用户名: 密码: 验证码:
碳纳米管的可控合成及其在人工肌肉领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管,可以看作由单层石墨碳卷曲而形成的一维中空圆柱型管状结构。而基于石墨层数的不同可以将碳纳米管分为单壁碳纳米管和多壁碳纳米管。碳纳米管在电子学、力学、热学、光学,化学,电化学等多个方面都具有优异的性质,这也使得它们在多个领域拥有具有巨大的应用前景。然而,目前碳纳米管的这些优异性质尚未被广泛有效地开发利用,这是因为许多尚未解决的难题的制约。本文针对碳纳米管在实际应用中的两个难题,分别是单壁碳纳米管优异的电子学性能的应用受其金属型与半导体型混杂的生长方式的制约;以及在碳纳米管作为人工肌肉的应用中,与这个领域其它当代的材料技术一样存在的诸如响应速度不高,应变或应力过低,循环寿命不够,驱动滞后响应,依赖于电解质溶液以及使用温度区间狭窄等问题。我们设计并研究了以下课题,期望能够解决这些难题,并帮助推动碳纳米管的实际应用:
     1.二氧化碳辅助电弧法选择性生成半导体型富集的单壁碳纳米管。实验结果表明,在电弧放电反应气氛中引入一定量二氧化碳,可以对金属型以及小管径单壁碳纳米管进行原位刻蚀,获得管径大于1.5nm,相对含量为90%的半导体型结构且几乎不含无定型碳杂质的单壁碳纳米管产物。研究中对比发现,使用半导体型富集的单壁碳纳米管作为助催化剂,相对无选择性单壁碳纳米管,可以更大程度地提高二氧化钛光催化分解水制氢反应的效率。
     2.碳纳米管纺线及其与聚合物的复合材料作为电、光、化学响应的转动和收缩类型的超强人工肌肉。目前只有很少数种类的人工肌肉技术被真正商业化。其主要原因是由于现有的人工肌肉还存在很多问题,具体包括响应速度慢、应力应变低、循环寿命小、依赖于电解液以及能量转换效率低等等。我们的工作中设计制备了一种以碳纳米管纺线为主体,聚合物为客体的复合材料,实现了不需要电解液,并能获得快速响应、大应力、大应变、高功率的转动和收缩类型的人工肌肉。在超过百万次以上循环工作后,转动和收缩类型的人工肌肉的工作效果都没有降低,并且可以达到平均速度为每分钟11,500转的转动效果;以及当响应速度为每分钟1200个循环时,收缩应变为3%的收缩效果。这种复合物人工肌肉的转动或收缩运动可以分别由电、光、热或者化学吸附和脱附引发所引发的客体材料的体积变化来驱动。在这个工作中,我们分别展示了由这种复合材料制成的转动机、收缩肌肉以及可以将感应过程中的能量变化转变为机械能变化的传感器。
Carbon nanotubes can be seen as one-dimensional, hollow, cylindrical structures formed by coaxial layers of graphene. The layers are called walls. Based on the number of walls, carbon nanotubes can be divided into single-walled carbon nanotubes and multi-walled carbon nanotubes. Carbon nanotubes have excellent electronic, mechanical, thermal, optical, chemical and electrochemical properties, which enable great potential applications in many related areas. However, there are still some problems that limit their practical application. One of the main problems for single-walled carbon nanotubes is the mixed growth of semiconducting and metallic species, which greatly inhibits their use as high performance electronics. Another specific issue is in the field of artificial muscles. Carbon nanotubes have numerous fundamentally different uses in artificial muscles, however, together with other current techniques in this area, there exist a lot of major limitations, including slow response, low work capacity, short cycle life, huge hysteresis, a reliance on electrolytes, and/or a narrow temperature range for operation. In order to solve these above mentioned problems and help promote the practical application of carbon nanotubes, we have explored the following studies:
     1. Synthesis of semiconducting SWNTs by arc discharge and their enhancement of water splitting performance with TiO2photocatalyst. A feasible and scalable CO2-assisted arc discharge method was developed to directly synthesize single-walled carbon nanotubes (SWNTs) with largely semiconducting species. Not only was electronic-type selectivity achieved on a large scale, with a semiconducting SWNT (s-SWNT) content of>90%, but also diameter selectivity was obtained, with a majority having diameters of>1.5nm. The photo-catalytic water splitting performance of these SWNTs with different ratios of s-SWNTs to metallic single-walled carbon nanotubes (m-SWNTs) was examined. The results show that, compared with m-SWNTs, s-SWNTs demonstrate a much better photocatalytic effect when used together with the common photo-catalyst TiO2.
     2. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average11,500revolutions/minute or delivers3%tensile contraction at1200cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.
引文
[1]Wildoer J. W. G., Venema L. C., Rinzler A. G., et al., "Electronic structure of atomically resolved carbon nanotubes," Nature,1998,391:59-62.
    [2]Baughman R. H., Zakhidov A. A., and de Heer W. A., "Carbon nanotubes-the route toward applications," Science,2002,297:787-792.
    [3]Odom T. W., Hafner J. H., and Lieber C. M., "Scanning probe microscopy studies of carbon nanotubes," Carbon Nanotubes,2001,80:173-211.
    [4]Frank S., Poncharal P., Wang Z. L., et al., "Carbon nanotube quantum resistors," Science, 1998,280:1744-1746.
    [5]Kim P., Shi L., Majumdar A., et al., "Thermal transport measurements of individual multiwalled nanotubes," Physical Review Letters,2001,87:
    [6]Gao G. H., Cagin T., and Goddard W. A., "Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes," Nanotechnology,1998,9:184-191.
    [7]Walters D. A., Ericson L. M., Casavant M. J., et al., "Elastic strain of freely suspended single-wall carbon nanotube ropes," Applied Physics Letters,1999,74:3803-3805.
    [8]Wong E. W., Sheehan P. E., and Lieber C. M., "Nanobeam Mechanics:Elasticity, Strength, and Toughness of Nanorods and Nanotubes," Science,1997,277:1971-1975.
    [9]Ding R. G., Lu G. Q., Yan Z. F., et al., "Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage," Journal of Nanoscience and Nanotechnology, 2001,1:7-29.
    [10]Zhang Q., Huang J. Q., Zhao M. Q., et al., "Carbon Nanotube Mass Production:Principles and Processes," Chemsuschem,2011,4:864-889.
    [11]Endo M., Hayashi T., and Kim Y. A., "Large-scale production of carbon nanotubes and their applications," Pure and Applied Chemistry,2006,78:1703-1713.
    [12]Collins P. C., Arnold M. S., and Avouris P., "Engineering carbon nanotubes and nanotube circuits using electrical breakdown," Science,2001,292:706-709.
    [13]Hata K., Futaba D. N., Mizuno K., et al., "Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes," Science,2004,306:1362-1364.
    [14]Arnold M. S., Green A. A., Hulvat J. F., et al., "Sorting carbon nanotubes by electronic structure using density differentiation," Nature Nanotechnology,2006,1:60-65.
    [15]Ghosh S., Bachilo S. M., and Weisman R. B., "Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation," Nature Nanotechnology, 2010,5:443-450.
    [16]Tanaka T., Liu H., Fujii S., et al., "From metal/semiconductor separation to single-chirality separation of single-wall carbon nanotubes using gel," Physica Status Solidi-Rapid Research Letters,2011,5:301-306.
    [17]Tvrdy K., Jain R. M., Han R., et al., "A Kinetic Model for the Deterministic Prediction of Gel-Based Single-Chirality Single-Walled Carbon Nanotube Separation," Acs Nano,2013, 7:1779-1789.
    [18]Zhu S.-N., Zhang J., Li Q.-W., et al., "Separation of Metallic Single-Walled Carbon Nanotubes and Semiconducting Single-Walled Carbon Nanotubes by Agarose Gel Electrophoresis," Chinese Journal of Analytical Chemistry,2012,40:1839-1844.
    [19]Tanaka T., Jin H., Miyata Y., et al., "High-Yield Separation of Metallic and Semiconducting Single-Wall Carbon Nanotubes by Agarose Gel Electrophoresis," Applied Physics Express,2008,1:
    [20]Zheng M., Jagota A., Semke E. D., et al., "DNA-assisted dispersion and separation of carbon nanotubes," Nature Materials,2003,2:338-342.
    [21]Qiu H., Maeda Y., and Akasaka T., "Facile and Scalable Route for Highly Efficient Enrichment of Semiconducting Single-Walled Carbon Nanotubes," Journal of the American Chemical Society,2009,131:16529-16533.
    [22]Strano M. S., Dyke C. A., Usrey M. L., et al., "Electronic structure control of single-walled carbon nanotube functionalization," Science,2003,301:1519-1522.
    [23]Li Y. M., Mann D., Rolandi M., et al., "Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method," Nano Letters,2004,4:317-321.
    [24]Ding L., Tselev A., Wang J. Y., et al., "Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes," Nano Letters,2009,9:800-805.
    [25]Hong G., Zhang B., Peng B. H., et al., "Direct Growth of Semiconducting Single-Walled Carbon Nanotube Array," Journal of the American Chemical Society,2009,131:14642-+.
    [26]Harutyunyan A. R., Chen G. G., Paronyan T. M., et al., "Preferential Growth of Single-Walled Carbon Nanotubes with Metallic Conductivity," Science,2009,326:116-120.
    [27]Haggenmueller R., Gommans H. H., Rinzler A. G., et al., "Aligned single-wall carbon nanotubes in composites by melt processing methods," Chemical Physics Letters,2000, 330:219-225.
    [28]Vigolo B., Penicaud A., Coulon C., et al., "Macroscopic fibers and ribbons of oriented carbon nanotubes," Science,2000,290:1331-1334.
    [29]Zhu H. W., Xu C. L., Wu D. H., et al., "Direct synthesis of long single-walled carbon nanotube strands," Science,2002,296:884-886.
    [30]Jiang K. L., Li Q. Q., and Fan S. S., "Nanotechnology:Spinning continuous carbon nanotube yarns-Carbon nanotubes weave their way into a range of imaginative macroscopic applications.," Nature,2002,419:801-801.
    [31]Zhang X. B., Jiang K. L., Teng C., et al., "Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays," Advanced Materials,2006,18: 1505.
    [32]Zhang M., Fang S. L., Zakhidov A. A., et al., "Strong, transparent, multifunctional, carbon nanotube sheets," Science,2005,309:1215-1219.
    [33]Zhang M., Atkinson K. R., and Baughman R. H., "Multifunctional carbon nanotube yarns by downsizing an ancient technology," Science,2004,306:1358-1361.
    [34]Li Y. L., Kinloch I. A., and Windle A. H., "Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis," Science,2004,304:276-278.
    [35]Fang S. L., Zhang M., Zakhidov A. A., et al., "Structure and process-dependent properties of solid-state spun carbon nanotube yarns," Journal of Physics-Condensed Matter,2010, 22:
    [36]Lima M. D., Fang S. L., Lepro X., et al., "Biscrolling Nanotube Sheets and Functional Guests into Yarns," Science,2011,331:51-55.
    [37]Baughman R. H., Cui C. X., Zakhidov A. A., et al., "Carbon nanotube actuators," Science, 1999,284:1340-1344.
    [38]Kim P. and Lieber C. M., "Nanotube nanotweezers," Science,1999,286:2148-2150.
    [39]Rueckes T., Kim K., Joselevich E., et al., "Carbon nanotube-based nonvolatile random access memory for molecular computing," Science,2000,289:94-97.
    [40]Deshpande V. V., Chiu H. Y., Postma H. W. C., et al., "Carbon nanotube linear bearing nanoswitches," Nano Letters,2006,6:1092-1095.
    [41]Vohrer U., Kolaric I., Haque M. H., et al., "Carbon nanotube sheets for the use as artificial muscles," Carbon,2004,42:1159-1164.
    [42]Gupta S., Hughes M., Windle A. H.,et al., "Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy," Journal of Applied Physics,2004,95: 2038-2048.
    [43]Ebron V. H., Yang Z. W., Seyer D. J., et al., "Fuel-powered artificial muscles," Science, 2006,311:1580-1583.
    [44]Spinks G. M., Wallace G. G., Fifield L. S., et al., "Pneumatic carbon nanotube actuators," Advanced Materials,2002,14:1728.
    [45]Ahir S. V. and Terentjev E. M., "Photomechanical actuation in polymer-nanotube composites," Nature Materials,2005,4:491-495.
    [46]Koerner H., Price G., Pearce N. A., et al., "Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers," Nature Materials, 2004,3:115-120.
    [47]Courty S., Mine J., Tajbakhsh A. R., et al., "Nematic elastomers with aligned carbon nanotubes:New electromechanical actuators," Europhysics Letters,2003,64:654-660.
    [48]Miaudet P., Derre A., Maugey M., et al., "Shape and temperature memory of nanocomposites with broadened glass transition," Science,2007,318:1294-1296.
    [49]Sellinger A. T., Wang D. H., Tan L. S., et al., "Electrothermal Polymer Nanocomposite Actuators," Advanced Materials,2010,22:3430.
    [50]Chen L. Z., Liu C. H., Liu K., et al., "High-Performance, Low-Voltage, and Easy-Operable Bending Actuator Based on Aligned Carbon Nanotube/Polymer Composites," Acs Nano, 2011,5:1588-1593.
    [51]Hu Y., Chen W., Lu L. H., et al., "Electromechanical Actuation with Controllable Motion Based on a Single-Walled Carbon Nanotube and Natural Biopolymer Composite," Acs Nano,2010,4:3498-3502.
    [52]Aliev A. E., Oh J. Y., Kozlov M. E., et al., "Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles," Science,2009,323:1575-1578.
    [53]Foroughi J., Spinks G. M., Wallace G. G., et al., "Torsional carbon nanotube artificial muscles," Science,2011,334:494-497.
    [54]Keefe A. C. and Carman G. P., "Thermo-mechanical characterization of shape memory alloy torque tube actuators," Smart Materials & Structures,2000,9:665-672.
    [55]Kim J. and Kang B., "Performance test and improvement of piezoelectric torsional actuators," Smart Materials & Structures,2001,10:750-757.
    [56]Fang Y., Pence T. J., and Tan X. B., "Fiber-Directed Conjugated-Polymer Torsional Actuator:Nonlinear Elasticity Modeling and Experimental Validation," Ieee-Asme Transactions on Mechatronics,2011,16:656-664.
    [57]Dresselhaus M. S., Saito R., and Jorio A., "Semiconducting carbon nanotubes," Physics of Semiconductors, Pts A and B,2005,772:25-31.
    [58]Gorbunov A. A., Friedlein R., Bauer H. D., et al., "Synthesis of single-wall carbon nanotubes by laser ablation," 6th International Conference on Industrial Lasers and Laser Applications '98,1999,3688:335-338.
    [59]Yudasaka M., Ichihashi T., Komatsu T., et al., "Single-wall carbon nanotubes formed by a single laser-beam pulse," Chemical Physics Letters,1999,299:91-96.
    [60]Zhang Y. and Iijima S., "Microscopic structure of as-grown single-wall carbon nanotubes by laser ablation," Philosophical Magazine Letters,1998,78:139-144.
    [61]Shi Z. J., Lian Y. F., Liao F. H., et al., "Large scale synthesis of single-wall carbon nanotubes by arc-discharge method," Journal of Physics and Chemistry of Solids,2000,61: 1031-1036.
    [62]Saito Y., "Carbon nanotubes produced by arc discharge," New Diamond and Frontier Carbon Technology,1999,9:1-30.
    [63]Harutyunyan A. R., Pradhan B. K., Kim U. J., et al., "CVD synthesis of single wall carbon nanotubes under "soft" conditions," Nano Letters,2002,2:525-530.
    [64]Ago H., Ohshima S., Uchida K., et al., "Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles," Journal of Physical Chemistry B, 2001,105:10453-10456.
    [65]Nikolaev P., "Gas-phase production of single-walled carbon nanotubes from carbon monoxide:A review of the HiPco process," Journal of Nanoscience and Nanotechnology, 2004,4:307-316.
    [66]Nikolaev P., Bronikowski M. J., Bradley R. K., et al., "Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide," Chemical Physics Letters,1999, 313:91-97.
    [67]Javey A., Guo J., Wang Q., et al., "Ballistic carbon nanotube field-effect transistors," Nature,2003,424:654-657.
    [68]Postma H. W. C., Teepen T., Yao Z., et al., "Carbon nanotube single-electron transistors at room temperature," Science,2001,293:76-79.
    [69]Krupke R., Hennrich F., von Lohneysen H., et al., "Separation of metallic from semiconducting single-walled carbon nanotubes," Science,2003,301:344-347.
    [70]Tanaka T., Urabe Y., Nishide D., et al., "Continuous Separation of Metallic and Semiconducting Carbon Nanotubes Using Agarose Gel," Applied Physics Express,2009,2:
    [71]Kim W. J., Nair N., Lee C. Y., et al., "Covalent functionalization of single-walled carbon nanotubes alters their densities allowing electronic and other types of separation," Journal of Physical Chemistry C,2008,112:7326-7331.
    [72]Kanungo M., Lu H., Malliaras G. G., et al., "Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions," Science,2009,323:234-237.
    [73]Chattopadhyay D., Galeska L., and Papadimitrakopoulos F., "A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes," Journal of the American Chemical Society,2003,125:3370-3375.
    [74]Tu X. M., Manohar S., Jagota A., et al., "DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes," Nature,2009,460:250-253.
    [75]Hassanien A., Tokumoto M., Umek P., et al., "Selective etching of metallic single-wall carbon nanotubes with hydrogen plasma," Nanotechnology,2005,16:278-281.
    [76]Zhang Y. Y., Zhang Y., Xian X. J., et al., "Sorting out semiconducting single-walled carbon nanotube Arrays by preferential destruction of metallic tubes using xenon-lamp irradiation," Journal of Physical Chemistry C,2008,112:3849-3856.
    [77]Qiu H. X., Maeda Y., and Akasaka T., "Facile and Scalable Route for Highly Efficient Enrichment of Semiconducting Single-Walled Carbon Nanotubes," Journal of the American Chemical Society,2009,131:16529-16533.
    [78]Wang B., Poa C. H. P., Wei L., et al., "(ri,m) selectivity of single-walled carbon nanotubes by different carbon precursors on co-mo catalysts," Journal of the American Chemical Society,2007,129:9014-9019.
    [79]Qu L. T., Du F., and Dai L. M., "Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs," Nano Letters,2008,8: 2682-2687.
    [80]Chiang W. H. and Sankaran R. M., "Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFel-x nanoparticles," Nature Materials,2009,8:882-886.
    [81]Lv X., Du F., Ma Y. F., et al., "Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds," Carbon,2005,43:2020-2022.
    [82]Jorio A., Saito R., Dresselhaus G., et al., "Determination of nanotubes properties by Raman spectroscopy," Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences,2004,362:2311-2336.
    [83]Kataura H., Kumazawa Y., Maniwa Y., et al., "Optical properties of single-wall carbon nanotubes," Synthetic Metals,1999,103:2555-2558.
    [84]Thomsen C., Telg H., Maultzsch J., et al., "Chirality assignments in carbon nanotubes based on resonant Raman scattering," Physica Status Solidi B-Basic Solid State Physics, 2005,242:1802-1806.
    [85]Brown S. D. M., Jorio A., Corio P., et al., "Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes," Physical Review B,2001,63:
    [86]Itkis M. E., Perea D. E., Niyogi S., et al., "Optimization of the Ni-Y catalyst composition in bulk electric Arc synthesis of single-walled carbon nanotubes by use of near-infrared spectroscopy," Journal of Physical Chemistry B,2004,108:12770-12775.
    [87]Wunderlich D., Hauke F., and Hirsch A., "Preferred functionalization of metallic and small-diameter single walled carbon nanotubes via reductive alkylation," Journal of Materials Chemistry,2008,18:1493-1497.
    [88]Voggu R., Rao K. V., George S. J., et al., "A Simple Method of Separating Metallic and Semiconducting Single-Walled Carbon Nanotubes Based on Molecular Charge Transfer," Journal of the American Chemical Society,2010,132:5560.
    [89]Alvarez L., Righi A., Guillard T., et al., "Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes," Chemical Physics Letters,2000, 316:186-190.
    [90]Zheng M., Jagota A., Strano M. S., et al., "Structure-based carbon nanotube sorting by sequence-dependent DNA assembly," Science,2003,302:1545-1548.
    [91]O'Connell M. J., Bachilo S. M., Huffman C. B., et al., "Band gap fluorescence from individual single-walled carbon nanotubes," Science,2002,297:593-596.
    [92]Tanaka T., Jin H., Miyata Y., et al., "Simple and Scalable Gel-Based Separation of Metallic and Semiconducting Carbon Nanotubes," Nano Letters,2009,9:-1497-1500.
    [93]'Kim W. J., Lee C. Y., O'brien K. P., et al., "Connecting Single Molecule Electrical Measurements to Ensemble Spectroscopic Properties for Quantification of Single-Walled Carbon Nanotube Separation," Journal of the American Chemical Society,2009,131:3128.
    [94]Wang B., Ma Y. F., Li N., et al., "Facile and Scalable Fabrication of Well-Aligned and Closely Packed Single-Walled Carbon Nanotube Films on Various Substrates," Advanced Materials,2010,22:3067-3070.
    [95]Lima A. M. F., Musumeci A. W., Liu H. W., et al., "Purity evaluation and influence of carbon nanotube on carbon nanotube/graphite thermal stability," Journal of Thermal Analysis and Calorimetry,2009,97:257-263.
    [96]Du F., Ma Y. F., Lv X., et al., "The synthesis of single-walled carbon nanotubes with controlled length and bundle, size using the electric arc method," Carbon,2006,44:1327-1330.
    [97]Seo K., Park K. A., Kim C., et al., "Chirality- and diameter-dependent reactivity of NO2 on carbon nanotube walls," Journal of the American Chemical Society,2005,127:15724-15729.
    [98]Robel I., Bunker B. A., and Kamat P. V., "Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies:Photoinduced charge-transfer interactions," Advanced Materials,2005,17:2458.
    [99]Kamat P. V., "Harvesting photons with carbon nanotubes," Nano Today,2006,1:20-27.
    [100]Dechakiatkrai C., Chen J., Lynam C., et al., "Photocatalytic oxidation of methanol using titanium dioxide/single-walled carbon nanotube composite," Journal of the Electrochemical Society,2007,154:A407-A411.
    [101]Xie Y., Heo S. H., Yoo S. H., et al., "Synthesis and Photocatalytic Activity of Anatase TiO(2) Nanoparticles-coated Carbon Nanotubes," Nanoscale Research Letters,2010,5: 603-607.
    [102]Wang W. D., Serp P., Kalck P., et al., "Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method," Journal of Molecular Catalysis a-Chemical,2005,235:194-199.
    [103]Ahmmad B., Kusumoto Y., Somekawa S., et al., "Carbon nanotubes synergistically enhance photocatalytic activity of TiO2," Catalysis Communications,2008,9:1410-1413.
    [104]Kongkanand A. and Kamat P. V., "Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions," Acs Nano,2007,1:13-21.
    [105]Dai J. F., Li J., Zeng H. L., et al., "Measurements on quantum capacitance of individual single walled carbon nanotubes," Applied Physics Letters,2009,94:
    [106]Ajayan P. M., Terrones M., de la Guardia A., et al., "Nanotubes in a flash-Ignition and reconstruction," Science,2002,296:705-705.
    [107]Mirfakhrai T., Oh J., Kozlov M., et al., "Electrochemical actuation of carbon nanotube yarns," Smart Materials & Structures,2007,16:S243-S249.
    [108]Goldschmidtboing F., Katus P., Geipel A., et al., "A novel self-heating paraffin membrane micro-actuator," Mems 2008:21st Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest,2008,531-534.
    [109]Lehto M. and Boden R., "A Multi-Stable Miniature Paraffin Actuator," Actuator 08, Conference Proceedings,2008,864-867.
    [110]Boden R., Lehto M., Simu U., et al., "Polymeric paraffin micropump with active valves for high-pressure microfluidics," Transducers '05, Digest of Technical Papers, Vols 1 and 2, 2005,201-204.
    [111]Klintberg L., Svedberg M., Nikolajeff F., et al., "Fabrication of a paraffin actuator using hot embossing of polycarbonate," Sensors and Actuators a-Physical,2003,103:307-316.
    [112]Carlen E. T. and Mastrangelo C. H., "Electrothermally activated paraffin microactuators," Journal of Microelectromechanical Systems,2002,11:165-174.
    [113]Klintberg L., Karlsson M., Stenmark L., et al., "A large stroke, high force paraffin phase transition actuator," Sensors and Actuators a-Physical,2002,96:189-195.
    [114]Josephson R. K., "Contraction Dynamics and Power Output of Skeletal Muscle," Annual Review of Physiology,1993,55:527-546.
    [115]Peterson D. R., "Biomechanics:Principles and Applications,"
    [116]Huber J. E., Fleck N. A., and Ashby M. F., "The selection of mechanical actuators based on performance indices," Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,1997,453:2185-2205.
    [117]Ravin L. J. and Higuchi T., "A dilatometric study of melting behaviors of some fats, waxes, and related substances of pharmaceutical importance I. Polyethylene glycols, spermaceti, cetyl alcohol, petrolatum, white wax, and theobroma oil," Journal of the American Pharmaceutical Association,1957,46:732-738.
    [118]Marashi M. S. and Khaki J. V., "The effect of aluminothermic reaction on the progress of carbothermic reaction in simultaneous mechanochemical reduction of CuO and ZnO," Journal of Alloys and Compounds,2009,482:522-525.
    [119]Chaban V., "Filling carbon nanotubes with liquid acetonitrile," Chemical Physics Letters, 2010,496:50-55.
    [120]Potschke P., Pegel S., Claes M., et al., "A novel strategy to incorporate carbon nanotubes into thermoplastic matrices," Macromolecular Rapid Communications,2008,29:244-251.
    [121]Zhou R. F., Meng C. Z., Zhu F., et al., "High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes," Nanotechnology, 2010,21:
    [122]Kelly B. T., "The thermal expansion coefficients of graphite crystals—the theoretical model and comparison with 1990 data," Carbon,1991,29:721-724.
    [123]Mitchell P., Naylor G. R. S., and Phillips D. G., "Torque in worsted wool yarns," Textile Research Journal,2006,76:169-180.
    [124]Fan X.-D., Liu Q., Liu L.-X., et al., "Coupled modes of the torsion pendulum," Physics Letters A,2008,372:547-552.
    [125]Spinks G. M., Liu L., Wallace G. G., et al., "Strain response from polypyrrole actuators under load," Advanced Functional Materials,2002,12:437-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700