用户名: 密码: 验证码:
新型铁铈钛催化剂SCR脱硝性能及反应动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物严峻的排放形势及其对我国可持续发展造成的巨大压力,使得氨选择性催化还原(NH3-SCR)技术成为我国火电脱硝领域的重要选择。SCR技术的核心是催化剂,低温SCR技术相对于现有SCR技术能耗及运行成本更低,因此低温SCR催化剂的研发正成为当前的热点。本课题组前期研究表明铁铈催化剂具有相对较高的中低温SCR活性,但活性温度还不能满足低温脱硝的要求,本文在保证Ti摩尔总量不变的前提下,通过向铁铈催化剂中引入另一种Ti化合物,来探讨改善其低温脱硝特性的途径,并对该新型铁铈钛催化剂进行脱硝性能及反应动力学研究。
     Ti与Fe元素序号相近,当Ti添加到铁铈催化剂中时,会对Fe原子核外电子云产生诱导,在此过程中发生的物理化学变化会使催化剂的内部结构及表面化学特性发生改变,从而影响催化剂的SCR性能。本文通过对Ti添加量不同的催化剂进行SCR活性实验,探讨改善其低温脱硝特性的途径并确定Ti的最佳添加量;通过对该催化剂进行孔隙结构(BET)、表面元素价态及浓度分布(XPS)、X射线晶格衍射(XRD)、程序升温脱附(TPD)等表征结构测试,发现Ti添加使催化剂的孔径更小从而比表面积和比孔容更大,活性组分以无定形态高度分散在催化剂表面,且催化剂表面的氧浓度更大,低温区间内NH3吸附量更多,这些都能促进低温SCR反应的进行。
     在此基础上,本文系统考察了煅烧温度、反应温度、O2浓度、氨氮比(NH3/NO)(?)口空速比(GHSV)对新型铁铈钛催化剂SCR脱硝活性的影响规律,发现:煅烧温度为400℃制备的催化剂SCR活性最高,煅烧温度过高会导致活性组分结晶、分散度降低;反应温度为175℃时,催化剂脱硝效率即可达到90%,低温活性优良,在200-400℃区间内,脱硝效率保持在95%以上;02在SCR反应中至关重要,反应气氛中没有02时,催化剂脱硝效率极低,通入少量02,脱硝效率即迅速升高,02浓度超过3%后,脱硝效率达到最大并保持不变;氨氮比为1、空速比为30,000h-‘时,催化剂的脱硝效率最高。
     此外,本文还对该新型铁铈钛催化剂进行了反应动力学特性实验研究,在分析NH3浓度、NO浓度、O2浓度对SCR反应速率影响的基础上,得到SCR反应中,NH3为零级反应,NO为一级反应,当O2浓度大于3%时,其为零级反应,而O2浓度小于3%时,其反应级数为0.39。同时计算得到催化剂的反应活化能Ea=28.6KJ·mol-1(目前商用钒钛催化剂活化能一般为70~90KJ·mol-1铁基催化剂活化能一般为50~70KJ·mol-1)、反应速率常数k=23248.4exp[-28559.1/(RgT)]。
The austere situation of NOx emissions is a huge pressure to sustainable development of our country, So NH3-SCR technology is very important to De-NOx field of coal-fired power plants in our country. The key to SCR technology is catalyst, compared to existing technology, low temperature SCR technology costs less power and money, so researching and developing low temperature SCR catalyst is a focus. Existing iron-cerium catalyst has high SCR activity at meddle-low temperature, but the activity temperature can not meet the requirements of low temperature SCR technology, so this paper dops another kind of titanium in it to explore a way to improve its low temperature SCR activity on the condition that titanium dosage is constant, and researches its De-NOx performance and reaction kinetics.
     Since the atomic number of titanium is near that of iron, titanium doping can induce the extranuclear electron of iron, so it can change the physical-chemical nature in the process to influence SCR performance of catalyst. The SCR activity tests of catalysts with different titanium loading amount are carried out to explore a way to improve its low temperature SCR activity and obtain the optimum loading amount of titanium; From the test results of BET, XPS, XRD, TPD, we find that cerium doping makes a larger specific surface area and pore volume but smaller bore diameter, active components in amorphous state highly disperse on the catalyst surface, the oxygen concentration and NH3adsorbance are higher at low temperature, all of which can promote SCR reaction.
     On this basis, this paper investigates the effects of calcined temperature, reaction temperature, oxygen concentration, NH3/NO and GHSV on the SCR De-NO, performance of iron-cerium-titanium catalyst systematically, we find that:the catalyst calcined at400℃has the best SCR activity, higher calcined temperature can lead to the crystallization of active components and parts of anatase TiO2change into rutile TiO2; the denitration efficiency can reach90%at175℃, indicating that low temperature activity is good, and the denitration efficiency is higher than95%between200℃and400℃; the denitration efficiency is very low without O2in the feeding gas, and when bubbling little amount of O2while the denitration efficiency rises rapidly, the denitration efficiency stays the same when oxygen concentration is over3%,indicating that O2is very important in SCR reaction; the denitration efficiency is highest when NH3/NO is1and GHSV is30000h-1.
     Furthermore, this paper studies the reaction kinetics of this novel iron-cerium-titanium catalyst considering the effects of NH3, NO and O2concentration on the reaction rate. We find that in the SCR reaction, the reaction order of NH3is0, the reaction order of NO is1, the reaction order of O2is0when the oxygen concentration is over3%While it becomes0.39when the oxygen concentration is less than3%. The reaction activation energy is28.6KJ·mol-1(while the activation energy of commercial catalyst is70~90KJ·mol-1and the iron-based catalyst is50~70KJ·mol-1) and the reaction rate constant is23248.4exp [-28559.1/(RgT)], after knowing the effects of NH3, NO and O2concentration to reaction rate.
引文
[1]张强,耿冠楠,王斯文,等.卫星遥感观测中国1996-2010年当氧化物排放变化[J].科学通报,2012,57(16):1446-1453.
    [2]Abelson P H. Air pollution and acid rain[J]. Science,1985,8:617-617.
    [3]Busca G, Larrubia M A, Arrighi L, et al. Catalytic abatement of NO,:Chemical and mechanistic aspects [J]. Catalysis Today,2005,139:107-108.
    [4]Phi H H, Reddy M P, Kumar P A. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures [J]. Applied Catalysis B: Environmental,2008,78(3~4):301-308.
    [5]Li N, Wang A, Zheng M, et al. Probing into the catalytic nature of Co/sulfated zirconia for selective reduction of NO with methane [J]. Journal of Catalysis, 2004,225(2):307-315.
    [6]毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社,2000.
    [7]孙国超,鄢晓忠,陈冬林,等.电站燃煤锅炉NOx控制技术的现状及发展[J].电站系统工程,2008,24(2):1-4.
    [8]崔彦亭,刘宝林,何伯述.燃煤电厂污染控制技术进展与展望[J].电力环境保护,2006,22(4):50-53.
    [9]张海,吕俊复,徐秀清,等.我国燃煤电站锅炉NOx排放的现状分析和应对措施[J].中国动力工程学报,2005,25(1):125-130.
    [10]蔡小峰,李晓芸.SNCR-SCR烟气脱硝技术及其应用[J].电力环境保护,2008,24(3):26-29.
    [11]黄霞,刘辉,吴少华.选择性非催化还原(SNCR)技术及其应用前景[J].电站系统工程,2008,24(1):12-14.
    [12]刘杨先,张军,盛昌栋,等.低温选择性催化还原催化剂研究进展[J].化工进展,2008,27(8):1198-1203.
    [13]沈博雄,王成东,郭宾彬,等.控制氮氧化物排放的低温SCR催化剂及工程应用[J].电站系统工程,2006,22(5):30-34.
    [14]李敏,仲兆平.氨选择性催化还原(SCR)脱除氮氧化物的研究[J].能源研 究与利用,2004,2:24-27.
    [15]Giuseppe M, Manfred Koebel. Side Reactions in the Selective Catalytic Reduction of NO, with Various NO2 Fractions[J]. Industrial Engineering Chemistry Research,2002,41:4008-4015.
    [16]Sun D H. Molecular Origins of Selectivity in the Reduction of NOx by NH3[J]. Physical Chemistry A,2004,108:9365-9374.
    [17]胡晓宏,刘艳华,董淑萍.氮氧化物选择性催化还原催化剂研究综述[J].环境科学与技术,2007,30(11):107-110.
    [18]伍斌.新型Mn基低温选择性催化还原脱硝催化剂的研制[D].硕士学位论文,湘潭大学,2006.
    [19]Long R Q, Yang R T. Selective Catalytic Oxidation of Ammonia to Nitrogen over Fe2O3-TiO2 Prepared with a Sol-Gel Method[J]. Journal of Catalysis, 2002,207:158-165.
    [20]金瑞奔.负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究[D].博士学位论文,浙江大学,2010.
    [21]杨卫娟,周俊虎,刘建忠,等.选择催化还原SCR脱硝技术在电站锅炉的应用[J].热力发电,2005(9):10-13.
    [22]陈杭君,赵华,丁经纬.火电厂烟气脱硝技术介绍[J].热力发电,2005(2):15-18.
    [23]鲁佳易,卢啸风,刘汉周,等.SCR法烟气脱硝催化剂及其应用特性的探究[J].电站系统工程,2008,24(1):5-8.
    [24]王琦,王树荣,闫志勇,等.燃煤电厂SCR脱硝技术催化剂的特性及进展[J].电站系统工程,2005,21(3):4-6.
    [25]Garcia-Cortes J M, Perez-Ramirez J, Illan-Gomez M J, et al. Comparative study of Pt-based catalysts on different supports in the low temperature de-NOx-SCR with propene [J]. Applied Catalysis B:Environmental,2001, 30:399-408.
    [26]Corbos E C, Haneda M, Marecot P, et al. Cooperative effect of Pt-Rh/Ba/Al and Cu/ZEM-5 catalysts for NOx reduction during periodic lean-rich atmospere[J]. Catalysis Communication,2008,10:137-141.
    [27]李哲,黄伟,谢克昌,等.Pt/Al2O3蜂窝状催化剂上NO选择性催化还原反应动力学研究[J].燃料化学学报,2003,31(6):605-609.
    [28]王进,余运波,解淑霞,等.新型贵金属修饰的Ag/Al2O3催化剂选择性催化还原NOx的催化性能及反应机理[J].催化学报,2004,25(10):824-828.
    [29]Orsenigo C, Lietti L, Tronconi P, et al. Dynamic investignation of the role of the surface sulfates in NOx reduction and SO2 oxidation over V2O5-WO3/TiO2 catalysts [J]. Industrial Engineering Chemistry Research, 1998,37:2350-2359.
    [30]Qi G S, Yang R H, Chang R. MnOx-CeO2 mixed oxides prepared by coprecipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B:Environmental,2004,51:93-106.
    [31]Liu F D, He H. Selective catalytic reduction of NO with NH3 over manganese substituted irontitanate catalyst:Reaction mechanism and H2O/SO2 inhibition mechanism study[J]. Catalysis Today,2010,153:70-76.
    [32]万颖,王正,马建新.含金属分子筛上NOx选择性催化还原研究进展Ⅱ.含贵金属分子筛体系和HC-SCR反应机理[J].分子催化,2002,16(3):234-239.
    [33]Salker A V, Weisweile W. Catalytic behaviour of metal based ZSM-5 catalysts for NOx reduction with NH3 in dry and humid conditions [J]. Applied Catalysis A:General,2000,203:221-229.
    [34]韦正乐,黄碧纯,叶代启,等.烟气NO,低温选择性催化还原催化剂研究进展[J].化工进展,2007,26(3):320-325.
    [35]Yoshikawa M, Yasutake A, Mochidal. Low-temperature selective catalytic reduction of NO, by metal oxides supported on active carbon fibers[J]. Applied Catalysis A:General,1998,73:239-245.
    [36]Pasel J, Ka Bner P, Montanari B, et al. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction(SCR) of NO with NH3[J]. Applied Catalysis B:Environmental, 1998:199-213.
    [37]周涛,刘少光,唐名早,等.选择性催化还原脱硝催化剂研究进展[J].硅酸盐学报,2009,37(2):317-324.
    [38]Zhu Z P, Liu Z Y, Liu S J, et al. A novel carbon-supported vanadium oxide catalyst for NO reduction with NH3 at low temperatures[J]. Applied Catalysis B:Environmental,1999,23:229-233.
    [39]Zhu Z P, Liu Z Y, Niu H X, et al. Promoting effect of SO2 on activated carbon-supported vanadia catalyst for NO reduction by NH3 at low tempera-tures[J]. Journal of Catalysis,1999,187:245-248.
    [40]Smirniotis P G, Pena D A, Uphade B S. Low-Temperature Selective Catalytic Reduction (SCR) of NO with NH3 by Using Mn, Cr, and Cu Oxides Supported on Hombikat TiO2[J].Chemie International Edition,2001, 40(13):2479-2482.
    [41]Tang X L, Hao J M, Xu W G. Low temperature selective catalytic reduction of NOx with NH3over amorphous MnOx catalysts prepared by three methods [J]. Catalysis Communications,2007,8:329-334.
    [42]Pena D A, Uphade B S, Smirniotis P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3I. Evaluation and characterization of first row transition metals[J]. Journal of Catalysis,2004,221:421-431.
    [43]Qi G, Yang R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Applied Catalysis B:Environmental,2003,44:217-225.
    [44]吴碧君,刘晓勤,王述刚,等.MnOx/TiO2低温NH3选择性催化还原NO,的研究与表征[J].燃料科学与技术,2008,14(3):221-226.
    [45]Eigenmann F, Maciejewski M, Baiker A. Selective reduction of NO by NH3 over manganese-cerium mixed oxides:Relation between adsorption, redox and catalytic behavior[J]. Applied Catalysis B:Environmental,2006,62: 311-318.
    [46]郭凤,余剑,朱剑虹,等.Mn-Fe-Ce/TiO2低温NH3选择性催化还原NO[J].过程工程学报,2009,9(6):1192-1197.
    [47]Qi G S, Yang R T, Chang R S. MnOx-CeO2 mixed oxides prepared by coprecipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B:Environmental,2004,51:93-106.
    [48]WuZB, Jiang B Q, Liu Y, et al. DRIFT Study of Manganese/Titania-Based Catalysts forLow-Temperature Selective Catalytic Reduction of NO with NH3[J]. Environmental Science & Technology,2007,41,5812-5817.
    [49]Koebel M, Madia G, Raimondi F, et al. Enhanced Reoxidation of Vanadia by NO2 in the Fast SCR Reaction[J]. Journal of Catalysis,2002,209:159-165.
    [50]孙亮,许悠佳,曹青青,等.氧化锰基催化剂低温NH3选择性还原NOx反应及其机理[J].化学进展,2010,22(10):1882-1891.
    [51]卓文钦,吴新,丛俊.γ-Fe203对SCR DeNOx的促进试验研究[J].南京师范大学学报(工程技术版),2010,10(1):54-58.
    [52]Shen B X, Liu T, Zhao N, et al. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences,2010,22(9):1447-1454.
    [53]王芳,姚桂焕,归柯庭.铁基催化剂选择性催化还原烟气脱硝特性比较[J].中国电机工程学报,2009,29(29):47-51.
    [54]姚桂焕,王芳,陆芳,等.铁基磁流化床选择性催化还原烟气脱硝[J].工程热物理学报,2009,30(6):987-991.
    [55]Liu F D, He H, Zhang C B, et al. Selective catalytic reduction of NO with NH3 over iron titanate catalyst:Catalytic performance and characterization [J]. Applied Catalysis B:Environmental,2010,96:408-420.
    [56]Liu F D, Asakura K, He H, et al. Influence of calcinations temperature on irontitanate catalyst for the selective catalytic reduction of NOx with NH3 [J]. Catalysis Today,2010:1-8.
    [57]陈燕,李彩亭,曾光明,等.Ce-Fe/ACF催化剂低温选择性催化还原NO的研究[J].环境工程学报,2010,4(3):625-628.
    [58]郭东旭,熊志波,路春美,等.Fe-Ce-Ti/TiO2低温选择性催化脱硝特性[C].中国工程热物理学会燃烧学分会,中国北京,2012.
    [59]Xiong Z B, Lu C M, Guo D X, et al. Selective catalytic reduction of NOx with NH3 over iron-cerium mixed oxide catalyst:catalytic performance and characterization[J]. Journal of Chemie Technology Biotechnology, DO1: 10,1002/jctb.3966.
    [60]熊志波,路春美.铁铈复合氧化物催化剂SCR脱硝的改性研究[J].燃料化学学报,2013,41(31):361-367.
    [61]Busca G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Applied Catalysis B:Environmental,1998,18(1~2):1-36.
    [62]Bosch H, Janssen F. Formation and Control of Nitrogen Oxides [J]. Catalysis Today,1988,2(4):369-379.
    [63]李云涛,钟秦.低温NH3-SCR反应机理及动力学研究进展[J].化学进展,2009,21(6):1094-1100.
    [64]Liang X, Li J H, Lin Q C, et al. Synthesis and characterization of mesoporous Mn/Al-SBA-15and its catalytic activity for NO reduction with ammonia [J]. Catalysis Communications,2007,8:1901-1904.
    [65]Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia [J]. Applied Catalysis B:Environmental,1994,3(2-3):173-189.
    [66]Kijlstra W S, Brands D S, Smit H I, et al. Mechanism of the Selective Catalytic Reduction of NO with NH3 over MnOx/Al2O3[J]. Journal of Catalysis,1997,171,1(1):219-230.
    [67]Marban G, Valdes-Solis T, Fuertes A B. Mechanism of low-temperature selective catalytic reduction of NO with NH3 over carbon-supportedMn3O4 Role of surface NH3 species:SCR mechanism[J]. Journal of Catalysis,2004, 226:138-155.
    [68]Stevenson S A, Vartuli J C, Brooks C F. Kinetics of the Selective Catalytic Reduction of NO over HZSM-5[J]. Journal of Catalysis,2000,190(2): 228-239.
    [69]Eng J, Bartholomew C H. Kinetic and Mechanistic Study of NO, Reduction by NH3 over H-Form Zeolites I. Kinetic and Mechanistic Insights into NO Reduction over H-ZSM-5[J]. Journal of Catalysis,1997,171(1):14-26.
    [70]Kantcheva M. Identification, Stability, and Reactivity of NO, Species Adsorbed on Titania-Supported Manganese Catalysts[J]. Journal of Catalysis,2001,204(2):47-494.
    [71]Richter M, Trunschke A, Bentrup U, et al. Selective Catalytic Reduction of Nitric Oxide by Ammoniaover Egg-Shell MnOx/NaY Composite Catalysts [J]. Journal of Catalysis,2002,206(1):98-113.
    [72]Marban G, Fuertes A B. Kinetics of the low-temperature selective catalytic reduction of NO with NH3 over activated carbon fiber composite-supported iron oxides [J]. Catalysis Letters,2002,84(1-2):13-19.
    [73]刘清雅,刘振宇,李成岳.NH3在选择性催化还原NO过程中的吸附与活化[J].催化学报,2006,27(7):636-646.
    [74]LIU F D, HE H. Structure-Activity Relationship of Iron Titanate Catalysts in the Selective Catalytic Reduction of NOx with NH3[J]. Journal of Physical Chemistry C,2010,114,16929-16936.
    [75]LIN T, ZHANG Q L, LI W, et al. Monolith Manganese-Based Catalyst Supported on ZrO2-TiO2 for NH3-SCR Reaction at Low Temperature[J]. Acta Physico Chimica Sinica,2008,24(7):1127-1131.
    [76]赵清森,周英彪,向军,等.CuO-CeO2-MnOx/Y-Al2O3催化剂选择性催化还原NO[J].燃料化学学报,2007,37(3):360-366.
    [77]孙叶柱,王义兵,梁学东,等.火电厂SCR烟气脱硝反应器前设置灰斗及增加烟道截面的探讨[J].电力建设,2011,32(12):64-68.
    [78]邹鹏.钒钛SCR烟气脱硝催化剂改性研究[D].硕十学位论文,山东大学2012.
    [79]贾美如.燃煤烟气脱硝的本征动力学研究[D].硕十学位论文,北京化工大学,2010.
    [80]Huang H Y, Long R Q, Yang R T. Kinetics of selective catalytic reduction of NO with NH3 on Fe-ZSM-5 catalyst[J]. Applied Catalysis A,2002,235: 241-251.
    [81]Roduit B, Wokaun, Baiker A. Global kinetic modeling of reaction occurring during selective catalytic reduction of NO by NH3 over vanadia/titania-based catalysts[J]. Industrical & Engineering Chemistry Research,1998, 37:4577-4590.
    [82]李敏.氨选择性催化还原(SCR)氮氧化物的V2O5/TiO2基催化剂活性及动力学研究[D].2005,东南大学
    [83]Li Z, Shen L T, Huang W, et al. Kinetics of selective catalytic reduction of NO by NH3 on Fe-Mo/ZSM-5 catalyst[J]. Journal of Environmental Sciences,2007,19:1516-1519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700