.M.Physiological attributes of microbial BTEX degradation in oxygen-limited environments. Environ. Health Pers.103 (Suppl 5),1995,49-51.
    Pang, X., et al., Molecular profiling of Bacteroides spp. in human feces by PCR-temperature gradient gel electrophoresis. J Microbiol Methods,2005.61(3):p. 413-7.
    Park HJ, Jeon JH, Kang SG, et al. Functional exp ression and refolding of new alkaline esterase, EM2L8 from deep sea sediment metagenome [J]. Protein Exp r Purif,2007, 52 (2):340-347
    Pereira W E, Rostad C E, Updegraff D M, et al. Fate and movement of azaarenes and their anaerobic biotransformation products in an aquifer contaminated by wood-treatment chemicals[J]. Environ. Toxicol. Chem.,1987,6:163-176.
    Pope PB, Patel BK. Metagenomic analysis of a freshwater toxic cyanobacteria bloom[J]. FEMS Microbiol Ecol,2008,64 (1):9-27
    Pothuluri, J.V. and Cerniglia, C.E. Microbial metabolism of polycyclic aromatichydrocarbons. In Biological degradation and Bioremediation of Toxic Chemicals(Chaudhry, G.R.,ed.)1994,92-124
    Rainey F A, Ward N, Sly L I, et al.Dependence on the taxon composition of clone libraries for PCR amp lified, naturally occurring 16S rDNA, on the p rimer pair and the cloning system used [J].Experientia,1994,50:796-797.
    Reusser DE,Istok JD,et al.In situ transformation of deuterated toluene and xylene to benzylsuccinic acid analogues in BTEX-contaminated aquifers. ENVIRONMENTAL SCIENCE & TECHNOLOGY,2002,36(19):4127-4134.
    Ruger A, Schwartz G, Lingens F. Microbial metabolism of quinoline and related compounds. Ⅹ Ⅸ.Degradation of 4-methylquinoline and quinoline by pseudomonas putida K1. Biol. Chem. Hoppe-Seyler,1993,374:479-488.
    Sabate, J. et al. Isolation and characterization of a 2-methylphenanthrene utilizing bacterium:identification of ring cleavage metabolites. Appl. Microbiol. Biotechnol.1999,52,704-712
    Samanta, S.K. et al. Degradation of phenanthrene by different bacteria:evidence for novel transformation sequences involving the formation of 1-naphthol. Appl.Microbiol.Biotechnol.1999,53,98-107
    Samanta, S.K. et al. Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism. Appl. Microbiol.Biotechnol.2001,55,627-631
    SAYLER, GS; SHIELDS, MS,et al.:APPLICATION OF DNA-DNA COLONY HYBRIDIZATION TO THE DETECTION OF CATABOLIC GENOTYPES IN ENVIRONMENTAL-SAMPLES. APPLIED AND ENVIRONMENTAL MICROBIOLOGY.1985,49(5):1295-1303.
    Schach S,Schward G,Fetzner S,et al.Microbial metabolism of quinoline and related compounds Ⅹ Ⅶ Degradation of 3-methylquinoline by Comamonas testosteroni 63.Biol. Chem.Hoppe-Seyler,1993,374:175-181.
    Schuppler M, Mertens F, Sch N Q et al.Molecular characterization of nocardioform actinomycetes in activated sludge by 16S rRNA analysis[J]. Microbiology,1995,141: 513-521.
    Schwarz G, Bauder R, Speer M, et al. Microbial metabolism of quinoline and related compounds Ⅱ.Degradation of quinoline by Pseudomonas fluorescens 3, Pseudomonas putida 86, and Rhodococcus spec B1. Biol. Chem. Hoppe-Seyler,1989,370:1183-1189.
    Sekiguchi, H., N. Tomioka, T. Nakahara, and H. Uchiyama.2001. A single band does not always epresent single bacterial strains in denaturing gradient gel electrophoresis analysis.Biotechnology Letters 23:1205-1208.
    Shen, J., et al., Molecular profiling of the Clostridium leptum subgroup in human fecal microflora by PCR-denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol,2006.72(8):p.5232-8.
    Shennan, J.L. Hydrocarbons as substrates in industrial fermentation.In Petroleum Microbiology (Atlas, R.M., ed),1984,643-683
    Sonenshein A L, Hoch J A, and Losick R.Clostridium [M].Bacillus subtilis and other gram positive organisms, Washington, DC:American Society for Microbiology,1993,35-52.
    Stegeman, J.J. et al. Cytochrome P450 1A expression in mid water fishes:potential effects of chemical contaminants in remote oceanic zones.Environ. Sci. Technol.2001,35, 54-62
    Stokes, HW; Holmes, AJ,et al.Gene cassette PCR:Sequence-independent recovery of entire genes from environmental DNA. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2001,67(11):5240-5246
    SuzukiM T, Giovannoni S J. Bias caused by temp late annealing in the amp lification of mixtures of 16S rRNA genes by PCR [J].Appl Environ Microbiol,1996,62:625-630.
    Taku Uchiyama, Takashi Abe. Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes.Nature biotechnology,2005,1 (23):88-93.
    Tsao, C.-W., Song, H.-G., Bartha, R. Metabolism of benzene,toluene, and xylene hydrocarbons in soil. Appl. Environ. Microbiol.1998,64,4924-4929.
    Warshawsky D. Environmental sources,carcinogenicity, mutagenicity,metabolism,and DNA binding of nitrogen and sulfur heterocyclic aromatics [J]. J. Environ. Sci. Health Part C,1992,10:1-71.
    Watanabe, K. and Baker, P.W. Environmentally relevant microorganisms. J. Biosci. Bioeng. 2000,89,1-11
    Watanabe, K. Microorganisms relevant to bioremediation. Curr. Opin. Biotechnol. 2001,12,237-241
    Wei, GF., et al., The microbial community in the feces of the giant panda (Ailuropoda elanoleuca) as determined by PCR-TGGE profiling and clone library analysis. Microbial Ecology,2007.54(1):p.194-202.
    Wildada, J. et al. Molecular detection and diversity of polycyclic aromatichydrocarbondegrading bacteria isolated from geographically diverse sites. Appl. Microbiol. Biotechnol.2002,58,202-209
    WU L Y, DOROTHEA K, THOMPSON, et al. Development and evaluation of functional gene arrays for detection of selected genes in the environment [J]. Applied and Environmental Microbiology,2001,67(12):5780-5790.
    YAN B, HONG K, XU Y, et al. Metagenome cloning-a new approach for novel microbial bioactive compounds discovery[J]. Microbiology,2005,32(1):113-117.
    Zaehner H,Fiedler FP. Fifty years of antimicrobials:past perspectives and future trends[A]. In:The need fornew antibiotics:Possible ways forward[C]. Hunter PA, Darby GK, Russell NJ, et al edited. Bath,England, U K:Cambridge University Press, 1995:67.
    Zhang, M., et al., Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. J Clin Microbiol,2007.45(2):p. 496-500.
    Zhang, X., X. Yan, P. Gao, L. Wang, Z. Zhou, and L. Zhao.2004. Optimized sequence retrieval from single bands of TGGE (temperature gradient gel electrophoresis) profiles of the amplified 16S rDNA fragments from an activated sludge system. J Microbiol Methods.
    Zylstra G J.Molecular analysis of aromatic hydrocarbon degradation. Molecular environmental biology.Seymour J.Gerte(ed.),1994.83-115
    崔明超,李丽,陈繁忠.喹啉及其衍生物微生物降解研究进展[J].上海环境科学.2003,22(1):52-56
    戴欣,周惠,陈月琴,等.中国南海南沙海区沉积物中细菌16S rDNA多样性的初步研究[J].自然科学进展,2001,12(5):479-484
    董恒等.可生物降解高分子的酶法合成和改性[J].化学通报,1997,3.
    何苗,张晓健,顾夏生.杂化化合物好氧生物降解性能的研究[J].中国环境科学.1997,17(6):481-483
    贺纪正,张丽梅等.宏基因组学的研究现状和发展趋势.环境科学学报.2008,2(2):209-217.
    李武,王凌华等.分子生态学方法在微生物肥料质量监测中的应用.微生物学通报,2006,33(1):53-58.
    林山杉,付丽丽,金玉花,等.序批式接触氧化反应器中细菌多样性及其功能[J].环境科学研究,2007,20(4):111-119.
    刘振静,李潞滨,庄彩云,等.青藏铁路沿线土壤可培养微生物种群多样性分析[J].环境科学研究,2008,21(6):176-181.
    孙丽娟,李咏梅,顾国维.含氮杂环化合物的生物降解研究进展[J].四川环境.2005,24:61-73
    王菊思,赵丽辉,匡欣等.某些芳香化合物生物降解性研究[J].环境科学学报,1995,15(4):407-414.
    项丽,唐建设.变性梯度凝胶电泳(DGGE)在环境微生物生态中的应用[J].安徽农学通报,2007,13(15):28-30.
    徐玲玲,刘亚洁,李江,等.变性梯度凝胶电泳在微生物多样性分析中的应用及其技术发展[J].华东理工学院学报,2007,30(3):279-282.
    张晶,任庆,朱焕山.芳香族化合物生物降解研究现状与展望[J].辽宁城乡环境科技,2004,24(1):54.
    赵焕英,包金风.实时荧光定量PCR技术的原理及其应用研究进展[J].中国组织化学与细胞化学杂志,2007,16(4):492-497.
    朱顺妮,刘冬启,樊丽,etc.,两株喹啉降解菌代谢途径的分析[J].2008,28(005),p:456-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700