用户名: 密码: 验证码:
硫酸钙晶须制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫酸钙晶须是一种细小纤维状的亚纳米材料,具有十分优良的力学性能和物理性能。目前,硫酸钙晶须的制备主要采用天然石膏为原料,对原料纯度和粒度要求较高,生产设备要求苛刻。硫酸钙晶须不进行表面修饰改性在有机材料中的应用受到很大限制。为了降低硫酸钙晶须制备成本,扩大硫酸钙晶须的应用范围,研究制备硫酸钙晶须的新方法和硫酸钙晶须表面改性及其在胶粘剂改性、有机合成中的应用,具有重要的理论和实践意义。
     本论文对硫酸钙晶须的制备、表面改性及其应用进行较系统的研究。常压下制备了(半水)硫酸钙晶须和改性硫酸钙晶须,通过多种研究手段对它们的结构和性能进行了表征,考察了晶须表面性质与改性剂种类、添加量的关系;进行了硫酸钙晶须在胶粘剂的改性和催化羧酸酯制备中的应用研究,获得满意的结果;进行硫酸钙晶须催化酯合成的反应动力学研究,确定了硫酸钙晶须为理想的非均相催化剂,拓宽了硫酸钙晶须研究与应用领域。论文的主要工作及结果如下:
     1.硫酸钙晶须的制备研究
     (1)通过引入晶化导向剂,以水热结晶法实现了常压下半水硫酸钙晶须的制备。确定了合适的工艺条件为:氢氧化钙悬浊液和硫酸溶液的浓度均为0.2mmo1·L-1,硫酸溶液的加入流量为1.5mL·min-1,反应温度100℃,搅拌速度为400r·min-1,反应时间40min,加入质量分数为2.0%的晶化导向剂;合适工艺条件下制备的产品经扫描电镜和X射线衍射确定为半水硫酸钙晶须和无水硫酸钙晶须混合物,平均粒径为200nm,长径比100:与传统的石膏为原料的水热法相比,该工艺制备硫酸钙晶须无需石膏溶解过程;引入晶化导向剂,加快了晶核的形成,缩短了半水硫酸钙晶须的结晶和单晶生长时间,能够有效地控制晶须的粒径。工艺中所用原材料来源广泛、廉价易得,实现工业化将对半水硫酸钙晶须产业的发展有重大意义。
     (2)以盐泥为原料进行了硫酸钙晶须的制备研究,得到合适的工艺条件为:在硫酸/盐泥质量比为2,盐泥浆液质量分数为6%,常压下反应温度105℃,时间30min。此条件下回收硫酸钙杂质少,形貌最佳,所得样品直径为0.2~4.0μm、长度为35~150μm;利用盐泥在缓和条件下制备硫酸钙晶须的工艺,结合镁盐回收工艺,不仅可以生产出具有较高利用价值的材料,而且大大降低了成本,变废为宝,实现环保与资源节约双赢。
     2.硫酸钙晶须的表面改性研究
     通过对改性硫酸钙晶须的吸油值、体系粘度、沉降体积等性能研究表明,硬脂酸、铝酸酯偶联剂和复配改性剂湿法改性硫酸钙晶须,硬脂酸复配改性剂最优;200nm,500nm硫酸钙晶须的改性以复配改性剂添加量分别在3.0%,2.0%时最佳。FT-IR和TG/DTG分析表明,铝酸酯偶联剂与硫酸钙晶须表面发生了化学吸附和物理吸附。XRD分析表明,硬脂酸、铝酸酯偶联剂仅使硫酸钙晶须表面改性,并没有改变硫酸钙晶须的组成和结构。
     3.硫酸钙晶须对胶粘剂的改性研究
     在不饱和聚酯腻子中加入硫酸钙晶须替代白炭黑,聚酯腻子性能提高;当加入量2.0%的200nm改性硫酸钙晶须时腻子的抗冲击性提高了25%,硬度提高了13%,收缩率下降了27.8%,腻子的可打磨时间延长;采用原位聚合法,向溶剂型聚氨酯胶粘剂中加入200nm改性硫酸钙晶须,质量分数为3%时,拉伸强度达到了36MPa,初粘强度达到了95N·(25mm)-1,24h剥离强度达到了213N·(25mm)-1,拉伸强度较未加晶须前提高了80%,初粘性提高了126%,终粘剥离强度提高了52%,综合力学性能最优;在聚氨酯密封胶中添加200nm改性硫酸钙晶须,可以改善密封胶的强度、硬度和弹性;200nm改性硫酸钙晶须可以替代气相二氧化硅来改善密封胶的触变性,降低了原材料的成本;硅酮密封胶加入硫酸钙晶须,提高了硅酮密封胶的最大伸长率。200nm改性硫酸钙晶须改性的硅酮密封胶挤出性好,可替代气相白炭黑作为触变剂使用;将硫酸钙晶须加入到白乳胶中,明显提高白乳胶的力学性能。500nm,200nm,500nm改性,200nm改性硫酸钙晶须的最佳添加量分别为填料总量的0.2%,0.3%,0.2%,0.3%。改性硫酸钙晶须提升白乳胶力学性能更显著,最大值压剪强度比改性前提高160%以上;在乳胶漆中添加硫酸钙晶须,改性硫酸钙晶须比未改性的硫酸钙晶须效果更显著,200nm改性硫酸钙晶须改性后,各项指标都提高,在加入量为0.3%时耐擦洗性能提高275%,达到最高7500次;硫酸钙晶须对彩色高分子防水胶泥的性能影响较大。随着硫酸钙晶须添加量增加,粘结强度逐渐增大,抗折及抗压强度均提高,初凝及终凝时间有所缩短,耐碱性不发生变化,当添加0.3%硫酸钙晶须时,抗渗性增加150%,性能最优。工业化后,各项指标符合标准要求,取得了良好的经济效益和社会效益。
     综合看,硫酸钙晶须对胶粘剂的改性作用明显,选择适当的晶须添加量和规格不仅能够大幅提高胶粘剂的综合性能,还因硫酸钙晶须具有良好触变性,可以替代气相白炭黑等昂贵的触变剂,从而降低产品成本。
     4.硫酸钙晶须在羧酸酯制备中的应用研究
     (1)以冰醋酸与正丁醇为原料,硫酸钙晶须作为催化剂制备醋酸正丁酯。硫酸钙晶须是制备醋酸正丁酯反应的优良催化剂。醋酸正丁酯的酯化反应是一可逆的二级反应。动力学方程为:-dcA/dt=2153exp(-418T08/RT)cA·cB-35.94×10-3exp(-13295/RT)cC·cD
     (2)当酸醇物质的量比为1.1:1,硫酸钙晶须用量为正丁醇质量的3%,反应温度110℃,反应时间为6h,甲苯带水剂用量为正丁醇质量的14.8%时,酯化产率可达到91%以上。通过实验得出,硫酸钙晶须在催化酯制备反应中,几乎不引起副反应,催化作用良好。以硫酸钙晶须作为酯制备催化剂克服了浓硫酸法腐蚀设备、污染环境的缺点,为酯制备的绿色环保方法。
     (3)通过甲基丙烯酸甲酯与一缩二乙二醇酯交换制备一缩二乙二醇双甲基丙烯酸酯(DEGDMA)考察硫酸钙晶须的催化活性。研究了硫酸钙晶须催化此反应的合适工艺条件为,甲基丙烯酸甲酯与一缩二乙二醇的物质的量比为3.5:1,反应温度为回流温度,硫酸钙晶须、阻聚剂氮氧自由基加入量分别为一缩二乙二醇质量的3.0%,0.1%。此条件下制备的一缩二乙二醇双甲基丙烯酸酯收率大于93.3%,纯度达97%。实验表明,硫酸钙晶须对制备一缩二乙二醇双甲基丙烯酸酯硫酸钙晶须对制备一缩二乙二醇双甲基丙烯酸酯的催化活性由其结构决定,与组成无关;催化性能与离子交换树脂相当,与硫酸、对甲苯磺酸相比,具有无腐蚀、价格低廉,产品质量好,色泽浅,副反应少,反应条件比较缓和等优点。
     (4)以硫酸钙晶须为催化剂制备三羟甲基丙烷三丙烯酸酯(TMPTA),避免了用硫酸或对甲基苯磺酸作催化剂造成设备腐蚀及后处理等复杂工艺。与传统的硫酸催化法相比,具有催化活性稳定,反应条件温和,选择性好,副反应少,酯化率高,后处理过程简单等优点。通过实验得出硫酸钙晶须催化制备TMPTA的合适工艺条件为:n(丙烯酸):n(三羟甲基丙烷)=3.4、硫酸钙晶须的质量分数(以三羟甲基丙烷的质量为基准)2.0%、以环己烷和甲苯混合带水剂、以对苯二酚和吩噻嗪作混合阻聚剂;酯化反应的最终温度为98℃;反应时间为5h;空气流量为15mL·min-1。在合适工艺条件下制备的TMPTA酯化率达96.8%以上。
Calcium sulphate whiskers are one kind of small fibrous sub-nanometer materials with perfectly mechanical and physical properties. At present, calcium sulphate whiskers is mainly prepared by the natural gypsum, with demanding production equipment, high purity and granularity requirement raw material. The application of unmodified calcium sulphate whiskers in organic material is restricted. In order to reduce preparation cost and expand the application scope, it is necessary that the new methods of calcium sulphate whiskers preparation, surface modification, application in adhesive modification and organic synthesis is researched.
     The preparation of calcium sulfate whiskers, surface modification and the application were investigated in the thesis. Calcium sulfate whiskers and modified calcium sulfate whiskers were prepared under the atmospheric pressure. The morphologies and properties were characterized by means of many kinds of test methods, and the relationships between surface properties and modifier types and dosage were investigated. The application in adhesive modification and the synthesis of carboxylate was studied and satisfactory results were obtained. In particular, based on the reaction kinetics of catalyzing esterification, calcium sulfate whiskers were identified as the ideal heterogeneous catalyst, broadening the research and the application scope of the whiskers. The main conclusions were as follows:1. Preparation of calcium sulfate whiskers
     (1)Through adding crystallization directors, hemi-hydrate calcium sulfate whiskers were prepared by hydrothermal crystallization under atmospheric pressure. The optimum process conditions were as follows:Both calcium hydroxide suspension concentration and sulfuric acid solution concentration were O.2mol·L-1, adding speed of sulfuric acid solution was1.5mL·min-1, reaction temperature was100℃, stirring speed was400r·min-1, reaction time was40min,and dosage of crystallization directors was2%. Products obtained under the optimized conditions were determined to the mixture of hemi-hydrate calcium sulfate whiskers and anhydrous calcium sulfate whiskers by means of scanning electron microscope and X-ray diffraction, of which the average particle diameter was200nm with aspect ratio of100. Compared to traditional hydrothermal synthesis using gypsum as raw materials, the procedure of gypsum dissolution was unnecessary. With the introduction of crystallization directors, the formation of nucleation was accelerated, the time of hemihydrate crystallization and single crystal growing was shorten, and the whisker size was effectively controlled. The raw materials with abundance of material supply were low-cost, and the prosess industrialization would be great significant to the development of hemi-hydrate calcium sulfate whiskers.
     (2)Using salt slurry as raw materials, calcium sulfate whiskers were prepared under optimum conditions as following:mass ratio was2:1(sulfuric acid:salt slurry), salt slurry concentration was6%, temperature was105℃, reaction time was30min, under atmospheric pressure. Whisker product obtained under optimum conditions have a characteristic of low impurity and good aspect, whose diameter and length was0.2-4.0μm and35-150μm, respectively. Considered magnesium recovery process and the preparation of calcium sulfate whiskers from salt slurry, high valuable materials would be produced, not only the cost was great reduced, but also the waste residue was handled, achieving environmental protection and resource conservation win-win.
     2. Surface modification of calcium sulfate whiskers
     The oil absorption of modification of calcium sulfate whiskers, viscosity and settling volume were investigated, and it showed:among stearic acid, aluminate coupling agent and complex modifying agent in modifying calcium sulfate whiskers, stearic acid is the worst, complex modifying agent is optimal. To modify200nm and500nm calcium sulfate whiskers, the optimal amount of complex modifying agent was3.0%and2.0%, respectively.
     Through FT-IR and TG/DTG analysis, it showed that chemical adsorption and physical adsorption of aluminate coupling agent both occurred on the surface of calcium sulfate whiskers by FT-IR and TG/DTG. Through XRD analysis, it showed that stearic acid, aluminum coupling agent only modified whisker surface with constant composition and strcture of calcium sulfate whiskers.
     3. Study on calcium sulfate whiskers in adhesive modification
     Mixing calcium sulfate whiskers instead of silica could improve performance of unsaturated polyester putty. When200nm calcium sulfate whiskers amount was2.0%, the impact resistance of putty improved by25%, hardness increased by13%, contraction rate decreased by27.8%, and grinding time extended slightly.
     By in-situ polymerization, when the200nm modified whisker amount was3.0%of solvent-based polyurethane adhesive, the tensile strength of the polyurethane adhesive reached36MPa, initial bonding strength reached95N·(25mm)-1,24h peeling strength arrived213N·(25mm)-1. Thus the tensile strength increased by80%, initial adhesion increased by126%, and the mechanical performance was optimal.
     Strength of polyurethane sealant improved with200nm modified calcium sulfate whiskers, and hardness and elasticity was changed slightly. Thixotropy increased with the modified whiskers instead of fumed silica, and the cost of raw materials reduced accordingly.
     The maximum elongation of silicone sealant mixed by calcium sulfate whiskers enhanced, the extrusion of silicone sealant modified by200nm modified whiskers was good, and cost of raw materials was lowered when200nm modified calcium sulfate whiskers substitute for fumed silica as thixotropic agent.
     The mechanical performance of white latex could significantly improved with calcium sulfate whiskers. The optimal amount of500nm whiskers,200nm whiskers,500nm modified whiskers and200nm modified whiskers was0.2%,0.3%,0.2%and0.3%of total quantity, respectively. Among all, modified calcium sulfate whiskers showed most significant effect that maximum compression-shear strength increased by over160%compared with blank sample.
     The effect of calcium sulfate whiskers on latex paint was researched, and results indicated that modified calcium sulfate whiskers effected more pronouncedly than unmodified ones. When0.3%200nm modified calcium sulfate whiskers were used, the scrubbing resistance of latex paint increased by275%, arrived7500times.
     Calcium sulfate whiskers greater impact the performance of colorful polymer water proof clay. With the increase amount of calcium sulfate whiskers, bending and compressive strength increased, bond strength increased, while initial setting and final setting time shortened, alkali resistance kept constant. When adding0.3%calcium sulfate whiskers, impermeability increased by150%, and the performance was optimal. The various indexes of industrialized product were in line with standard requirements, achieving good economic and social benefits.
     In conclusion, the effect of calcium sulfate whiskers on adhesive modification is obvious. Appropriate specification and dosage of whiskers not only greatly improved the comprehensive performance of adhesive but also replaced expensive thixotropic agent because of their good thixotropy, such as fumed silica, resulting in lower product cost.
     4. Study on calcium sulfate whiskers in preparation of carboxylic ester
     (1)The synthesis of n-butyl acetate from glacial acetic acid and n-butanol catalyzed by calcium sulfate whiskers was studied. The esterification of n-butyl acetate is a reversible second-order reaction. The kinetic equation was as follow:-dCA/dt=2153exp (-41808/RT)CA·CB-35.94×10-3exp(-13295/TT)CC·CB
     (2)When the molar ratio of acetic acid to n-butyl alcohol was1.1:1, the quality of calcium sulfate whiskers was3.0%of n-butanol, reaction temperature was110℃, reaction time was6h, and the quality of toluene(as water carrier) was14.8%of n-butanol, the yield of n-butyl acetate was up to97.6%. The experiments showed that calcium sulfate whiskers almost brought no secondary reaction in this esterifation, and the esterifation catalyzed by calcium sulfate whiskers was green without environmental pollution and corrosion of equipments compared with traditional concentrated sulfurie acid method.
     (3)The catalytic activity of calcium sulfate whiskers in the synthesis of diethylene glycol dimethacrylate (DEGDMA) via transesterification from methyl methacrylate and glycol ether was investigated, and the optimized conditions were obtained as follows:a molar ratio of methyl methacrylate to diethylene glycol3.5:1, under circumfluence temperature, the amount of calcium sulfate whiskers and nitroxide free radical inhibitor3%,0.1%, respectively. Yield of product ester obtained under above conditions reached above93.3%and its purity was97%. Experimental results indicated:the catalytic activity of calcium sulfate whiskers depended on the structure, not composition. Calcium sulfate whiskers compared with sulfurie acid and p-toluenesulfonic acid showed efficient catalytic activity in the synthesis of diethylene glycol dimethacrylate via transesterification, with no corrosion, low cost, good product quality, light color, less second section, more relaxed reaction conditions, etc. Therefore, the development of the applications of calcium sulfate whiskers in chemical industry has broad market prospects.
     (4)The synthesis of TMPTA by using calcium sulfate whiskers as catalyst was studied. The optimized conditions were as follows:a molar ratio of acrylate to trimethylolpropane3.4:1, amount of calcium sulfate whiskers2.0%(based on trimethylolpropane), cyclohexane and toluene as water carriers, with hydroquinone and phenothiazines as inhibitors, the final temperature of esterification98℃, a reaction time5h, the air flow15mL·min-1. Under optimized conditions, the yield of TMPTA above96.8%.
引文
[1]崔小明.无机晶须的研究和应用进展[J].精细化工原料及中间体,2007,(5):25-36.
    [2]P. M. Silenko, A. N. Shlapak, A. I. Bykov, et al. Silicon nitride nanofibers produced by the pyrolysis of SiCl4 in H2 and N2 media [J]. Theoretical and Experimental Chemistry,2007,43(2):85-89.
    [3]V. Raman, V.K. Parashar, S. R. Dhakate. Synthesis of Silicon Carbide Whiskers from Substituted Silicon Alkoxides and Rayon Fibres [J]. Journal of Sol-Gel Science and Technology,2002,25(2):175-179.
    [4]L. N. Chukhlomina. Chemically and thermally conjugate synthesis of silicon nitride based compositions using ferrosilicon [J]. Glass and Ceramics,2009,66(7): 288-292.
    [5]F. Yu, C. R. Ortiz-Longo, K. W. White. The microstructural characterization of in situ grown Si3N4 whisker-reinforced barium aluminum silicate ceramic matrix composite [J]. Journal of Materials Science,1999(34):2821-2835.
    [6]王富强,郝志彪,闫联生,等.碳化硅纳米晶须的制备研究[J].材料导报,2008,22:74-77.
    [7]Vadim G. Lutsenko. Filamentary and Tubular Silicon Carbide Nanocrystals [J]. Powder Metallurgy and Metal Ceramics,2005,44(1):1-4.
    [8]A. I. Kharlamov, S. V. Loichenko, N. V. Kirillova, et al. Silicon Carbide Polycrystalline Fibers and Single-Crystal Whiskers [J]. Inorganic Materials,2003, 39(3):260-265.
    [9]N. Patel, R. Kawai, A. Oya. Preparation of silicon carbide nanofibers by use of polymer blend technique[J]. Journal of Materials Science,2004,39(2):691-693.
    [10]A. R. Bunsell, A. Piant. A review of the development of three generations of small diameter silicon carbide fibres [J]. Journal of Materials Science,2006,41(3): 823-839.
    [11]A. Chrysanthou, P. Grieveson. Formation of silicon carbide whiskers and their microstructure [J]. Journal of Materials Science,1991, (26):3463-3476.
    [12]S. L. Dong, D. Z. Yang, S. Q. Chen. Influence of SiC whisker on planar slip in Al-Li based alloys [J]. Journal of Materials Science,2002,37(12):2527-2534.
    [13]景晓明,卢佳美,马晨,等.钛酸钾晶须的研究现状及发展前景[J].西南民族大学生学报,自然科学版,2008,34(3):539-544.
    [14]T. Zaremba, A. Hadrys. Synthesis of K2Ti409 whiskers [J]. Journal of Materials Science,2004,39(14):4561-4568.
    [15]Bao Ningzhong, Feng Xin, Lu Xiaohua, et al. Study on the formation and growth of potassium titanate whiskers [J]. Journal of Materials Science,2002,37(14): 3035-3043.
    [16]叶素娟,范清,禹权.钛酸钾晶须填充超高分子量聚乙烯复合材料的性能研究[J].塑料,2008,37(6):5-8.
    [17]杨宁,贵大勇,钱诚.钛酸钾晶须增强聚丙烯研究[J].中国塑料,2004,18(1):71-74.
    [18]刘琳,赵磊,李琳.钛酸钾晶须在环氧树脂中的应用研究[J].工程塑料应用,2008,36(3):13-16.
    [19]马晓燕,袁莉,贾巧英,等.钛酸钾晶须增强双马来酰亚胺树脂体系的研究[J].材料科学与工艺,2004,12(3):320-32.
    [20]史以俊,何明,顾晓利,等.钛酸钾晶须增强聚四氟乙烯复合材料摩擦磨损机制的研究[J].润滑与密封,2009,34(1):59-62.
    [21]周文君.钛酸钾晶须的研及应用[J].杭州师范学院学报(自然科学版),2004,3(1):69-72.
    [22]Liang Guozheng, Hu Xiaolan, Lu Tingli. Inorganic whiskers reinforced bismaleimide composites [J]. Journal of Materials Science,2005,40(7):1743-1748.
    [23]G. Y. Xie, G. X. Sui, R. Yang. The Effect of Applied Load on Tribological Behaviors of Potassium Titanate Whiskers Reinforced PEEK Composites Under Water Lubricated Condition [J]. Tribology Letters,2010,38(1):87-96.
    [24]P. Afanasiev. Molten salt syntheses of alkali metal titanates [J]. Journal of Materials Science,2006,41(4):1187-1195.
    [25]余卫平.晶须碳酸钙在聚乙烯中的应用研究[J].塑料,2009,38(3):78-81.
    [26]姚伯龙,杨同华,罗侃,等CaCO3晶须改性UV固化材料的性能研究及应用[J].工程塑料应用,2007,35(12):29-32.
    [27]Lu Hongdian, Hu Yuan, Xiao Junfeng, et al. Magnesium hydroxide sulfate hydrate whisker flame retardant polyethylene/montmorillonite nanocomposites[J]. Journal of Materials Science,2006,41(2):363-367
    [28]Fang Shoulin, Hu Yuan, Song Lei, et al. Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber [J]. Journal of Materials Science,2008,43(3):1057-1062
    [29]R. V. Krishnarao, J. Subrahmanyam, M. Yadagiri. Formation of TiN whiskers through carbothermal reduction of TiO2 [J]. Journal of Materials Science,2002, (37): 1693-1699.
    [30]刘维跃,杨正方,谈家琪,等.TiN晶须对Y-TZP材料力学性能的影响[J].硅酸盐通报,1989,(4):49-53.
    [31]Zhou Heping, Chen Hao, Liu Yaocheng, et al. Growth of aluminium nitride whiskers by sublimation-recrystallization method [J]. Journal of Materials Science, 2000,(35):471-475.
    [32]鲁枫,郑瑞生,刘文,等.氮化铝晶须的形态与生长条件的关系[J].人工晶体学报,2006,35(2):381-385.
    [33]Wang Huabin, Derek O. Northwood, Han Jiecai, et al. Combustion synthesis of AIN whiskers [J]. Journal of Materials Science,2006,41(6):1697-1703.
    [34]Yu. F. Kargin, S. N. Ivicheva, A. S. Lysenkov, et al. Preparation of silicon carbide whiskers from silicon nitride [J]. Inorganic Materials,2009,45(7):758-766.
    [35]M. Radwan, M. Bahgat, A.A. El-Geassy. Formation of aluminium nitride whiskers by direct nitridation [J]. Journal of the European Ceramic Society,2006,26(13): 2485-2488
    [36]S.H. Eom, Y.-M. Yu, Y.D. Choi, C. S. Kim. Optical characterization of ZnO whiskers grown without catalyst by hot wall epitaxy method [J]. Journal of Crystal Growth,2005,284(1):166-171.
    [37]Shi Xiaoling, Cao Maosheng, Zhao Yuna, et al. Preparation and properties of ZnO nano-whiskers [J]. Science in China Series E:Technological Sciences,2008,51(9): 1433-1438.
    [38]Chen Yifeng, Tang Motang, Yang Shenghai, et al. Preparation of tetrapod-like ZnO whiskers from waste hot dipping zinc [J]. Journal of Central South University of Technology,2004,11(1):51-54.
    [39]Zhaorigetu Siqingaowa, Hongxia Yao, Garidi. Preparation and characterization of nanocrystalline ZnO by direct precipitation method [J]. Frontiers of Chemistry in China,2006,1(3):277-280.
    [40]B.M. Praveen, T.V. Venkatesha, Y. Arthoba Naik. Corrosion studies of carbon nanotubes-Zn composite coating [J]. Surface and Coatings Technology,2007, 201(12):5936-5842.
    [41]A Yadav, Virendra Prasad, A A Kathe, et al. Functional finishing in cotton fabrics using zinc oxide nanoparticles [J]. Bulletin of Materials Science,2006,29(6): 641-645.
    [42]Zhu Feng, Zhang Ye, Yan Youguo, et al. Study of ferromagnetism in Mn-doped ZnO whisker arrays [J]. Bulletin of Materials Science,2008,31(2):121-124.
    [43]梁邦兵,黄志良,张联盟,等.模板诱导/水热法制备α-氧化铝晶须及其表征[J].武汉化工学院学报,2005,27(4):38-40.
    [44]Li Jie, Li Wu, Nai Xueying, et al. Synthesis and formation of alumina whiskers from hydrothermal solution [J]. Journal of Materials Science,2010,45(1):177-181.
    [45]李洁,乃学瑛,边绍菊,等.氧化铝晶须的研究进展[J].现代化工,2007,27:129-132.
    [46]L. Zhihong, H. Mancheng, G. Shiyang. Studies on synthesis, characterization and thermochemistry of Mg2[B2O4(OH)2]·H2O [J]. Journal of Thermal Analysis and Calorimetry,2004,75(1):73-78.
    [47]闫平科,乃学瑛,马志军,等.硼酸镁晶须的研究进展及其应用[J].化工矿物与加工,2008(9):34-37.
    [48]汪海东,原力,蔚敬华,等.微波固相制备硼酸镁晶须[J].盐湖研究,1998,(6):98-102.
    [49]S. W. Kim, S. G. Lee, J. K. Kim, et al. Synthesis of aluminum borate whiskers via flux method with and without microwaves [J]. Journal of Materials Science,2004, 39(4):1445-1447.
    [50]王湃,孙铁军.硼酸铝晶须的应用与制备[J].无机盐工业,2006,38(10):16-17.
    [51]G. Bi, H. W. Wang, R. J. Wu. Mechanical property of in situ Al18B4O33 whisker reinforced AC8A composite [J]. Journal of Materials Science Letters,2001,20(1): 937-939.
    [52]Bi Gang, Rao Qunli, Song Hongwei. Microscopic examination of the interface region in AC8A/A118B4O33 composites reinforced with as-received and artificial nitrided Al18B4O33 whiskers [J]. Journal of Materials Science,2004,39(7): 2451-2456.
    [53]田立朋,王丽君,王力.硫酸钙晶须制备过程中的关键技术研究[J],化学工程师,2006,(8):12-14.
    [54]韩跃新.石膏的应用及其深加工研究[J].矿产保护与利用,1998,1(2):10-13.
    [55]王晓丽,韩跃新,王泽红,等.硫酸钙晶须的研究进展[J].有色矿冶,2005,7(21):77-80.
    [56]魏钟晴,马培华.溶液系统中的晶须生长机理[J].盐湖研究,1995,3(4):57-64.
    [57]郝保红,黄俊华.晶体生长机理的研究综述[J].北京石油化工学院学报,2006,14(2):58-64.
    [58]李向清,陈强,张林鄂,等.微米硫酸钙晶须的制备[J].应用化学,2007,24(8):945-948.
    [59]Hu W B, Zhu Y Q, Hsu W K, et al. Generation of Hollow Crystallinetungsten Oxide Fibers [J]. Appl Phys,2000,70(2):231-233.
    [60]毛常明,阵学玺.石膏晶须制备的研究进展[J].化工矿物与加工,2005,(12):34-36.
    [61]王力,马继红,郭增维,等.水热法制备硫酸钙晶须及其结晶形态的研究[J].材料科学与工艺,2004,14(6):626-629.
    [62]王大全.无机晶须[M].北京:化学工业出版社,2005:176-177.
    [63]罗康碧,李春梅,向兰,等.石膏性质对半水硫酸钙晶须形貌的影响[J].云南大学学报(自然科学版),2010,(2):213-220.
    [64]邓志银,袁义义,孙骏.不同固液比和原料粒度对脱硫石膏制备硫酸钙晶须的影响[J].粉煤灰,2009,(3):27-29.
    [65]史培阳,邓志银,袁义义,等.利用脱硫石膏水热合成硫酸钙晶须[J].东北大学学报(自然科学版),2010,31(1):76-79
    [66]凤晓华,梁文懂,管晶,等.硫酸钙晶须的制备工艺研究[J].应用化工,2007,36(2):134-139
    [67]邱杨率,李珺玮,吕钢,等.电石渣水热合成石膏晶须[J].中国非金属矿工业导 刊,2008(4):30-32.
    [68]厉伟光,徐玲玲,戴俊.柠檬酸废渣制备硫酸钙晶须的研究[J].人工晶体学报,2005,34(2):323-327.
    [69]肖楚民,张永祺,张环华.用卤渣制取硫酸钙晶须纤维的研究[J].湖南冶金,1998,(4):7-9.
    [70]张家凯,曹冬梅,王玉琪,等.海水卤水制备硫酸钙晶须的研究[J].盐业与化工2009,38(5):3-5.
    [71]Misheck G. Mwaba, Junjie Gu, Mohammad R. Effect of magnetic field on calcium sulfate crystal morphology [J]. Journal of Crystal Growth,2007,303(2):381-386.
    [72]毛常明,阵学玺.石膏晶须制备的研究进展[J].化工矿物与加工,2005,(12):34-36.
    [73]曹建新,陈前林.磷石膏中杂质的形态及水溶性磷对水泥物理性能的研究[J].环境工程,2001,19(5):40-43.
    [74]杨光娟,向兰.磷石膏综合利用现状评述[J].无机盐工业,2007,39(1):8-10.
    [75]黄哲元,董发勤,张伟.硫酸钙晶须的制备进展[J].无机盐工业,2009,41(8):6-8.
    [76]印万忠,王晓丽,韩跃新,等.硫酸钙晶须的表面改性研究[J].东北大学学报(自然科学版),2007,28(4):580-583.
    [77]王晓丽,印万忠,韩跃新,等.硫酸钙晶须表面湿法改性研究[J].矿冶,2006,15(3):30-37.
    [78]罗世平,周国平,曹佳杰.钛酸酯偶联剂对无机填料表面改性的研究[J].合成材料老化与应用,2001,(1):9.
    [79]郑水林.粉体表面改性(M).北京:中国建材工业出版社,1992,34-35.
    [80]葛铁军,杨洪毅,韩跃新.硫酸钙晶须复合增强聚丙烯性能研究[J].塑料科技,1997,(1):16-19.
    [81]周健,唐己琴,孟海兵,等.聚丙烯/硫酸钙晶须复合材料的研究[J].工程塑料应用,2008,36(11):19-22.
    [82]刘玲,殷宁,亢茂青,等.硫酸钙晶须补强增韧聚氨酯弹性体机理的研究[J].高分子学报,2001,(2):245-249.
    [83]姚亮,于祥梅,丛后罗.硫酸钙晶须改性三元乙丙橡胶的性能研究[J].广东化工,2009,8(36):59-60.
    [84]胡晓兰,余谋发.硫酸钙晶须改性双马来酰亚胺树脂摩擦磨损性能的研究[J].高分子学报,2006(5):686-691.
    [85]王泽红,韩跃新,袁致涛,等.硫酸钙晶须制备技术及应用研究[J].矿冶,2005,14(2):38-41.
    [86]杨双春,由宏军,潘一.改性硫酸钙晶须对印染废水的脱色研究[J].印染助剂,2006,23(8):34-37.
    [87]刘玲,杨双春,张洪林.硫酸钙晶须去除废水中乳化油的研究[J].工业水处理,2005,25(11):34-37.
    [88]杨双春,刘玲,张洪林.硫酸钙晶须对镉镍铅离子的吸附性能[J].水处理技术,2005,31(10):8-10.
    [89]马继红,冯传清.硫酸钙晶须在道路改性沥青中的应用研究(Ⅰ)[J].石油沥青,2005,19(6):21-25.
    [90]于福家,王泽红,韩跃新,等.硫酸钙晶须改性环氧胶粘剂的研究[J].金属矿山,2007,(3):35-37.
    [91]梁兵,关旭东.硫酸钙晶须的制备及其在聚丙烯树脂中的应用[J].沈阳化工学院学报,2009,23(3):235-238.
    [92]赵倩,袁婷婷,陈浩,等.硫酸钙晶须在第二代环氧建筑结构胶中的应用[J].粘接,2009(10):60-61.
    [93]周超,周健.硫酸钙晶须在HIPS中的应用[J].现代塑料加工应用,2009,21(4):45-47.
    [94]杨淼,陈月辉,铁寅,等.改性硫酸钙晶须改善SBS胶粘剂粘接性能的研究[J].非金属矿,2010,33(2):18-20.
    [95]牛永平,甘立慧,杜三明,等.硫酸钙晶须填充UHMWPE复合材料的摩擦磨损性能[J].润滑与密封,2010,35(2):11-14.
    [96]王德波,杨继萍,黄鹏程.硫酸钙晶须改性聚氨酯环氧树脂的粘接性能[J].复合材料学报,2008,15(4):1-6.
    [97]胡晓兰,梁国正.钛酸钾晶须及硫酸钙晶须改性环氧树脂[J].纤维复合材料,2003,(4):8-11.
    [98]时虎,鲁红典,赵华伟.晶须的阻燃防火应用[J].化工科技市场,2005,(11):5-10.
    [99]刘焱,于钢.硫酸钙晶须用于纸张增强[J].纸和造纸,2009,(5):38-39.
    [100]李子东,李光宇.胶黏剂技术手册[M].北京:新时代出版社,2002,1-28.
    [101]王泽红,乔景慧,韩跃新,等.pH值对硫酸钙晶须直径的影响[J].金属矿山,2004,34(10):39-42.
    [102]徐爱叶,李沪萍,罗康碧,等.硫酸钙晶须的生长机理及稳定化处理研究综述[J].化工科技,2009,17(6):64-68.
    [103]罗康碧,李沪萍,向兰,等.水热法制半水硫酸钙晶须工艺探讨[J].中国有色冶金,2010,(1):57-60.
    [104]S. K. Bhattarya, A.K.Bhowmiek, et al. Crack grow the resistance of fluoroelastomer vulcanize testilled with peculated fiberfiller [J]. Journal of materials science,1995, 30:243-247.
    [105]周林鑫.利用盐泥开发三有产品[J].中国氯碱,2001,(9):27-29.
    [106]王敏.利用盐泥制取七水硫酸镁[J].云南化工,2003,30(1):43-47.
    [107]章文贡.填料表面的复合性研究[J].福建师范大学学报(自然科学版),1987,3(4):46-52.
    [108]李玉英,李艺.铝酸酯偶联剂在几种非金属矿粉体中的表面改性应用研究[J].广西轻工业,2008,(4):13-14.
    [109]朱静安,续大义,于明,等.界面结构对云母填充聚丙烯性能的影响[J].塑料科技,1994,(5):34-37.
    [110]陈田安.DL-411-A铝酸酯偶联剂对聚氯乙烯协同热稳定性研究[J].中国塑料,1989,3(3):42-48.
    [111]陈德良.无机组合粒子增强增韧聚合物的协同效应[D].上海:中南大学,2002.
    [112]D.Maxwell, RJ.Young. Hybrid Particulate-filled epoxy-Polymers [J]. Journal of materials science ICtters,1984,3:9-12.
    [113]Yves Termonia. Computer model for the elastic Properties of short fiber and Particulate-filled Polymers [J]. Journal of materials science,1987,22:1733-1736.
    [114]T.Vooristo, V.T. Kuokkala. Dynamical Compression testing of Particle-reinforced polymer roll cover materials [J]. Composites:Part A,2000,31:815-822.
    [115]S. K. Bhattarya, A. K. Bhowmiek. Crack grow the resistance of fluoroelastomer vulcanize testilled with peculated fiberfiller [J]. Journal of materials science,1995, 30:243-247.
    [116]Zhang X H, Xu W J. Toughening of cycloaliphatic epoxy resin by nanosize silicon dioxide [J]. Material Letters,2006,60:3319-3323.
    [117]Zhou S X, Wu L M. The change ofthe properties of acrylic based polyurethane via addition of nano-silica [J]. Progress in Organic Coatings,2002,45:33-42.
    [118]张卫国,王小燕,姚素薇.纳米二氧化硅复合涂料的制备及其性能[J].化工学报,2006,(11):2745-2748.
    [119]李智勇,刘恒.纳米Ti02的性能及研究进展[J].四川化工与防腐控制,2003,6(3):34-37.
    [120]李小兵.EP基纳米复合材料的研究进展[J].热固性树脂,1999,(2):19.
    [121]董元彩,孟卫,魏欣.环氧树脂/二氧化钛纳米复合材料的制备及性能[J].塑料工业,1999,27(6):37-38.
    [122]李明晶.纳米TiO2对复合固化环氧树脂胶粘剂的改性研究[J].化工新型材料,2009,37(11):117-119.
    [123]赵世琦,云会明.刚性粒子增韧环氧树脂的研究[J].中国塑料,1999,13(9):35-39.
    [124]王久亮,刘宽,秦秀娟,等.纳米氧化锌的应用研究展望[J].哈尔滨工业大学学报,2004,(2):226-230.
    [125]Keikoga, Wei Yanglei. Preparations of N-grafted Poly(P-PhenyleneterePhthalamide) and applications to a molecular composite with epoxy resin [J]. Polymer journal, 1993,25(2):185.
    [126]金少霖,许国强,黄雪红,等.增粘树脂在SBS改性胶粘剂中的应用[J].弹性体,2002,12(2):45-47.
    [127]孙中新,杨慕杰,丁文光.一种有机硅改性丙烯酸树脂的制备方法[P].CN:1221756A,1999.
    [128]Hamui N. Novel ambient temperature curable two-corn-ponent waterborne silicone-acrylic coatings [J]. JCT,1998,70(80):73.
    [129]张思规.精细有机化学品技术手册(上册)[M].北京:科学出版社,1992,625.
    [130]施介华,胡玉华,王继康,等.杂多酸催化合成醋酸正丁酯的研究[J].浙江工业大学学报,2004,32(3):299-300.
    [131]王宇斌,袁致涛,韩跃新,等.硫酸钙晶须表面性质及水化机理研究[J].化工矿物与加工,2008,(6):1-8.
    [132]吴灵,肖细梅.聚氯乙烯-三氯化铁催化合成乙酸丁酯的动力学研究[J].株洲教 育学院学报,1996,(1):46-49.
    [133]Jayadeokar SS, Sharma MM. Ion exchange resin catalyze detherification of ethylene and ropyeneglycols with isobutylene [J]. ReactPolym,1993,20(1):145.
    [134]盖旭东,汪展文,金涌,等.乙酸甲酯非均相水解动力学的研究[J].化学反应工程与工艺,1998,14(2):138-144.
    [135]Yang Bolun, Yang Sanba, Yao Ruiqing. Synthesis of ethyltert-butyl ether from tent-butyl alcohol and ethanol on strong acid canon-exchange resins [J]. Reactive andFunctional Polymers,2000,44:167-175.
    [136]韦园红,李艳琳,童张法,等.醋酸正丁酯合成催化动力学研究[J].广西科学,1996,3(2):32-34.
    [137]蓝丽红,闫瑞一,李媚,等.阳离子交换膜催化合成乙酸丁酯动力学研究[J].离子交换与吸附,2006,22(2):168-171.
    [138]马德浮,顾树珍.用分子筛催化剂液相合成乙酸丁酯[J].石油化工,1989,18(7),431-434..
    [139]张涛俊,陶端健,周政,等.离子液体与树脂催化合成醋酸正丁酯的动力学比较[J].化学工程,2009,37(2):32-34.
    [140]鲁波,王强,赵国粱.大孔磺酸型阳离子交换树脂为催化剂合成甲基丙烯酸甲酯[J].化学简报,1998,6(2):21-27.
    [141]李翔宇,陈棵,丁斌,等.厌氧胶粘剂的构成及其发展应用状况[J].昆明理工大学学报,2002,27(4):115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700