用户名: 密码: 验证码:
煤炭、生物质选择性催化氧化制备化学品的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界上石油资源的日益衰竭,竞争愈演愈烈,煤炭和生物质作为最有可能的石油替代品,以其为原料制备化学品的研究具有重要意义。本课题以氧化反应为手段,在高温水中将煤炭和生物质转化为具有高附加值的化学品,在此方面开展了一系列研究。主要的研究内容和结果如下:
     1.研究了褐煤在高温水中以氧气为氧化剂氧化制备苯羧酸的规律。考察了氧化条件对褐煤在高温水中氧化为苯羧酸的影响,对氧化的过程及机理进行了深入的研究。结果表明,氧化温度、反应碱煤比、氧化时间和氧气初始压力是影响苯羧酸产率的主要因素,苯羧酸是通过褐煤中芳香团簇结构的氧化破裂生成的。
     2.针对煤氧化过程中碱的消耗量过大的问题,通过提高氧化温度,发现随着氧化温度的提高,所需碱量逐渐降低,而且反应时间也可大大缩短,这主要是由于盐析效应造成的。对比褐煤由传统的240℃氧化时所需碱煤比3/1,我们发现在300℃氧化时所需碱煤比仅为0.8/1,反应时间也由30分钟缩短为1分钟。氧化温度越高越需要较低的盐析效应即较低的碱浓度来避免中间产物被过度氧化。
     3.褐煤由于煤化度较低,经过氧化所得苯羧酸收率较低,但褐煤中脂肪结构相对丰富,有可能会得到高收率的小分子脂肪酸。研究结果表明,以褐煤为原料,在得到约20wt%苯羧酸的同时可以得到20-40wt%的小分子脂肪酸收率,主要包括草酸、甲酸和乙酸,这些小分子脂肪酸是通过芳香环的破裂和脂肪结构的氧化得到的。
     4.为了完全避免碱在氧化过程中的使用和消耗,筛选了大量作为褐煤氧化制备苯羧酸和小分子脂肪酸的催化剂。最终发现,在完全不使用碱的情况下,当以偏钒酸钠水溶液体系为催化系统,褐煤的氧化反应可以很好的进行,氧化产物中得到了高收率的苯羧酸和小分子脂肪酸,氧化体系中的钒氧物种是催化褐煤氧化反应的关键。
     5.将偏钒酸钠水溶液催化体系应用到碳水化合物生物质的氧化反应中,在以硫酸为添加剂的条件下,结果表明以氧气为氧化剂时碳水化合物在此体系中可以被高效的氧化为甲酸。多糖在此催化体系中先发生水解反应生成单糖,单糖通过氧化碳-碳键的断裂生成醛类中间物,这些中间物被快速氧化为甲酸。以纤维素为原料时,甲酸收率可达65%(碳收率),以半纤维素为原料时,甲酸收率可达63.5%(碳收率),而且产物中除二氧化碳外无其他副产物,催化剂体系也可以很容易的进行回收使用。
     6.考察了木质素、小麦秸秆、玉米芯等在偏钒酸钠水溶液体系中以氧气为氧化剂制备甲酸的效果。结果表明木质素、小麦秸秆和玉米芯可以被高选择性的氧化为甲酸,以小麦秸秆和玉米芯为原料时可以得到甲酸的收率可达50%以上(碳收率)。
As the depeting of petroleum resource, coal and biomass becoming the potential substitute of petroleum, thus the study on the conversion of coal and biomass into chemicals that required by human beings is significant. This study focuses on the selective oxidation of coal and biomass into high-valued chemicals in hot water. The main content and results are as follows:
     1. The oxidation reaction of lignite in the hot water using oxygen was studied. The effect of parameters on the yield of benzene polycarboxylic acids (BPCAs) were investigated, and the process and mechanism of the oxidation were deeply studied. The results showed that the oxidation temperature, alkali/coal mass ratio, oxidation time and initial oxygen pressure are the primary factors that affect the BPCAs yield. The BPCAs are derived from the oxidative breakage of the aromatic clusters in the lignite.
     2. The primary problem of the production of BPCAs from coals is the large amount of alkali consumed in the process. The method to decrease the consumed alkali was investigated in this section. It was found that with the oxidation temperature increased, the consumed alkali in the process was decreased dramatically; meanwhile, the oxidation time was shortened obviously. For example, the conventional method to oxidize lignite requires a temperature of240℃and an alkali/coal mass ratio of3/1; however, when the oxidation temperature was increased to300℃, merely an alkali/coal mass ratio of0.8/1was required. Besides, the reaction time of30min was shortened to1min. This new method dramatically improves the economic and production efficiency of the BPCAs from coals. A higher oxidative temperature demands lower salting out effect to avoid deep oxidation of the intermediates.
     3. The utilization of lignite is a world problem due to its low colification and high water content. With respect to the method studied in our work, however, the yield of BPCAs is low with lignite as the substrate because of its low content of aromatic clusters. But the content of aliphatic structures is relatively rich in lignite, there may be lots of small-molecular fatty acids in the products accompanied with BPCAs. The results show that20-40wt%of small-molecular fatty acids including oxalic acid, formic aicd and acetic acid was obtained in addition to ca.20wt%of BPCAs. These small-molecular fatty acids are derived from the opening of aromatic rings and the oxidation of aliphatic structures.
     4. For the purpose of avoiding alkali used in the oxiation process of lignite, lots of catalytic system was screened to produce BPCAs and small molecular fatty acids from coals using oxygen. The results show that when using sodium metavanadate dissolving in water as the catalytic system, the lignite can be converted to BPCAs and small-molecular fatty acids with high selectivity. The V-O species are critical for the catalytic oxidation of lignites. This method shows an effective way to utilize the low-colification coals such as lignite.
     5. The catalytic system for oxidation using sodium metavanadate in water was applied into the oxidation of biomass-based carbohydrates. The results show that this catalytic system has an excellent performance for conversion of carbohydrates into formic acid. A65%yield was obtained from cellulose and64%yield was obtained from hemicellulose. The products in the liquid phase only included formic acid, and which can be separated by extraction method. The recoved catalytic system can be reused for many times without any substantial decrease in the selectivity of formic acid.
     6. The lignin and lignocellulose including wheat straw and corncob were were chosen as the substrate to be oxidized in the aquous solutions of sodium metavanadate. The results show that yield of formic acid exceed50%can be obtained in addition to small amount of acetic acid with wheat straw and corncob as the substrates.
引文
[1]左然,施明恒,王希麟.可再生能源概论[M].北京:机械工业出版社,2007,
    [2]Petrus L, Noordermeer M A. Biomass to biofuels:a chemical perspective[J]. Green. Chem.,2006,8: 861-867
    [3]朱清时,阎立峰,郭庆祥.生物质洁净能源[M].北京:化学工业出版社,2002,
    [4]国家统计局.中国统计年鉴[M].北京:中国统计出版社,2010,
    [5]英国石油公司(BP).世界能源统计年鉴[M].2010,
    [6]朱之培,高晋升.煤化学.第一版.上海:化学工业出版社,1984,97-107
    [7]葛凌梅,薛韩玲,徐精彩,邓军,张辛亥.对酶分子中活性基团氧化机理分析[J].煤炭转化,2001,24:23-28
    [8]Berkowitz N. The chemistry of coal. Vol.7[M]. Salt Lake City in USA:Elsevier Science Publishers, 1985,143-170
    [9]Hayashi J, Chiba T. Quantitative description of oxidative degradation of brown coal in aqueous phase on the basis of bethe lattice statistic[J]. Energy Fuels,1999,13:1230-1238
    [10]刘振学,魏贤勇,刘泽长.煤的氧化反应研究进展[J].煤炭转化,2000,23:7-10
    [11]Ward J J, Kirner W D, Howar H C. Alkaline permanganate oxidation of certain condensed cyclic compounds including coal[J]. J. Am. Chem. Soc.,1945,67:246-253
    [12]何萍,王飞宇,唐修义,赵继尧,汪昆华.柴里煤人工氧化过程中性质和化学结构的变化[J].燃料化学学报,1994,22:203-208
    [13]Louis D F, Corliss R K. Humic acids from coal[J]. Ind. Eng. Chem. Res.,1950,42:2525-2529
    [14]Kinney C R, Ockert K F. Nitric acid oxidation of bituminous coal[J]. Coal Ind. Eng. Chem.,1956,48: 327-332
    [15]Mae K, Maki T, Miura K. Solubilization of an Australian brown coal oxidized with hydrogen peroxide in conventionally used solvents at room temperature[J]. Am. Chem. Soc. Div. Fuel Chem.,1997,42: 176-180
    [16]Miura K, Mae K, Okutsu H. Production of organic acids in high yields from brown coal through the liquid phase oxidation with H2O2 at low temperature[J]. Am. Chem. Soc. Div. Fuel Chem.,1999,44: 734-738
    [17]Mae K, Shindo H, Takashi K. Production of valuable chemicals in high yield from brown coal by combining liquid phase oxidation and proper upgrading method[J]. Prospects for coal science in the 21st century. Taiyuan, Shanxi science & technology press,1999,901-904
    [18]Mae K, Maki T. Examination of relationship between coal structure and pyrolysis yields using oxidized brown coals having different macromolecular networks[J]. Fuel,2000,79:417-425
    [19]Henning K, Steffes H J, Fakoussa R M. Effects on the molecular weight distribution of coal-derived humic acids studied by ultrafiltration[J]. Fuel Proces. Technol.,1997,52:225-237
    [20]Miura K, Mae k. New oxidative degradation method for producing fatty acids in high yield and high selectivity from low-rank coals[J]. Energy Fuels,1996,10:1196-1201
    [21]Burke S, Jarvie A W P, Gaines A F. Modification of the deno oxidation process for use in the solubilization of higher ranker coals[J]. Fuel,1992,71:395-399
    [22]Pietrazak R, Wachowska H. Low temperature oxidation of coal of different rank and different sulphur content[J]. Fuel,2003,82:705-713
    [23]Bernard J. Mellitic acid from coals, cokes and graphites[J]. J. Am. Chem. Soc.,1937,59:208-213
    [24]Savich T R, Howard H C. Oxidation of bituminous coal to organic acids by nitric acid and oxygen[J]. Ind. Eng. Chem. Res.,1952,44:1409-1410
    [25]埃里奥特.煤利用化学(上册)(M).第1版.北京:化学工业出版社,1991,384-432
    [26]Calemma V, Iwanski P, Rausa R. Changes in coal structure accompanying the formation of regenerated humic acids during air oxidation[J]. Fuel,1994,73:700-707
    [27]Schwartz D, Peter H J, Harry M. Macromolecular and chemical changes induced by air-oxidation of medium volatile bituminous coal[J]. Fuel,1989,68:868-871
    [28]Tognotti L, Petarca L D, Alessio A. Low temperature air oxidation of coal and its pyridine extraction products fourier transform infrared strudies[J]. Fuel,1991,70:1059-1064
    [29]Jun-ichiro H, Sadayoshi A, Haruo K. Evaluation of macromolecular structure of a brown coal by means of oxidative degradation in aqueous phase[J]. Energy Fuels,1999,13:69-76
    [30]Kamiya Y. Formation of aromatic polycarboxylic acids from bituminous coal by oxygen oxidation in alkaline medium[J]. Fuel,1961,40:149-153
    [31]刘兴玉,南国枝,曹重远.褐煤氧化制备水溶酸[J].石油大学学报,1999,23:83-85
    [32]徐革联,张劲勇.鸡西褐煤碱-氧氧化的研究[J].煤炭加工与综合利用,2000,3:29-33
    [33]秦梦庚,李福祥,吕志平,薛建伟,章茹.无烟煤氧化制苯多羧酸[J].燃料化学学报,1994,22:296-301
    [34]Jacob E. Nuclear structure of the water-soluble polycarboxylic acids from the oxidation of bituminous coal:the decarboxylation reaction[J]. J. Am. Chem. Soc.,1955,77:611-615
    [35]张秋民,关珺,赵树昌.两种烟煤在脂肪酸促进剂存在下碱-氧氧化研究[J].洁净煤技术,2001,7:95-99
    [36]神谷佳男.在碱性水溶液中褐煤氧化生成苯多羧酸的热处理效果[J].煤炭综合利用,1988,.4:46-49
    [37]李福祥,赵树昌,邓贻钊.神府大柳塔烟煤及其热处理产物碱-氧氧化的研究[J].燃料化学学报,1997,25:373-377
    [38]张劲勇,周国江,石宪奎,杨培亮.用大同烟煤半焦氧化制取芳香羧酸[J].黑龙江矿业学院学报,1996,6:25-30
    [39]董小星.煤两段氧化提高均苯四甲酸产率[D].大连理工大学硕士论文,1994,
    [40]吴晓聪,冯宇川,柏根.间苯二甲酸制备高性能醇酸树脂[J].江西化工,2006,4:157-159
    [41]阎学政,孙绍丽.偏苯三酸酐与均苯四酸二酐在涂料工业上的应用[J].化学与粘合,1998,1:39-42
    [42]张国钢,朱春英,李军良.间苯二甲酸生产技术及应用[J].合成纤维工业,2005,28:43-45
    [43]叶照坚,邱孟杰,李青.苯多元羧酸酯类增塑剂的合成[J].塑料助剂,2003,6:21-24
    [44]Kiyotsukuri T, Takemoto N, Tsutsumi N. Regular network polyesters from benzenepolycarboxylic acids and glycol[J]. Polymer,1995,36:5045-5049
    [45]Inoue T, Kumagai Y, Kakimoto M A. High pressure synthesis and properties of aliphatic aromatic polyimides via nylon-salt-type monomers derived from aliphatic diamines with pyromellitic acid and biphenyltecarboxylic acid[J]. Macromolecules,1997,30:1921-1928
    [46]Wagner S, Dai H, Stapleton R. Pendent polyimides using mellitic acid dianhydride. I. An atomic oxygen-resistant, pendent 4,4'-ODA/PMDA/MADA co-polyimide containing zirconium[J]. High perform. Polym.,2006,18:399-419
    [47]Monticelli O, Russo S, Campagna R. Preparation and characterization of blends based on polyamide 6 and hyperbranched aramids as palladium nanoparticle supports[J]. Polymer.,2005,46:3597-3606
    [48]Ren H, Sun J, Zhao Q. Synthesis and characterization of a novel heat resistant epoxy resin based on N, N'-bis-[5-hydroxyl-l-naphthyl] pyromellitic diimide[J]. Polymer,2008,49:5249-5253
    [49]赵继芳,孔庆江.偏三甲苯气相空气氧化法制备偏苯三甲酸酐[J].化学与粘合,2004,3:148-150
    [50]吴尚,何珊珊,黄璐.偏三甲苯液相空气氧化动力学的研究[J].石油化工,2004,33:41-45
    [51]Mckendry P. Engery production from biomass. I. overview of biomass[J]. Bioresour. Technol.,2002, 83:37-46
    [52]阎立峰,朱清时.以生物质为原材料的化学化工[J].化工学报,2004,55:1938-1942
    [53]Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicalsfJ]. Energy Convers. Manage.,2001,42:1357-1378
    [54]Gullu D, Demirbas A. Biomass to methanol via pyrolysis process[J]. Energy Convers. Manage.,2001, 42:1349-1356
    [55]Chum H L, Overend R P. Biomass and renewable fuels[J]. Fuel Process. Technol.,2001,71:187-195
    [56]Bender M H. Potential conservation and biomass in the production of synthetic organics[J]. Res. Conserv. Recy.,2000,30:49-58
    [57]Zhu Q S, Yan L F, Guo Q X. Biomass clean energy[M]. Chem. Ind. Press, Beijing,2002,
    [58]Li J, Zhuang X, Pat D, Eric D. Biomass energy in China and its potential energy for sustainable development[J]. Natural Gas,2001,5:66-80
    [59]陈洪章.纤维素生物技术[M].北京:化学工业出版社,2011,
    [60]金征宇,顾正彪,童群义,杨瑞金.碳水化合物化学·原理与应用[M].北京:化学工业出版社,2007,
    [61]Szczodrak J, Fiedurek J. Technology for conversion of lignocellulosic biomass to ethanol[J]. Biomass Bioeng.,1996,10:367-375
    [62]Anastas P T, Warner J C. Green chemistry-theory and practice[M]. New York:Oxford University Press,1998,
    [63]Anastas P T, Williamson T C. Green chemistry-designing chemistry for the environment J]. ACS Sym., 1996,81:626-630
    [64]Sun Y, Lin L, Pang C H, Deng H B, Peng H, Li H Z, Liu S J. Hydrolysis of cotton fiber cellulose in formic acid[J]. Energy Fuels,2007,21:2386-2389
    [65]Lavaracka B P, Griffin G J, Rodmanc D. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products[J]. Biomass Bioeng.,2002,23:367-380
    [66]Ga'mez S, Gonze'lez-cabriales J J, Rami'rez J A, Garrote G, Va'zquez M. Study of the hydrolysis of sugar cane bagasse using phosphoric acid[J]. J. Food Eng.,2002,74:78-88
    [67]Chang C, Cen P, Ma X J. Levulinic acid production from wheat straw[J]. Bioresour. Technol.,2007, 98:1448-1453
    [68]Hayes D J. An examination of biorefining processes, catalysts and challenges[J]. Catal. Today,2009, 145:138-151
    [69]Carlson T R, Tompsett G A, Conner W C, Huber G W. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks[J]. Top. Catal.,2009,52:241-252
    [70]Adjaye J D, Bakhshin N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part Ⅰ:Conversion over various catalysts[J].Fuel Process. Technol.,1995,45:161-183
    [71]Williams P T, Home P A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils[J]. J. Analy. Appl. Pyrol.,1995,31:39-61
    [72]Chen G Y, Andries J, Luo Z Y. Biomass pyrolysis gasification for product gas production:The overall investigation of parametric effects[J]. Energy Convers. Manag.,2003,44:1875-1884
    [73]Zhao Y X, Qin X Q, Hou X C, Xu X L. Preparation, characterization and properties of selective hydrogenation on Ni-based catalysts[J]. Acta Phys. Chim. Sin.,2003,19:450-454
    [74]Schimpf S, Louis C, Claus P. Ni/SiO2 catalysts prepared with ethylenediamine nickel precursors: Influence of the pretreatment on the catalytic properties in glucose hydrogenation[J]. Appl. Catal. A: General,2007,318:45-53
    [75]Gallezot P, Nicolaus N, Fleche G, Fuertes P, Perrard A. Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor[J]. J. Catal.,1998,51:51-55
    [76]Kuusisto J, Tokarev A V, Murzina E V, Roslund M U, Mikkola J P, Murzin D Y, Salmi T. From renewable raw materials to high value-added fine chemicals-Catalytic hydrogenation and oxidation of d-lactose[J]. Catal. Today,2007,121:92-99
    [77]Ahmed M J, Kadhum A A H. Hydrogenation of d-fructose over activated charcoal supported platinum catalysts[J]. J. Taiwan Inst. Chem. Eng.,2011,42:114-119
    [78]Yan N, Zhao C, Luo C, Dyson P J, Liu H, Kou Y. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst[J]. J. Am. Chem. Soc.,2006,128:8714-8715
    [79]Zhao G H, Zheng M Y, Wang A Q, Zhang T. Catalytic conversion of cellulose to ethylene glycol over tungsten phosphide catalysts[J]. Chin. J. Catal.,2010,31:928-932
    [80]Ji N, Zhang T, Zheng M Y, Wang H Q, Wang H, Wang X D, Chen J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew. Chem. Int. Ed.,2008,47:8510-8513
    [81]Zhang Y, Wang A, Zhang T; A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chem. Commu.,2010,46: 862-864
    [82]Zhang Y, Cui X J, Shi F, Deng Y Q. Nano-gold catalysis in fine chemical synthesis[J]. Chem. Rev., 2011,112:467-505
    [83]Karski S, Paryjczak T, Witonska I. Selective oxidation of glucose to gluconic acid over bimetallic Pd-Me catalysts(Me=Bi, Tl, Sn, Co)[J]. Kinetics Catal.,2003,44:618-622
    [84]Delidovich I V, Taran O P, Matvienko L G, Simonoy A N, Simakova I L, Bobrovskaya A N, Parmon V N. Selective oxidation of glucose over carbon-supported Pd and Pt catalysts[J]. Catal. Lett.,2010,140: 14-21
    [85]Biella M, Momeni M M. Selective oxidation of D-glucose on gold catalyst[J]. J. Catal.,2002,206: 242-247
    [86]Hosseini M, Momeni M M. Gold particles supported on self-organized nanotubular TiO2 matrix as highly active catalysts for electrochemical oxidation of glucose[J]. J. Solid State Electrochem.,2010, 14:1109-1115
    [87]Sliger R, Decker N, Prube U. D-glucose oxidation with H2O2 on an Au/Al2O3 catalyst[J]. Appl. Catal., B:Environ.,2011,102:584-589
    [88]Mirescua A, Berndtb H, Martinb A, Prube U. Long-term stability of a 0.45% Au/TiO2 catalyst in the selective oxidation of glucose at optimised reaction conditions[J]. Appl. Catal. A:General,2007,317: 204-209
    [89]Thielecke N, Vorlop K D. Long-term stability of an Au/Al2O3 catalyst prepared by incipient wetness in continuous-flow glucose oxidation[J]. Catal. Today,2007,122:266-269
    [90]Comotti M, Pina C D, Rossi M. Mono-and bimetallic catalysts for glucose oxidation[J]. J. Mol. Catal. A:Chem.,2006,251:89-92
    [91]Onda A, Ochi T, Kajiyoshi K, Yanagisawa K. A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid[J]. Appl. Catal. A:General,2008,343:49-54
    [92]Belkacemi K, Hamoudi S. Chemocatalytic oxidation of lactose to lactobionic acid over Pd-Bi/SBA-15: reaction kinetics and modeling[J]. Ind. Eng. Chem. Res.,2010,49:6878-6889
    [93]Murzina E V, Tokarev A V, Kordas K, Karhu H, Mikkola J P, Murzin D Y. D-lactose oxidation over gold catalysts[J]. Catal. Today,2008,131:385-392
    [94]Schutt B D. Production of chemicals from cellulose and biomass-derived compounds through catalytic sub-critical water oxidation in a monolith reactor[J]. Biomass Bioeng.,2002,22:365-375
    [95]Jin F M, Zhou Z Y, Moriya T. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass[J]. Environ. Sci. Technol,2005,39:1893-1902
    [96]Jin F M, Yun J, Li G M. Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures[J]. Green Chem.,2008,10:612-615
    [97]Jin F M, Zhou Z Y, Kishita A. Hydrothermal conversion of biomass into acetic acid[J]. J. Mater. Sci., 2006,41:1495-1500
    [98]张炳胜,陈衍军,王晓冬.甲酸市场和生产技术现状[J].江苏化工市场七日讯,2006,3:12-14
    [99]范新南,白尔铮.甲酸生产技术及市场[J].化工催化剂及甲醇技术,2008,5:19-21
    [100]王立华.甲酸生产技术及市场分析[J].山东化工,2006,35:44-47
    [101]卢振成,吴听.甲酸生产技术经济及市场分析[J].云南化工,2007,5:30-33
    [102]Celine F, Paul J D, Gabor L. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst[J]. Angew. Chem. Ind. Ed.,2008,47:3966-3968
    [103]Mcginnis G D, Prince S E, Biermann C J, Lowrimore J T. Wet oxidation of model carbohydrate compounds[J]. Carbohydr. Res.,1984,128:51-60
    [104]Mcginnis G D, Wilson W W, Mullen C E. Biomass pretreatment with water and high-pressure oxygen: the wet-oxidation process[J]. Ind. Eng. Chem. Prod. Res. Dev.,1983,22:352-357
    [105]Mosier N S, Ladisch C M, Ladisch M R. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation[J]. Biotechnol. Bioeng,2002,79:610-618
    [106]Calvo L, Vallejo D. Formation of organic acids during the hydrolysis and oxidation of several wastes in sub-and supercritical water[J]. Ind. Eng. Chem. Res.,2002,41:6503-6509
    [107]Jin F M, Yun J, Li G M, Kishta A, Tohji K, Enomoto H J. Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures[J]. Green Chem.,2008,10:612-615
    [108]Wolfel R, Taccardi N, Bosmann A, Wasserscheid P. Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen[J]. Green Chem.,2011,13:2759-2763
    [109]Albert J, Wolfel R, Bosmann A, Wasserscheid P. Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators[J]. Energy Environ. Sci.,2012,5: 7956-7962
    [110]王海滨,张靖.中国对苯二甲酸行业竞争环境分析[J].合成纤维工业,2009,8:6-8
    [111]杜玉如,娄阳.国内外对苯二甲酸生产消费现状及市场分析[J].聚酯工业,2009,22:14-16
    [112]Smith L I, Carlson E J. Prehnitic acid (Benzene-1,2,3,4-tetracarboxylic acid)[J]. J. Am. Chem. Soc, 1939,61:288-291
    [113]Smith L I, Byrkit G D. The constitution of pyromellitic, mellophanic and prehnitic acids[J]. J. Am. Chem. Soc.,1933,55:4305-4308
    [114]张秋民,潘琦琨,何德民,赵树昌,关珺.碱-氧氧化霍林河褐煤的研究[J].煤炭转化,2007,30:5-8
    [115]Taraba B, Kupka J. Subaquatic oxidation of coal by water-dissolved oxygen[J]. Fuel,2010,89: 3598-3601
    [116]Josev I, Rafael M, Ana J B. FT-IR investigation on char formation during the early stages of coal pyrolysis[J]. Fuel,1994,73:918-924
    [117]Setsuo O, Hironori I, Masataka M, Koji O. Reaction mechanism of coal hydrogenation:1. Two-ring solvent system[J]. Fuel,1985,64:902-905
    [118]Barron P F, Wilson M A. Humic soil and coal structure study with magic-angle spinning 13C CP-NMR[J]. Nature,1981,289:275-276
    [119]Anna M B, Maura F, Carlo G, Patrizia G, Sten L. Laccase/mediated oxidation of a lignin model for improved delignification procedures[J]. J. Molecular Catal. B:Enzymatic,2003,26:105-110
    [120]Takuya Y, Yoshito O, Yukihiko M. Gasification of biomass model compounds and real biomass in supercritical water[J]. Biomass Bioenergy.,2004,26:71-78
    [121]Franke N W, Kiebler M W, Rouf C H, Howard H C. Water-soluble polycarboxylic acids by oxidation of coal[J]. Ind. Eng. Chem.,1952,44:2784-2792
    [122]徐革联,张劲勇,邵景景,熊楚安.鸡西褐煤碱氧氧化的研究[J].煤炭加工与综合利用,2000,3:29-32
    [123]Dunn J B, Savage P E. High-temperature liquid water:A viable medium for terephthalic acid synthesis[J]. Environ. Sci. Technol.,2005,39:5427-5435
    [124]Jin F M, Zhou Z Y, Moriya T, Kishida H, Enomoto H J. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass[J]. Environ. Sci. Technol.,2005,39: 1893-1902
    [125]Kam A Y, Hixson A N, Perlmutter D D. The oxidation of bituminous coal-I. Development of a mathematical model[J]. Chem. Eng. Sci.,1976,31:815-819
    [126]Okuwaki A, Sutoch N, Furuya H, Amano A, Okabe T. Production of oxalate by the oxidation of coal with oxygen in a concentrated sodium hydroxide solution[J]. Ind. Eng. Chem. Prod. Res. Dev.,1984, 23:648-651
    [127]Deno N C, Greigger B A, Stroud S G. New method for elucidating the structures of coal[J]. Fuel,1978, 57:455-459
    [128]Ahmed M, Kinney C R. Ozonization of humic acids prepared from oxidized bituminous coal[J]. J. Am. Chem. Soc.,1950,72:559-561
    [129]Hayashi J, Aizawa S, Kumagai H, Chiba T. Evaluation of macromolecular structure of a brown coal by means of oxidative degradation in aqueous phase[J]. Energy Fuels,1999,13:69-76
    [130]Franke N W, Kiebler M W, Rouf C H, Savich T R, Howard H C. Water-soluble polycarboxylic acids by oxidation of coal[J]. Ind. Eng. Chem.,1952,44:2784-2792
    [131]Tsigdinos G A, Hallada C J. Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization[J]. Inorg. Chem.,1968,7:437-441
    [132]陈发旺,胡长文.多金属氧簇催化研究进展[J].化学进展,2011,23:19-41
    [133]Weckhuysen B M, Keller D E. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis[J]. Catal. Today,2003,78:25-46
    [134]Jian M, Zhu L F, Wang J Y, Zhang J, Li G Y, Hu C W. Sodium metavanadate catalyzed direct hydroxylation of benzene to phenol with hydrogen peroxide in acetonitrile medium[J]. J. Mol. Catal. A:Chem.,2006,253:1-7
    [135]Yan X Y, Jin F M, Tohji K, Kishita A, Enomoto H J. Hydrothermal conversion of carbohydrate biomass to lactic acid[J]. AICHE J.,2010,56:2727-2733
    [136]Jin F M, Zhou Z Y, Moriya T, Kishida H, Higashijima H, Enonoto H J. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass[J]. Environ. Sci. Technol.,2005,39:1893-1902
    [137]罗廉,李杰,余世袁.木质素磺酸盐制取香兰素的氧化反应[J].化学反应工程与工艺,1990,6:53-59
    [138]Dunn J P, Koppula P R, Stenger H G, Wachs I E. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Applied Catal. B:Environ.,1998,19:103-117
    [139]Tani M, Sakamoto T, Mita S, Sakaguchi S, Ishii Y. Hydroxylation of benzene to phenol under air and carbon monoxide catalyzed by molybdovanadophosphoric acid[J]. Angew. Chem. Int.Ed.,2005,44: 2586-2588
    [140]Engeser M, Schlangen M, Schroder D, Schwarz H. Alkane oxidation by VO2+in the gas phase:A unique dependence of reactivity on the chain length[J]. Organometallics,2003,22:3933-3943
    [141]Eaglesfield P, Kelly B K, Short J F. Recovery of acetic acid from dilute aqueous solution by liquid-liquid extraction[J]. Ind. Chemist.,1953,29:147-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700