用户名: 密码: 验证码:
典型高硫煤热解过程中硫、氮的变迁及其交互作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于我国的基本国情,煤炭在可预见的未来仍将是中国的主体能源,但其大幅度开采和利用已引起优质煤资源的急剧下降,导致能源安全和环境保护的矛盾日益突出。高硫煤等非优质煤种的储量相对较高,但自身禀赋的高硫含量的特点在一定程度上限制了其开发和利用的范围。为了有效控制高硫煤利用过程中污染物的排放,并为高硫煤利用过程中硫、氮污染物的协同调控提供理论依据,本论文在前期相关研究的基础上,针对高硫煤热解过程中硫、氮的变迁及其交互作用机制进行了研究。主要包括下列几个方面的内容:
     (1)选择煤阶、硫含量及硫赋存形态不同的四种高硫煤(Coal A、Coal B、Coal C和Coal D)为研究对象,采用传统的程序升温热解法结合S-XANES现代分析技术对高硫煤热解过程中硫的变迁规律进行了研究。结果表明富含有机硫的不同变质程度Coal A和Coal D中硫的存在形态完全不同,其中Coal A所含活泼二硫化物和硫化物的比例较高,在低于500℃的热解温度下容易分解从而导致煤中硫主要分布在气相中;Coal D中主要以复杂噻吩结构存在,在1000℃下仍难分解,使得煤中的硫主要滞留于半焦中。煤中氮在热解过程中主要残留于半焦中,生成的HCN和NH3所占比例较小。Coal A和Coal C中的氮分配到焦油中的比例要高于其它两种煤样,这与两种煤中弱有机结构所占的比例以及含氮官能团所处的化学环境有关。
     煤中硫铁矿的分解对硫的变迁行为有着非常重要的影响。在煤热解过程中硫铁矿分解反应分两步进行:首先,随着温度的升高,硫铁矿开始分解产生FeS和活性硫;600℃之后,产生的FeS再次发生反应。煤中形态硫除部分分解、释放外,也存在着相互转化。在低于600℃下,煤中一些活泼的有机硫化物和硫铁矿硫发生分解并以气相硫的形式释放。在高于600℃下,煤焦中的形态硫主要以内部转化为主。HCN和NH3的最大释放温区较高,大约在650℃左右。其中HCN的生成主要来源于吡啶氮和吡咯氮的开环反应,而NH3的生成除了来源于季氮的分解外,还存在HCN的二次反应。
     (2)使用目前典型的脱硫技术对高硫煤进行前处理,考察了不同预处理方法对煤热解过程中硫、氮释放的影响。由于煤中硫铁矿赋存状态的差异,导致了其在Coal B浮选过程中的脱除要易于Coal C。浮选所得精煤在热解过程中含硫气体的累积释放率都高于原煤,但在600℃出现的H2S和COS的释放峰几乎消失。热解过程中HCN和NH3释放规律的变化分别与吡咯氮和季氮的变化相关。HCl/HF处理消除煤中矿物质固硫作用的同时,也改善了煤样的孔结构,从而促进了含硫气体的释放。矿物质的脱除消弱了HCN向NH3(或N2等)的催化转化,使得HCN的释放量增加,NH3的释放量减小。HNO3处理后,煤中硫铁矿几乎被全部脱除,使得在600℃处H2S和COS的释放峰消失。但由于硝酸根的残留,使得HCN和NH3在整个实验温区内的释放量都有所增加。
     超声溶剂萃取脱除了Coal A和Coal D中部分形态硫,其中有机硫的脱除占总硫脱除的80%左右。超声溶剂萃取主要脱除了煤中小分子相,从而改善了超分子体系的孔结构,促进了Coal D中硫铁矿分解产生的活性硫释放;但对Coal A热解过程中H2S释放的影响不大。煤中季氮结构的稳定性相对较弱,溶剂萃取过程可以脱除部分季氮,使得热解过程中NH3的释放量有所下降。经浮选、HCl/HF酸洗、HNO3酸洗和超声溶剂萃取逐级处理的Coal C中的硫有了较大程度的脱除,其总硫含量从5.0%下降到1.88%。经过逐级处理,煤的表面积、化学结构以及表面硫和氮的存在形态都发生了部分改变,有利于Coal C在热解过程中含硫气体的释放。对于含氮气体,HCN和NH3的释放量在HN03处理之前变化不大,HN03处理之后,其释放量明显增加。
     (3)通过不同前处理脱硫对高硫煤热解过程中H2S和NH3释放的影响分析,同时借助于含硫、含氮模型化合物的热解实验及其机理探讨,验证了煤中硫、氮在变迁过程中存在竞争氢的相互作用,其中H2S和NH3的同时生成是竞争作用发生的前提。模型化合物快速热解实验中H2S和NH3生成竞争活性氢的结果显示,三种不同形态的含硫模型化合物对咔唑热解生成NH3的影响不同,这与含硫模型化合物在热解过程中供氢能力的大小有关。苯甲基硫醚和2-萘硫酚在热解过程中可以提供活性氢使其进攻咔唑,从而促进咔唑分解并生成NH3,相应地降低了H2S的释放。相反,二苯并噻吩的热解活性低于咔唑,在热解过程中咔唑分解产生的活性氢可以促进二苯并噻吩发生开环反应,使得H2S的释放量增加,NH3的释放量减少。
Based on the energy consumption situation of China, coal is still the main energy resource in the foreseeable future. But it has been mined and utilized in a large-scale, resulting in the shortage of high-quality coal. Most importantly, the subsequent issues of energy security and environment protection have become increasingly prominent. Low-quality coal, such high-sulfur coal, occupies a relatively high proportion in coal reserve, but the feature of high sulfur content restrains its utilization range. In order to effectively control the emission of pollutants during utilizing the high-sulfur coal, and provide the fundamental theory for the synergistic regulation of sulfur and nitrogen-containing pollutants during further utilization of high-sulfur coals, the transformation of sulfur and nitrogen and the competition for active hydrogen in the pyrolysis of high-sulfur coals have been focused. The study mainly includes the several parts as following.
     (1) Four high sulfur coals (Coal A, Coal B, Coal C and Coal D) with different coal rank, sulfur content and sulfur forms were selected as the experimental samples. The essential transformation behaviors of sulfur in high sulfur coal were studied by the traditional temperature-programmed pyrolysis combining with S-XANES of modern analytical technology. The results show that there are different existing forms of sulfur in different rank Coal A and Coal D with high organic sulfur content. There are more active disulfide and sulfide in Coal A with lower coal rank, which can be decomposed and released into the gas products at below pyrolysis temperature of500℃; more complex thiophenic structure exists in the higher rank Coal D, which are difficultly decomposed even at1000℃, leading to more sulfur retain in char. During coal pyrolysis, most of nitrogen in coal retains in char, only small proportion of nitrogen transforms into HCN and NH3. The proportion of nitrogen in tar from Coal A and Coal C are higher than that of others coals, which is related to the proportion of unstable organic structure in coal matrix and the chemical surrounding of N-containing functional groups in coal.
     Decomposition of pyrite in coal plays an important role in the transformation of sulfur during pyrolysis of high-sulfur coal. Two step reactions were included in the process of decomposition of pyrite. Firstly, pyrite begins to decompose into FeS and active sulfur with the increase of temperature, and then FeS also transforms into active sulfur above600℃. For the transformation behavior of sulfur, except for the decomposition and release of some sulfur forms, there exists inter-conversion among the different sulfur forms. Below600℃, some unstable organic sulfur and pyrite can decompose and release into gases products. Above600℃, inter-conversions of different sulfur forms play a dominant role on the transformation behavior of sulfur. Furthermore, the maximum release temperature region of HCN and NH3locate in the higher temperature range, around650℃. The ring cleavage reaction of pyridine and pyrrole is the main pathway for the formation of HCN during coal pyrolysis, while the formation of NH3are resulting from the decomposition of quaternary-N and the secondary reactions of HCN.
     (2) The traditional pre-desulfurization processes were used to pretreat four high-sulfur coals and the effect of these processes on the release of sulfur and nitrogen during pyrolysis of high-sulfur coal were investigated. The removal degree of pyrite for Coal B is higher than that of Coal C by flotation because of the difference of existing forms of pyrite in these two coals. The accumulative yields of S-containing gaseous products from clean coals are higher than that of raw coals, but the release peaks of H2S and COS almost disappear above600℃for the clean coals.
     The change in nitrogen forms on the coal's surface before and after flotation should be the main factor influencing the various release trends of HCN and NH3during coal pyrolysis. The formations of HCN and NH3are related to the proportion of pyrrolic-N and quaternary-N in coal, respectively. The fixing sulfur capacity of minerals is eliminated through HCl/HF pre-treated process, whilst the pore structure of coal is improved, which can promote the release of S-containing gases products. The removal of these minerals weakens the catalytic role on the secondary reaction of HCN transform into NH3(or N2), resulting in the increase of the release amount of HCN, and the decrease of NH3. The HNO3treatment can nearly remove all the pyrite in coal, resulting in the disappearance of the release peak of H2S and COS at600℃. Moreover, the residual of nitrate increases the release amount of HCN and NH3at the whole experimental temperature range.
     Part of sulfur was removed for Coal A and Coal D by the ultrasonic solvent extraction, and the removal of organic sulfur occupies80%of the entire removed sulfur. The solvent extraction can remove some small molecular phases in the coal and improves the pore structure of coal matrix, leading to the increase of the release of active sulfur formed by the decomposition of pyrite in Coal D. However, ultrasonic solvent extraction has a little effect on the release of H2S from Coal A. The stability of quaternary-N structure is weak and it can be partly removed by this process, resulting in the decreasing the release of NH3during pyrolysis of pre-treated coals. Step-by-step pre-treatment (flotation, HCl/HF acid-washing, HNO3acid-washing and solvent extraction) can remove most of sulfur in Coal C (total sulfur content to1.88%from5.0%), whilst the surface area, chemical structure and the sulfur and nitrogen forms on the surface of Coal C are changed. This process improves the release of S-containing gases during pyrolysis of Coal C. The release of HCN and NH3are almost unchanged, but the release amount of HCN and NH3are obvious increased after HNO3treatment.
     (3) By means of the release behaviors of H2S and NH3during pyrolysis of raw coal and different pretreated samples and combining with the pyrolysis results of S-and N-containing model compounds, it is convinced that there exists the competition of active hydrogen during thermal transformation of sulfur and nitrogen in coal. And the simultaneous formation of H2S and NH3in the similar temperature range is the precondition of the competition occurring during pyrolysis. The results of competing active hydrogen for H2S and NH3from rapid pyrolysis of model compounds show that the effects of three S-containing model compounds on the formation of NH3from the carbazole pyrolysis are different, which depends on the capacity of donating hydrogen from the S-containing model compounds during pyrolysis. The decomposition of benzyl-thioether and2-naphthalenethiol can provide the active hydrogen to promote the ring cleavage reaction of carbazole and increases the release of NH3, whilst decreases the release of H2S. The thermal activity of dibenzothiophene is lower than that of carbazole, so the ring cleavage reaction of dibenzothiophene can be promoted by the active hydrogen from the decomposition of carbazole during pyrolysis, resulting in the increase of the release amount of H2S and the decrease of NH3release amount.
引文
[1]陈鹏.中国煤中硫的赋存特征及脱硫[J].煤炭转化,1994,17(2):1-9.
    [2]周强.中国煤中硫氮的赋存状态研究[J].洁净煤技术,2008,(1):73-77.
    [3]陈鹏.中国煤炭性质、分类和利用[M].北京,化学工业出版社,2001.
    [4]刘粉荣.高硫煤热解过程中硫变迁行为的研究[D].中国科学院山西煤炭化学研究所博士学位论文,2007.
    [5]Calkins W.H. The chemical forms of sulfur in coal:A review [J]. Fuel,1994,73 (4): 475-484.
    [6]Attar A. Chemistry, thermodynamics and kinetics of reactions of sulfur in coal-gas reactions:A review [J]. Fuel,1978,57(4):201-212.
    [7]李斌,曹晏,张建民,王洋.煤热解和气化过程中硫分析出规律的研究进展[J].煤炭转化,2001,24(3):6-11.
    [8]郑迅燕,何玉田,李致清.红外吸收法测定焦炭中的全硫[J].光谱实验室,2006,23(3):523-525.
    [9]刘瑾,刘凯.高频燃烧—红外吸收法测定煤及焦炭中硫含量[J].冶金分析,2008,28(2):75-77.
    [10]皮中原,尹杨林.红外吸收法测定煤中全硫[J].煤炭学报,2008,33(10):1173-1177.
    [11]Lafferty C.J., Mitchell S.C., Garcia R., etc. Investigation of organic sulfur forms in coals by high pressure temperature-programmed reduction [J]. Fuel,1993,72 (3):367-371.
    [12]Mitchell S.C., Snape C.E., Carcia R., etc. Determination of organic sulfur forms in some coals and kerogens by high pressure temperature-programmed reduction [J]. Fuel,1994, 73(7):1159-1166.
    [13]Majchrowicz B.B., Franco D.V., Yperman J., etc. An investigation into the changes of structure and reactivity during desulfurization of a bituminous coal[J]. Fuel,1991,70(3): 434-441.
    [14]Snape C.E., Mitchell S.C., Garcia R., etc. Determination of organic sulfur forms in coals and coal derivatives by high pressure temperature programmed reduction [J]. Fuel,1993, 72 (5):703-704.
    [15]Marinov S.P., Tyuliev G, Stefanova M., etc. Low rank coals sulfur functionality study by AP-TPR/TPO coupled with MS and potentiometric detection and by XPS [J]. Fuel Processing Technology,2004,85 (4):267-277.
    [16]Aelst J.V., Yperman J., Franco D.V., etc. Study of silica-immobilized sulfur model compounds as calibrants for the AP-TPR study of oxidized coal samples [J]. Energy & Fuels,2000,14(5):1002-1008.
    [17]Olivella M.A., Palacios J.M., Vairavamurthy A., etc. A study of sulfur functionalities in fossil fuels using destructive-(ASTM and Py-GC-MS) and non-destructive-(SEM-EDX, XANES and XPS) techniques [J]. Fuel,2002,81 (4):405-411.
    [18]Ward C.R., Gurba L.W. Occurrence and distribution of organic sulfur in macerals of Australian coals using electron microprobe techniques [J].Organic Geochemistry,1998, 28 (11):635-647.
    [19]Hsieh K.C., Wert C.A. Direct measurement of organic sulfur in coal [J]. Fuel,1985, 64(2):255-262.
    [20]Kelemen S.R., George GN., Gorbaty M.L. Direct determination and quantification of sulfur forms in heavy petroleum and coals 1. The X-ray photoelectron spectroscopy (XPS) approach [J]. Fuel,69 (8):939-944.
    [21]Kozlowski M. XPS study of reductively and non-reductively modified coals [J]. Fuel, 2004,83 (3):259-265.
    [22]Pietrzak R., Wachowska H. The influence of oxidation with HNO3 on the surface composition of high-sulfur coals:XPS study [J]. Fuel Processing Technology,2006,87 (11):1021-1029.
    [23]Li P.S., Hu Y., Yu W., etc. Investigation of sulfur forms and transformation during the co-combustion of sewage sludge and coal using X-ray photoelectron spectroscopy [J]. Journal of Hazardous Materials,2009,167 (1-3):1126-1132.
    [24]Grzybek T., Pietrzak R., Wachowska H. X-ray photoelectron spectroscopy study of oxidized coals with different sulfur content [J]. Fuel Processing Technology,2002,77-78: 1-7.
    [25]张蓬洲,赵秀荣.用XPS研究我国一些煤中有机硫的存在形态[J].燃料化学学报,1993,21(2):205-210.
    [26]陈鹏.用XPS研究兖州煤个显微组分中有机硫存在形态[J].燃料化学学报,1997,25(3):238-241.
    [27]Liu F.R., Li W., Guo H.Q., etc. XPS study on the change of carbon-containing groups and sulfur transformation on coal surface [J]. Journal of Fuel Chemistry and Technology, 2011,39 (2):81-84.
    [28]Huffman GP., Mitra S., Huggins F.E., etc. Quantitative analysis of all major forms of sulfur in coal by X-ray absorption fine structure spectroscopy[J]. Energy & Fuels,1991, 5 (4):574-581.
    [29]Taghiet M.M., Huggins F.E., Shah N., etc. In situ X-ray absorption fine structure spectroscopy investigation of sulfur functional groups in coal during pyrolysis and oxidation[J]. Energy & Fuels,1992,6(3):293-300.
    [30]Gorbaty M.L., George GN., Kelemen S.R., Direct determination and quantification of sulfur forms in heavy petroleum and coals 2. The sulfur K edge X-ray absorption spectroscopy approach[J]. Fuel,1990,69(8):945-949.
    [31]Huffman G.P., Shah N., Huggins F.E., etc. Sulfur speciation of desulfurized coals by XANES spectroscopy[J]. Fuel,1995,74(4) 549-555.
    [32]Kasrai M., Brown J.R., Bancroft G.M., etc. Sulfur characterization in coal from X-ray absorption near edge spectroscopy [J]. International Journal of Coal Geology,1996, 32(1-4):107-135.
    [33]Wijaya N., Zhang L. Generation of ultra-clean fuel from Victorian brown coal-Synchrotron XANES study on the evolution of sulfur in Victorian brown coal upon hydrothermal upgrading treatment and thermal pyrolysis[J]. Fuel,2012,99:217-225.
    [34]Bolin T.B., Direct determination of pyrite content in Argonne Premium coals by the use of sulfur X-ray near edge absorption spectroscopy, Energy & Fuels,2010,24(10): 5479.5482.
    [35]George G.N., Gorbaty M.L., Kelemen S.R., etc. Direct determination and quantification of sulfur forms in coals from the Argonne Premium Sample Program [J]. Energy & Fuels, 1991,5(1):93-97.
    [36]张林娟.纳米稀磁半导体材料中自旋调控的结构机理[D].中国科学院高能物理研究所博士学位论文,2012.
    [37]常丽萍.煤热解、气化过程中含氮化合物的生成与释放研究[D].太原理工大学博士学位论文,2004.
    [38]Stanczyk K., Dziembaj R., Piwowarska Z., etc. Transformation of nitrogen structures in carbonization of model compounds determined by XPS [J]. Carbon,1995, 33(10):1383-1392.
    [39]Kelemen S.R., Gorbaty M.L., Kwiatek P.J. Quantification of nitrogen forms in Argonne premium coals[J]. Energy & Fuels,1994,8(4):896-906.
    [40]Buckley A.N. Nitrogen functionality in coals and coal-tar pitch determined by X-ray photoelectron spectroscopy [J]. Fuel Processing Technology,1994,38(3):165-179.
    [41]Kirtley S.M., Mullins O.C., Elp J.V., etc. Nitrogen chemical structure in petroleum asphaltene and coal by X-ray absorption spectroscopy[J]. Fuel,1993,72(1):133-135.
    [42]Burchill P., Welch L.S. Variation of nitrogen content and functionality with rank for some UK bituminous coals[J]. Fuel,1989,68(1):100-104.
    [43]Nelson P.F., Buckley A.N., Kelly M.D. Functional forms of nitrogen in coals and the release of coal nitrogen as NOx Precursors(HCN and NH3) [C]. Twenty-Fourth Symposium on Combustion,1992,24(1):1259-1267.
    [44]Knicker H., Hatcher P.G., Scaroni A.W. A solid-state 15N NMR spectroscopic inverstigation of the origin of nitrogen structure in coal[J]. International Journal of Coal Geology,1996,32(1-4):255-278.
    [45]Kawashima H. Solid-state 15N NMR studies of coal soaked in 15N pyridine[J]. Energy & Fuels,2005,19(2):538-543.
    [46]Nola GD., Jong W.D., Spliethoff H. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions:Partitioning of the fuel-bound nitrogen[J]. Fuel Processing Technology,2010,91(1):103-115.
    [47]Kambara S., Takarada T., Yamamoto Y., etc. Relation between functional forms of coal nitrogen and formation of NOx precursors during rapid pyrolysis[J]. Energy & Fuels, 1993,7(6):1013-1020.
    [48]Kambara S., Takarada T., Toyoshima M., etc. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion[J]. Fuel,1995,74(9): 1247-1253.
    [49]Wojtowicz M.A., Pels J.R., Moulijn J.A. The fate of nitrogen functionalities in coal during pyrolysis and combustion[J]. Fuel,1995,74(4):507-516.
    [50]Pels J.R., Kapteun F., Moulijn J.A., etc. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis[J]. Carbon,1995,33(11):1641-1653.
    [51]Kirtley S.M., Mullins O.C., Branthaver J.F., etc. Nitrogen chemistry of kerogens and bitumens from X-ray absorption near-edge structure spectroscopy[J]. Energy & Fuels, 1993,7(6):1128-1134.
    [52]Mullins O.C., Kirtley S.M., Vanelp J., etc. Nitrogen XANES studies in coal from XANES spectroscopy[J]. Applied Spectroscopy,1992,47(8):1268-1275.
    [53]Mastalerz M., Gurba L.W. Determination of nitrogen in coal macerals using electron microprobe technique—experimental procedure [J]. International Journal of Coal Geology,2001,47(1):23-30.
    [54]Zhang D.K.. Yani S. Sulfur transformation during pyrolysis of an Australian lignite [J]. Proceeding of the Combustion Instutute,2011,33(2):1747-1753.
    [55]Zhang Y.L., Wang M.J. Qin Z., etc. Effect of the interactions between volatiles and char on sulfur transformation during brown coal upgrade by pyrolysis[J]. Fuel,2013,103: 915-922.
    [56]Khan M.R. Prediction of sulfur distribution in products during low temperature coal pyrolysis and gasification[J]. Fuel,1989,68 (11):1439-1449.
    [57]Yan J.D., Yang J.L., Liu Z.Y. SH radical:The key intermediate in sulfur transformation during thermal processing of coal[J]. Environmental Science & Technology,2005, 39(13):5043-5051.
    [58]Telfer M, Zhang D.K. The influence of water-soluble and acid-soluble inorganic matter on sulfur transformations during pyrolysis of low-rank coals[J]. Fuel,2001,80(14): 2085-2098.
    [59]Spears D.A., Tarazona M.R.M., Lee S. Pyrite in UK coals:its environmental significance[J]. Fuel,1994,73(7):1051-1055.
    [60]Gryglewicz G, Jasienko S. The behavior of sulfur forms during pyrolysis of low-rank coal[J]. Fuel,1992,71 (11):1225-1229.
    [61]Cleyle P.J., Caley W.F., Stwwart [., etc. Decomposition of pyrite and trapping of sulfur in a coal matrix during pyrolysis of coal[J]. Fuel,1984,63(11):1579-1582.
    [62]Ibarra J.V., Palacios J.M., Moliner R., etc. Evidence of reciprocal organic matter-pyrite interactions affecting sulfur removal during coal pyrolysis[J]. Fuel,1994,73(7): 1046-1050.
    [63]Gryglewica G, Wilk P., Yperman J., etc. Interaction of the organic matrix with pyrite during pyrolysis of a high-sulfur bituminous coal[J]. Fuel,1996,75(13):1499-1504.
    [64]Chen H.K., Li B.Q., Zhang B.J. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis[J]. Fuel,2000,79(13): 1627-1631.
    [65]Mullens S., Yperman J., Reggers G., etc. A study of the reductive pyrolysis behavior of sulfur model compounds[J]. Journal of Analytical and Applied Pyrolysis,2003,70(2): 469-491.
    [66]Yani S., Zhang D.K. Anexperimental study of sulfate transformation during pyrolysis of an Australian lignite[J]. Fuel Processing Technology,2010,91(3):313-321.
    [67]Xu L., Yang J.L., Li Y.M., etc. Behavior of organic sulfur model compounds in pyrolysis under coal-like environment[J]. Fuel Processing Technology,2004,85(8-10):1013-1024.
    [68]闫金定.炭载含硫化合物热解行为的研究[D].中国科学院山西煤炭化学研究所博士学位论文,2005.
    [69]Maes I.I., Gryglewicz G, Yperman J., etc. Effect of siderite in coal on reductive pyrolytic analyses[J]. Fuel,2000,79(15):1873-1881.
    [70]Ling L.X., Zhang R.G., Wang B.J., etc. Density functional theory study on the pyrolysis mechanism of thiophene in coal[J]. Journal of Molecular Structure:THEOCHEM,2009, 905(1-3):8-12.
    [71]Ling L.X., Zhang R.G, Wang B.J., etc. DFT study on the sulfur migration during benzenethiol pyrolysis in coal[J]. Journal of Molecular Structure:THEOCHEM,2010, 952(1-3):31-35.
    [72]凌丽霞.杂原子类煤结构模型化合物的热解及含硫化合物脱除的量子化学研究[D].太原理工大学博士学位论文,2010.
    [73]Friebel J., Kopsel R.F.W. The fate of nitrogen during pyrolysis of German low rank coals —a parameter[J]. Fuel,1999,78 (8):923-932.
    [74]林建英.煤及煤岩显微组分热解、气化过程中氮的迁移机理[D].太原理工大学博士学位论文,2006.
    [75]Bassilakis R., Zhao Y., Solomon P.R., Serio M.A. Sulfur and nitrogen evolution in the Argonne coals. Experiment and modeling [J]. Energy & Fuels,1993,7(6):710-720.
    [76]Hamalainen J.P., Aho M.J., Tummavuori J.L. Formation of nitrogen oxides from fuel-N through HCN and NH3:a model-compound study [J]. Fuel,1994,73(12):1894-1898.
    [77]Li C-Z. Advances in the Science of Victorian Brown Coal[M]. Amsterdam, Elsevier, 2004. p285-350.
    [78]Teretis A., Doughty A., Mackie J.C. Kinetics of pyrolysis of a coal model compound, 2-picoline, the nitrogen heteroaromatic an alogue of toluene.1. Product distributions [J]. Journal of Physical Chemistry,1992,96 (25):10334-10338.
    [79]Doughty A., Mackie J.C. Kinetics of pyrolysis of a coal model compound,2-picoline, the nitrogen heteroaromatic an alogue of toluene.2. The 2-picolyl radical and kinetic model [J]. Journal of Physical Chemistry,1992,96 (25):10339-10345.
    [80]Doughty A., Mackie J.C. Kinetics of pyrolysis of the isomeric butane itriles and kinetic modeling [J]. Journal of Physical Chemistry,1992,96 (1):272-279.
    [81]Wu Z., Sugimoto Y, Kawashima. Catalytic nitrogen release during a fixed-bed pyrolysis of model coals containing pyrrolic or pyridinic nitrogen[J]. Fuel,2001,80(2):251-254.
    [82]Mackie J.C.. Meredith B.C., Nelson P.F. Shock tube pyrolysis of pyridine[J]. Journal of Physical Chemistry,1990,94 (10):4099-4106.
    [83]Ikeda E., Mackie J.C., Thermal decomposition of two coal model compounds-pyridine and 2-picoline. Kinetics and product distributions[J]. Journal of Analytical and Applied Pyrolysis,1995,34 (1):47-63.
    [84]Schmiers H., Friebel J., Streubel P., etc. Change of chemical bonding of nitrogen of polymeric N-heterocyclic compounds during pyrolysis [J]. Carbon,1999,37(12): 1965-1978.
    [85]王鹏,文芳,步学朋,等.煤热解特性研究[J].煤炭转化,2005,28(1):8-13.
    [86]李文英,谢克昌.平朔气煤的煤岩显微组分结构研究[J].燃料化学学报,1992,20(4):375-383.
    [87]Sugawara K., Tozuka Y., Sugawara T., Sholes M.A. Dynamic behavior of sulfur forms in rapid pyrolysis of density separated coals[J]. Fuel,1993,72(5):724.
    [88]Sugawara K., Abe K., Sugawara T. Organic sulfur removal from coal by rapid pyrolysis with alkali leaching and density separation [J]. Coal Science and Technology,1995,24: 1709-1712.
    [89]Wang M.J., Hu Y.F., Wang J.C., Chang L.P., Wang H. Transformation of sulfur during pyrolysis of inertinite-rich coals and correlation with their characteristics[J]. Journal of Analytical and Applied Pyrolysis,10.1016/j jaap.2013.05.010.
    [90]李凡,张永发,谢克昌.矿物质对煤显微组分热分解的影响[J].燃料化学学报,1992,20(3):301-306.
    [91]张军,袁建伟,徐益谦.矿物质对煤粉热解的影响[J].燃烧科学与技术,1998,4(1):63-68.
    [92]陈皓侃,李保庆,张碧江.矿物质对煤热解和加氢热解含硫气体生成的影响[J].燃料化学学报,1999,27(s):5-10.
    [93]Chang L.P., Bao W.R., Xie K.C. Study on the factors influencing limestone capturing sulfur during coal combustion[J]. Energy Source,2001,23(3):287-293.
    [94]Grylewicz G., Jasienko S. The behavior of sulfur forms during pyrolysis of low-rank coal[J]. Fuel,1992,71(11):1225-1229.
    [95]Ibarra J., Miranda J., Perez A. Product distribution and sulfur forms in the low temperature pyrolysis of a Spanish subbituminous coal[J]. Fuel Processing Technology, 1987,15:31-43.
    [96]于宏观,刘泽常,王力等.型煤燃烧过程中硫析出特性的研究[J].煤炭转化,1999,22(1):53-57.
    [97]Qi Y.Q., Li W., Chen H.K., Li B.Q. Desulfurization of coal through pyrolysis in a fluidized-bed reactor under nitrogen and 0.6%O2-N2 atmosphere[J]. Fuel,2004,83: 705-712.
    [98]Chen H.K., Li B.Q., Yang J.L., Zhang B.J. Transformation of sulfur during pyrolysis and hydropyrolysis of coal[J]. Fuel,1998,77(6):487-493.
    [99]Sinha R.K., Waller P.L. Desulfurization of coals and chars by treatment in various atmospheres between 400 and 600℃ [J]. Fuel,1972,51(4):329-331.
    [100]Garcia-Labiano F., Hampartsoumian E., Williams A. Determination of sulfur release and its kinetics in rapid pyrolysis of coal [J]. Fuel,1995,74:1072-1079.
    [101]Sugawara K., Tozuko Y., Sugawara T., etc. Effect of heating rate and temperature on pyrolysis desulfurization of a bituminous coal [J]. Fuel Processing Technology,1994,37: 73-85.
    [102]Miura K., Mae K., Shimada M., etc. Analysis of formation rates of sulfur-containing gases during pyrolysis of various coals[J]. Energy & Fuels,2001,15:629-636.
    [103]赵炜,常丽萍,冯志华等.煤热解过程中生成氮化物的研究[J].燃料化学学报,2002,30(5):408-412.
    [104]Watanabe T, Ohtsuka Y, Nishiyama Y. Nitrogen removal and carbonization of polyacrylonitrile with ultrafine metal particles at low temperatures[J]. Carbon,1994, 32(3):329-334.
    [105]Ohtsuka Y. Effect of ultrafine iron and mineral matter on coversion of nitrogen and carbon during pyrolysis and gasification of coal[J]. Energy & Fuels 1995,9(1):141-147.
    [106]Ohtsuka Y, Xu C, Kong D, etc. Decomposition of ammonia with iron and calcium catalysts supported on coal chars[J]. Fuel,2004,83(6):685-692.
    [107]Wu Z H, Ohtsuka Y. Nitrogen distribution in a fixed-bed pyrolysis of coals with different ranks:Formation and source of N2[J]. Energy & Fuels,1997,11(2):477-482.
    [108]Ohtsuka Y, Wu Z H, Furimsky E. Effect of alkali and alkaline earth metals on nitrogen release during temperature programmed pyrolysis of coal[J]. Fuel,1997, 76(14-15):1361-1367.
    [109]Tan L L, Li C Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass, Part Ⅱ. Effects of experimental conditions on the yields of NOx and SOX precursors from the pyrolysis of a Victorian brown coal[J]. Fuel,2000,79(15): 1891-1897
    [110]Aho M J, Hamalaine J P, Tummavuori J L. Conversion of peat and coal nitrogen through HCN and NH3 to nitrogen oxides at 800℃. Fuel [J],1993,72(6):837-841
    [111]Wojtowicz M A, Pels J R and Moulijn J A. The fate of nitrogen functionalities in coal during pyrolysis and combustion. Fuel [J],1995,74(4):507-516
    [112]田正山,王全坤,白素贞.高硫煤燃前脱硫技术[J].化工时刊,2009,23(7):53-56.
    [113]辜敏,张代均.煤的温和净化脱硫方法研究进展[J].煤化工,1992,(2):29-31.
    [114]赵景联,张银元,王洪武,陈庆云.超声波强化四氯乙烯溶剂法脱除煤中有机硫的研究[J].燃料化学学报,2002,30(3):234-238.
    [115]Mi J., Ren J., Wang J.C., Bao W.R., Xie K.C. Ultrasonic and microwave desulfurization of coal in tetrachloroethylene[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2007,29:1261-1268.
    [1]王俊宏.中国西部若还原性煤热化学转化特性基础研究[D].太原理工大学,2010.
    [2]何秀凤.煤中固有矿物质及Fe添加剂对西部煤热解气相产物生成的影响[D].太原理工大学,2009.
    [3]Liu Q.R., Hu H.Q., Zhou Q., et al. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis[J]. Fuel,2004,83 (16):713-718.
    [4]赵景联,张银元,王洪武,陈庆云.超声波强化四氯乙烯溶剂法脱除煤中有机硫的研究[J].燃料化学学报,2002,30(3):234-238.
    [5]赵景联,张银元,王洪武,陈庆云.四氯乙烯溶剂法脱除煤中有机硫的研究[J].煤炭转化,2002,25(1):48-51.
    [6]王俊宏,常丽萍,谢克昌.西部煤的热解特性及动力学研究[J].煤炭转化,2009,32(3):1-5.
    [7]王美君,付春慧,常丽萍,谢克昌.逐级酸处理对锡盟褐煤的结构及热解特性的影响[J].燃料化学学报,2012,40(8):906-911.
    [8]Zerda T.W., John A., Chmura K. Raman studies of coals [J]. Fuel,1981,60 (15):375-378.
    [9]Cuesta A., Dhamelincourt P., Laureyns J., etc. Raman microprobe studies on carbon materials[J]. Carbon,1994,32 (8):1523-1532.
    [10]Jawhari T., Roid A., Casado J. Raman spectroscopic characterization of some commercially available carbon black materials [J]. Carbon,1995,33 (11):1561-1565.
    [11]Morga R. Micro-Raman spectroscopy of carbonized semifusinite and fusinite[J]. International Journal of Coal Geology,2011,87(3-4):253-267.
    [12]Zhu X.L., Sheng C.D. Influences of caebon structure on the reactivities of lignite char reacting with CO2 and NO [J]. Fuel Processing Technology,2010,91(8):837-842.
    [13]Zhu X.L., Sheng C.D. Evolution of the char structure of Lignite under Heat Treatment and its influences on combustion reactivity [J]. Energy & Fuels,2010,24 (1):152-159.
    [14]Sheng C.D. Char structure characterized by Raman spectroscopy and its correlation with combustion reactivity [J]. Fuel,2007,86(15):2316-2324.
    [15]冯杰,李文英,谢克昌.傅立叶红外光谱法对煤结构的研究[J].中国矿业大学学报,2002,31(5):362-366.
    [16]Liu F.R., Li W., Chen H.K., etc. Uneven distribution of sulfurs and their transformation during coal pyrolysis[J]. Fuel,2007,86 (3):360-366.
    [17]Kozlowski M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004,83 (3):259-265.
    [18]Pels J.R., Kapteijn F., Moulijn J.A., etc. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis[J]. Carbon,1995,33(11):1641-1653.
    [19]Friebel J., Kopsel R.F.W. The fate of nitrogen during pyrolysis of German low rank coals —a parameter study [J]. Fuel,1999,78 (8):923-932.
    [20]Huffman G.P., Mitra S., Huggins F.E., Shah N., Vaidya S., Lu F.L. Quantitative analysis of all major forms of sulfur in coal by X-ray absorption fine structure spectroscopy [J]. Energy & Fuels,1991,5 (4):574-581.
    [21]Taghiei M.M., Huggins F.E., Shah N., etc. In situ x-ray absorption fine structure spectroscopy investigation of sulfur functional groups in coal during pyrolysis and oxidation [J]. Energy & Fuels,1992,6 (3):293-300.
    [22]Liu L.J., Liu H.J., Cui M.Q., etc. Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char:Transformations of sulfur [J]. Fuel,2012, http://dx.doi.org/10.1016/j.fuel.2012.06.048.
    [23]Bolin T.B. Direct determination of pyrite content in Argonne Premium coals by the use of sulfur X-ray near edge absorption spectroscopy [J]. Energy & Fuels,2010,24: 5479-5482.
    [1]Spears D.A., Tarazona M.R.M., Lee S. Pyrite in UK coals:its environmental significance [J]. Fuel,1994,73(7):1051-1055.
    [2]Cleyle P.J., Caley W.F., Stwwart I., etc. Decomposition of pyrite and trapping of sulfur in a coal matrix during pyrolysis of coal[J]. Fuel,1984,63(11):1579-1582.
    [3]Ibarra J.V., Palacios J.M., Moliner R., etc. Evidence of reciprocal organic matter-pyrite interactions affecting sulfur removal during coal pyrolysis[J]. Fuel,1994,73(7): 1046-1050.
    [4]Hu HQ, Zhou Q, Zhu SW, etc. Product distribution and sulfur behavior in coal pyrolysis [J]. Fuel process Technol 2004,85:849-861.
    [5]Chen HK, Li BQ, Zhang BJ. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis [J]. Fuel 2000,79:1627-1631.
    [6]Gryglewicz G, Wilk P, Yperman J, etc. Interaction of the organic matrix with pyrite during pyrolysis of a high-sulfur bituminous coal [J]. Fuel 1996,75:1499-1504.
    [7]Calkins W.H. The chemical forms of sulfur in coal:A review [J]. Fuel,1994,73 (4): 475-484.
    [8]Attar A. Chemistry, thermodynamics and kinetics of reactions of sulfur in coal-gas reactions:A review [J]. Fuel,1978,57(4):201-212.
    [9]王利花.还原性气氛下煤中硫热解迁移规律的研究[D].太原理工大学学位论文,2010.
    [10]Kambara, S., Takarada, T., Toyoshima, M., etc. Relation between functional forms of coal nitrogen and NOx emmisions from pulverized coal combustion [J]. Fuel,1995,74: 1247-1253.
    [11]Kambara, S., Takarada, T., Yamamoto, Y., etc. Relation between functional forms of coal nitrogen and formation of nitrogen oxide (NOX) precursors during rapid pyrolysis [J]. Energy & Fuels,1993,7:1013-1020.
    [12]常丽萍.煤热解、气化过程中含氮化合物的生成与释放研究[D].太原理工大学学位论文,2004.
    [13]林建英.煤及煤岩显微组分热解、气化过程中氮的迁移机理[D].太原理工大学学位论文,2006.
    [14]闫金定,崔洪,杨建丽热重质谱联用研究兖州煤的热解行为[J].中国矿业大学学报,2003,32(3):311-315.
    [15]Zhang Y.L., Wang M.J., Qin Z., etc. Effect of the interaction between volatiles and char on sulfur transformation during brown coal upgrade by pyrolysis [J]. Fuel,2013,103: 915-922.
    [1]Yani S., Zhang D.K. An experimental study of sulphate transformation during pyrolysis of an Australian lignite [J]. Fuel Processing Technology,2010,91:313-321.
    [2]Chen H.K., Li B.Q., Yang J.L., etc. Transformation of sulfur during pyrolysis and hydropyrolysis of coal [J]. Fuel,1998,77:487-493.
    [3]Telfer M., Zhang D.K. The influence of water-soluble and acid-soluble inorganic matter on sulphur transformations during pyrolysis of low-rank coals [J]. Fuel,2001,80: 2085-2098.
    [4]Bolin T.B., Direct determination of pyrite content in Argonne Premium coals by the use of sulfur X-ray near edge absorption spectroscopy, Energy & Fuels,2010,24(10): 5479-5482.
    [5]George G.N., Gorbaty M.L., Kelemen S.R., etc. Direct determination and quantification of sulfur forms in coals from the Argonne Premium sample program [J]. Energy & Fuels, 1991,5(1):93-97.
    [6]Hu H.Q., Zhou Q., Zhu S.W., etc. Product distribution and sulfur behavior in coal pyrolysis[J]. Fuel Processing Technology,2004,85:849-861.
    [7]Liu F.R., Li W., Chen H.K., etc. Uneven distribution of sulfurs and their transformation during coal pyrolysis[J]. Fuel,2007,86:360-366.
    [1]Vleeskens J.W., Bos P., Kos C.H., etc. Pyrite association and coal cleaning:An optical image analysis study [J]. Fuel,1985,64:342-347.
    [2]Slater P.N., Richards G.H., Harb J.H. Pyrite and illite association in two eastern US bituminous coals[J]. Fuel Processing Technology,1995,44:55-69.
    [3]Russell N.V., Mendez L.B., Wigley F., etc. Ash deposition of a Spanish anthracite:effects of included and excluded mineral matter[J]. Fuel,2002,81:657-663.
    [4]Polat M., Polat H., Chander S. Physical and chemical interactions in coal flotation [J]. Int. J. Miner. Process,2003,72:199-213.
    [5]Geng W., Kumabe Y., Nakajima T., etc. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS)[J]. Fuel,2009,88:644-649.
    [6]Kambara S., Takarada T., Toyoshima M., etc. Relation between functional forms of coal nitrogen and NOx emmisions from pulverized coal combustion[J]. Fuel,1995,74: 1247-1253.
    [7]Kambara S., Takarada T., Yamamoto Y., etc. Relation between functional forms of coal nitrogen and formation of nitrogen oxide (NOX) precursors during rapid pyrolysis [J]. Energy & Fuels,1993,7:1013-1020.
    [8]鲍卫仁,常丽萍,谢克昌.酸洗脱灰对原煤样品性能的影响研究[J].太原理工大学学报,2000,31(4):354-357.
    [9]孟丽莉,付春慧,王美君,等.碱金属碳酸盐对褐煤程序升温热解过程中H2S和NH3生成的影响[J].燃料化学学报,2012,40(2):138-142.
    [10]Ohtsuka Y. Effect of ultrafine iron and mineral matter on coversion of nitrogen and carbon during pyrolysis and gasification of coal[J]. Energy & Fuels 1995,9(1):141-147.
    [11]Wu Z H, Ohtsuka Y. Nitrogen distribution in a fixed-bed pyrolysis of coals with different ranks:Formation and source of N2[J]. Energy & Fuels,1997,11(2):477-482.
    [12]Ohtsuka Y, Wu Z H, Furimsky E. Effect of alkali and alkaline earth metals on nitrogen release during temperature programmed pyrolysis of coal [J]. Fuel,1997,76 (14-15): 1361-1367.
    [13]赵景联,张银元,王洪武,等.超声波强化四氯乙烯溶剂法脱除煤中有机硫的研究[J].燃料化学学报,2002,30(3):234-238.
    [14]Mi J., Ren J., Wang J.C., etc. Ultrasonic and microwave desulfurization of coal in tetrachloroethylene[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2007,29:1261-1268.
    [15]Li X.J., Hayashi J., Li C-Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal [J]. Fuel,2006,85:1700-1707.
    [16]Leites L.A., Bukalov S.S. Raman intensity and conjugation with participation of ordinary σ-bonds[J]. Journal of Raman Spectroscopy,2001,32:413-424.
    [17]Guo X., Tay H.L., Zhang S., Li C.Z. Changes in char structure during the gasification of a Victorian brown coal in steam and oxygen at 800℃[J]. Energy & Fuels,2008,22: 4034-4038.
    [1]邢孟文.煤热解过程中噻吩类有机硫释放特性的研究[D].太原理工大学学位论文,2011.
    [2]Ling L.X., Zhang R.G., Wang B.J., etc. DFT study on the sulfur migration during benzenethiol pyrolysis in coal[J]. Journal of Molecular Structure:THEOCHEM,2010, 952(1-3):31-35.
    [3]凌丽霞.杂原子类煤结构模型化合物的热解及含硫化合物脱除的量子化学研究[D].太原理工大学博士学位论文,2010.
    [4]Dong J., Li F., Xie K.C. Study on the source of polycyclic aromatic hydrocarbons (PAHs) during coal pyrolysis by PY-GC-MS [J]. Journal of Hazardous Materials,2012,243: 80-85.
    [5]Dartiguelongue C., Behar F., Budzinski H., Scacchi G, Marquaire P.M. Thermal stability of dibenzothiophene in closed system pyrolysis:Experimental study and kinetic modeling [J]. Organic Geochemistry,2006,37:98-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700