用户名: 密码: 验证码:
鄂尔多斯盆地上古生界储层砂岩特征及成岩作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以普通薄片与铸体薄片、阴极发光、扫描电镜、全岩和粘土矿物X射线衍射、同位素、包裹体测温等为研究方法和手段,运用沉积学和地球化学等理论,对鄂尔多斯盆地上古生界储层砂岩的岩石学特征、自生矿物的构成与形成机制、孔隙类型与孔隙演化、成岩作用与成岩演化进行了系统研究和合理解释。
     鄂尔多斯盆地上古生界储层砂岩岩芯得出的孔隙度平均值为6.33%,渗透率平均值为1.559×10~(-3)μm~2,属于低孔低渗—致密性的砂岩储层。地层尺度上,从上部的从石千峰组到太原组及下部的本溪组,储层砂岩的岩石成分成熟度(Q1/(F1+R1)指数)逐渐升高、而长石含量逐渐降低,两者之间显示出良好的互补性,这主要因为成岩过程中由煤系地层产生的酸性流体对长石等易溶组分的溶解造成的,显微镜鉴定和X衍射分析证明被溶解的长石主要是钾长石。上古生界储层砂岩的孔隙主要是由岩屑溶孔、长石溶孔、铸模孔和晶间孔等构成的。从石千峰组到上石盒子组受煤系地层的影响比较小,压实作用造成总面孔率的减少,孔隙构成主要是原生孔。下石盒子组到太原组面孔率是逐渐增加的,次生孔隙对面孔率的贡献值远大于原生孔隙,尤其是太原组,其孔隙空间几乎全由次生孔隙构成的,而太原组的平均渗透率是上古界地层组最低的,仅为0.35×10~(-3)μm~2,但0~1%的孔隙占了总孔隙度的21.35%,这就使得太原组砂岩孔隙的连通性变差,储层质量下降。
     不同地层组储层砂岩压实作用和胶结作用对储层的影响结果不同,石千峰组和上石盒子组地层中压实作用对的砂岩孔隙度影响较大,虽然埋藏深度相对较浅,但压实强度却比下伏地层高;下石盒子组、山西组和太原组等地层中胶结作用对砂岩孔隙的影响较大,虽然埋藏深但压实作用强度却比上覆地层低,较早时期发生的胶结作用使这些地层的粒间孔隙体积高于上覆地层。
     鄂尔多斯盆地上古生界自生矿物平均含量为10.8%,总体上具有较高的硅质胶结物和高岭石胶结物和较低的方解石胶结物。自生矿物的构成具有明显的地层专属性,石千峰组、上石盒子组等上部地层的绿泥石含量较高,下石盒子组、山西组和本溪组等地层的自生高岭石和硅质胶结物含量较高,山西组下部地层段与太原组具较高白云石含量,太原组同时也具有较高的自生伊利石含量。
     从石千峰组到山西组,高岭石含量呈现出逐渐增加的变化趋势,并与碎屑长石含量之间表现出良好的消长关系。自生高岭石在纵向上的变化趋势表现出两个旋回,即本溪组—太原组旋回和山西组—石千峰组旋回,两个旋回代表了两种成岩流体介质的变化过程。硅质胶结物常与高岭石相伴,都是长石溶解的产物,但有部分硅质胶结物的沉淀与同期火山物质的蚀变有关,硅质胶结物的包裹体均一化温度主要集中在90℃~100℃之间,显示较低的沉淀温度和较早的沉淀时间。石千峰组和上石盒子组地层现今仍有含量较高的凝灰质,这些火山物质也是形成硅质胶结物的重要来源之一。方解石胶结物平均含量为2%,且具有很负δ(13)~C值和很高的包裹体均一化温度(150℃左右),其形成与有机酸的有关和较晚的沉淀时间,方解石常会占据长石溶解空间。白云石胶结物的δ(13)~C值显著高于方解石,并靠近海水值,δ(18)~O值显著高于方解石,沉淀温度低于方解石,沉淀时间早于大多数方解石和自生石英,白云石胶结物较少占据长石溶解空间。高岭石对储层的影响是正面的,而硅质胶结物和白云石对储层演化的影响是中性的或保持性的,方解石胶结物对储层的影响是负面的。
     溶解作用是鄂尔多斯盆地上古生界非常重要的成岩作用,溶解介质主要来自煤系地层产生的酸性流体,溶解时间从同生阶段—埋藏成岩作用初期一直到深埋藏的晚成岩阶段,由此造就了其独具特色的成岩条件。
     在对各层位砂岩储层特征、自生矿物的形成机理、成岩作用对储层的影响的研究基础上,对不同地层组的成岩历史、成岩序列和孔隙演化模式进行了归纳总结,为鄂尔多斯盆地上古生界砂岩的储层质量预测提供理论指导。
Using theories of sedimentology and geochemistry, the petrologic characteristics, composition and formation mechanism of authigenic minerals, type and evolution of pore, digenesis and digenetic evolution of the upper Paleozoic sandstones reservoir of Ordos Basin were systematically studied through impregnated thin sections, cathodoluminescence, scanning electron microscopy, whole rock and clay mineral X-ray diffraction, isotope, and inclusion temperature.
     The upper Paleozoic sandstone reservoirs in Ordos basin presents low porosity of average porosity of 6.33% and permeability of average permeability 1.559×10~(-3)μm~2 derived from sandstone cores. The compositional maturity (Q1 / (F1 + R1) index) and feldspar content of sandstone reservoirs increase and reduce respectively which shows good complementarity from upper Shiqianfeng Formation to lower Taiyuan and Benxi Formations, primarily because of the diagenetic process of acid fluid dissolution of feldspars and other soluble components and the dissolved feldspar is mainly K-feldspar under microscopic and X diffraction analysis. The porosity of upper Paleozoic sandstone reservoirs are mainly dissolution porosity of feldspar, mold porosity and intragranular dissolved porosity. The porosity of thin sections shows a decreasing trend from the upper Shiqianfeng Formation to the lower Shangshihezi Formation, and the porosity constitute mainly primary porosity and pore reduction is mainly caused by the compaction and relatively small by the formation of coal. The porosity of thin sections increases from Xiashihezi Formation to Taiyuan Formation and secondary porosity is much larger than the original porosity in total porosity, especially in Taiyuan Formation, their porosity is almost entirely composed of secondary porosity, but the porosity of 0 to 1% account for 21.35% of the total porosity, while the average permeability is the Taiyuan Formation is the lowest of the Upper Paleozoike, only 0.35×10~(-3)μm~2, which makes the connectivity and reservoir quality of the Taiyuan formation poorer.
     The different Formation of the upper Paleozoic sandstone reservoirs has undergone the different compaction and cementation. The compaction of the Shihezi Formations and Shiqianfeng Formations is stronger although at relatively shallow burial depth, while the cementation of the low Shihezi, Shanxi and Taiyuan Formations are weaker, because the earlier cementation occurred to makes intergranular pore volume of sandstones higher than the overlying strata.
     The average content of authigenic minerals in of the upper Paleozoic of Ordos Basin is 10.8%. The authigenic minerals of sandstones are made of high silica cement and kaolinite cements and low calcite cement. The composition of authigenic minerals have obvious specificity that the Shiqianfeng Formation and Shihezi Formation show higher levels of chlorite while the Xiashihezi, Shanxi and Benxi Formations of higher authigenic kaolinite and silica cement. The lower Shanxi and Taiyuan Formation have high dolomite content and the former is also of a high authigenic illite content.
     The kaolinite content of Shiqianfeng to Shanxi Formation shows a growing trend, and the feldspar content is on the contrary. The trends of authigenic kaolinite display the Benxi– Taiyuan Formation cycles and the Shanxi - Shiqianfeng Formation cycles, which represents two types of changing diagenetic fluids. Silica cement is often accompanied with kaolinite, which is the product of feldspar dissolution, sometimes, the part of the precipitation of silica cement are related to alteration of volcanic materials on the same period. The siliceous cement homogenization temperature of inclusions of quartz in sandstones vary mainly between 90℃~ 100℃, which indicate that precipitation temperature of authigenic quartz is lower and that precipitation time is earlier. The sandstones of Shiqianfeng and Shihezi Formations show high tuffaceous materials, which is important volcanic source of cement. The average content of calcite cement, with a very negativeδ(13)~C value and high homogenization temperature (150℃or so), is 2%, which is affected by organic acids during the formation. The precipitation of calcite cement occured later, and calcite often occupy space of feldspar dissolution.δ(13)~C values of dolomite cements are significantly higher than calcite, and close to the seawater value, and so do theδ(18)~O. the calcite precipitation temperature is lower and earlier than most of the precipitation of calcite and authigenic quartz, while dolomite cements donot occupy feldspar solution space. Kaolinite shows a positive impact on reservoir, silica and dolomite cements remain neutral in the evolution of the reservoir. However the calcite cements are the negative influence on reservoir.
     Dissolution of the upper Paleozoic of Ordos Basin was the main diagenesis and the dissolution fluid was mainly from the acid fluid of coal formation. The dissolving time started from the same period of the early burial diagenesis to deep burial of the late diagenetic stage which created the unique diagenetic conditions.
     Based on the study of the characteristics of sandstone reservoir, the formation mechanism of authigenic mineral, the impact of diagenesis on the reservoir, diagenetic history and diagenetic sequences and porosity evolution model were summarized for the different of the Paleozoic sandstone reservoir in Ordos Basin, which provides theoretical guidance for the reservoir quality prediction.
引文
Al-Shaieb Z , Shelton J W , Migration of hydrocarbons and secondary porosity in sandstones[J].AAPG Bulletin,1981,65:2433-2436.
    Baker J C,Havord P J,Martin K R,et al.Diagenesis and petrophysics of the Early Permian Moogooloo Sandstone,southern Carnarvon Basin,Western Australia[J].AAPG Bulletin,2000,84,2:250-265.
    Beard D C & Weyl P K.Influence of Texture on Porosity and Permeability of Unconsolidated Sand[J].AAPG Bulletin,1973,57(2):349-369.
    Bethke C M,Marshak S.Brine migrations across North America:the plate tectonics of groundwater[J].Annual Review of Earth and Planetary Sciences,1990,18:287-315.
    Bjφrlykke K,Nedkvitne T,Ramm M,et al.Diagenetic processes in the Brent Group (Middle Jurassic ) reservoirs of the North Sea: an overview[J] . Geological Society Special Publications,1992,61:263-287.
    Bloch S,Franks S G,Preservation of shallow plagioclase dissolution porosity during burial; implications for porosity prediction and aluminum mass balance[J].AAPG Bulletin,1993,77:1488-1501.
    Bloch S,Lander R H,Bonnell L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and predictability[J].AAPG Bulletin,2002,86(2):301-328.
    Bloch S.Secondary porosity in sandstones:Significance,origin,relationship to subaerial unconformities,and effect on predrill reservoir quality prediction.in Wilson M D,ed.,Reservoir Quality assessment and prediction in clastics rocks[J].SEPM short Course,1994,30:136-159.
    Bohacs K,Sute J.Sequence stratigraphic distribution of coaly rocks:Fundamental controls and Paralic Examples[J].AAPG Bulletin,1997,81(10):1612-1639.
    Byrnes A P,Wilson M D,Measurement of independent variables—Pressure,time,temperature,time-temperature,in Wilson M D,ed.,Reservoir Quality assessment and prediction in clastics rocks[J].SEPM short Course,1994,30:293-309.
    Chepikov K R,Vasilev V G,and Tikhomirov Yu P,Geological structure and oil and gas possibilities of the eastern part of the Siberian platform[R].International Geological Congress,Publisher International Geological Congress,1960,Source Part 11,37-46.
    Deming D,Sass J H,Lachenbruch A H,et al.Heat flow and subsurface temperature as evidence for basin-scale ground-water flow,North Slope of Alaska[J].Geological Society of America Bulletin,1992,104:528-542.
    Dutton S P,Timing of compaction and quartz cementation from integrated petrographic and burial-history analyses,Lower Cretaceous Fall River Formation,Wyoming and South Dakota[J].Journal of Sedimentary Research,1997,67:186 - 196.
    Ehrenberg S N. Kaolinized,potassium-leached zones at the contacts of the Garn Formation,Haltenbanken,mid-Norwegian continental shelf[J].Marine and Petroleum Geology,1991,8:250-269.
    Ehrenberg S N,Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite:Examples from the Norwegian Continental Shelf[J].AAPG Bulletin,1993,77(7):1260-1286.
    Franks S G,Forester R W,Relationships among secondary porosity,pore-fluid chemistry and carbon dioxide,Texas Gulf Coast[J].AAPG Memoir,1984,37:63-79.
    Galloway W E.Hydrogeologic regimes of sandstone diagenesis[J].AAPG Memoir,1984,37:3-13.
    Giles M R,de-Boer R B,Secondary porosity:creation of enhanced porosities in the subsurface from the dissolution of carbonate cements as a result of cooling formation waters[J].Marine and Petroleum Geology,1989,6:261-269.
    Giles M R,Marshall J D,Constraints on the development of secondary porosity in the subsurface:reevaluation of processes[J]. Marine and Petroleum Geology,1986,3:243-255.
    Giles M R,Mass transfer and problems of secondary porosity creation in deeply buried hydrocarbon reservoirs[J].Marine and Petroleum Geology,1987,4:188-204.
    Gluyas J,Cade C A,Prediction of Porosity in Compacted Sands[J].AAPG Memoir,1998,69, 19-28.
    Hayes M J,Boles J R. Volumetric relations between dissolved plagioclase and kaolinite in sandstones : implications for aluminum mass transfer in the San Joaquin Basin ,California[J].Special Publication-Society of Economic Paleontologists and Mineralogists,1992,47:111-123.
    Houseknecht D W.Assessing the Relative Importance of Compaction Processes and Cementation to Reduction of Porosity in Sandstones[J].The American Association of Petroleum Geologists Bulletin[J].1987,71(6):633-542.
    Hutcheon I,Abercrombie H J.Carbon dioxide in clastic rocks and silicate hydrolysis[J].Geology (Boulder),1990a,18:541-544.
    Hutcheon I,Abercrombie H J. Fluid-rock interactions in thermal recovery of bitumen,Tucker Lake pilot,Cold Lake,Alberta[J].AAPG Memoir,1990b,49:161-170.
    Keller W D.Kaolinization of feldspar as displayed in scanning electron micrographs[J].Geology (Boulder),1978,6:184-188.
    Lander R H and Walderhaug O,Predicting porosity through simulating sandstone compaction and quartz cementation[J].AAPG Bulletin,1999,83(3):433 - 449.
    Lander R H,Quantitative prediction of sandstone reservoir quality via simulation of compaction and quartz cementation[J]. Warta Geologi = Newsletter of the Geological Society of Malaysia (June 1996),22(3):178-179
    Longstaff F j.Clays and the resource geology[M].Calgary:Mineralogical Association of Canada,1981.
    Lundegard P D,Land L S,Galloway W E,Problem of secondary porosity:Frio Formation (Oligocene),Texas Gulf Coast[J].Geology (Boulder),1984,12:399-402.
    Lundegard P D , Sandstone porosity loss ; a "big picture" view of the importance of compaction[J].Journal of Sedimentary Research,Mar 1992,62:250 - 260.
    Makowitz A,Lander R H and Milliken K L,Diagenetic modeling to assess the relative timing of quartz cementation and brittle grain processes during compaction[J].AAPG Bulletin,2006,90(6):873 - 885.
    Manning D A C & Bewsher A . Determination of anions in landfill leachates by ion chromatography[J].Journal of Chromatography A,1997,770(1-2):203-210.
    McBride E F.Quartz cement in sandstone:a review[J ].Earth-Science Reviews,1989,26(2):69 - 112.
    Molenaar N,Lander R H and Walderhaug O,Predicting porosity through simulating sandstone compaction and quartz cementation[J].AAPG Bulletin,1999,83:433 - 449.
    Nedkvitne T K,Secondary porosity in the Brent Group (Middle Jurassic),Huldra Field,North Sea:implication for predicting lateral continuity of sandstones[J].Journal of Sedimentary Petrology,1992,62:23-34.
    Nutting P G,Some physical and chemical properties of reservoir rocks bearing on the accumlation and discharge of oil[R].Index of North American Geology,1934,825-832.
    Percival J A & Card K D.Archean crust as revealed in the Kapuskasing uplift,Superior province,Canada[J].Geology,1983,11(6):323-326.
    Pittman E D,Lumsden D N,Relationship between chlorite coatings on quartz grains and porosity,Spiro Sand,Oklahoma[J].Journal of Sedimentary Petrology,1968,38:668-670.
    Ramm M,Porosity-depth trends in reservoir sandstones; theoretical models related to Jurassic sandstones offshore Norway[J].Marine and Petroleum Geology,1992,9:553-567.
    Rezaee M R & Tingate P R.1997.Origin of quartz cement in the Tirrawarra sandstone, Southern Cooper Basin, South Australia[J].Journal of Sedimentary Research,67(1): 168-177.
    Sadikh-Zadeh L A,Prediction of sandstone porosity through quantitative estimation of its mechanical compaction during lithogenesis(Bibieybat Field,South Caspian Basin)[J].Natural Resources Research(New York,N.Y.),(March 2006),15(1):27-32.
    Schmidt V , McDonald D A , Texture and recognition of secondary porosity in sandstones[J].Special Publication-Society of Economic Paleontologists and Mineralogists,1979,26:209-225.
    Smith J T,Ehrenberg S N,Correlation of carbon dioxide abundance with temperature in clastic hydrocarbon reservoirs:relationship to inorganic chemical equilibrium[J].Marine and Petroleum Geology,1989,6:129-135.
    Stanton P T,Byrnes A P,Measurement of independent variables—open-closed system variables,in Wilson M D,ed.,Reservoir Quality assessment and prediction in clastics rocks[J].SEPM short Course,1994,30:311-319.
    Stanton P T,Wilson M D.Measurement of independent variables—composition,in Wilson M D,ed.,Reservoir Quality assessment and prediction in clastics rocks[J].SEPM short Course,1994,30:277-290.
    Surdam R C,Boese S W,Crossey L J,The chemistry of secondary porosity[J].AAPG Memoir,1984a,37:127-149.
    Surdam R C,Crossey L J, Integrated diagenetic modeling:a process-oriented approach for clastic systems[J].Annual Review of Earth and Planetary Sciences,1987,15:141-170.
    Surdam R C,Crossey L J,Hagen E S,et al.Organic-inorganic and sandstone diagenesis[J].AAPG Bulletin,1989,73:1-23.
    Surdam R C,Crossey L J,Lahamn R,Mineral oxidants and porosity enhancement[J].AAPG Bulletin,1984b,68:532.
    Taylor K G,Gawthorpe R L,Curtis C D,et al. Carbonate cementation in a sequence-stratigraphic framework: Upper Cretaceous sandstones, Book Cliffs, Utah-Colorado[J].Journal of Sedimentary Research,2000,70:360-372.
    Taylor T T,The influence of calcite dissolution of reservoir porosity in Miocene Sandstones,Picaroon Field,Offshore Texas Gulf Coast[J].Journal of Sedimentary Petrology,1990,60:322-334.
    Walderhaug O and Bj?rkum P A,The Effect of Stylolite Spacing on Quartz Cementation in the Lower Jurassic St? Formation,Southern Barents Sea[J].Journal of Sedimentary Research,2003,73:146 - 156.
    Walderhaug O,Bj?rkum P A, Nadeau P H et al.,Quantitative modelling of basin subsidence caused by temperature-driven silica dissolution and reprecipitation[J] . Petroleum Geoscience,2001,7:107 - 113.
    Walderhaug O.Modeling Quartz Cementation and Porosity in Middle Jurassic Brent Group Sandstones of the Kvitebj?rn Field,Northern North Sea[J].AAPG Bulletin,2000,84:1325 - 1339.
    Wilson M D. Measurement of independent variables-hydrocarbon emplacement, clay content, textural measurements, in M. D. Wilson, ed., Reservoir Quality assessment and prediction in clastics rocks[J].SEPM short Course, 1994, 30: 321-327.
    包洪平,杨奕华,王晓方,等.同沉积期火山作用对鄂尔多斯盆地上古生界砂岩储层形成的意义[J].古地理学报,2007,9(4):397-406.
    长庆石油地质志编写组.中国石油地质志(卷12)—长庆油田[M].北京:石油工业出版社,1992,1-46; 62-69.
    丁晓琪,张哨楠,周文,等.鄂尔多斯盆地北部上古生界致密砂岩储层特征及其成因探讨[J].石油与天然气地质,2007,28(4):491-496.
    冯文立,黄思静,黄培培,等.鄂尔多斯盆地东北部太原组砂岩储层特征[J].岩性油气藏,2009,21(3):89-94.
    付金华,魏新善,任军锋,等.鄂尔多斯盆地天然气勘探形势与发展前景[J].石油学报,2006,27(6):1-4.
    郭春清,沈忠民,张林晔,等.砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述[J].地质地球化学,2003,31(3):53-57.
    郝蜀民,惠宽洋,李良.鄂尔多斯盆地大牛地大型低渗气田成藏特征及其勘探开发技术[J].石油与天然气地质,2006,27(6):762-768.
    何自新,费安琦,王同和,等.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003,155-173.
    何自新,南珺祥.鄂尔多斯盆地上古生界储层图册[M].北京:石油工业出版社,2004.
    胡安平,李剑,张文正,等.鄂尔多斯盆地上、下古生界和中生界天然气地球化学特征及成因类型对比[J].中国科学,D辑:地球化学,2007,37,增刊II:157-166.
    胡宗全.鄂尔多斯盆地上古生界砂岩储层方解石胶结物特征[J].石油学报,2003,24(3):40-43.
    黄思静,侯中健.地下孔隙率和渗透率在空间和时间上的变化及影响因素[J].沉积学报,2001,19(02):224-232.
    黄思静,黄培培,王庆东,等.胶结作用在深埋藏砂岩孔隙保存中的意义[J].岩性油气藏,2007,19(3):7-13.
    黄思静,石和,,林金辉,等.鄂尔多斯盆地中南部延长组主要油层组有利储集体特征及展布研究[R].成都理工大学,长庆油田公司勘探开发研究院,成都理工大学档案馆,2001,内部资料.
    黄思静,石和,张萌,等.锶同位素地层学在碎屑岩成岩研究中的应用[J].沉积学报,2002,20(3):359-366.
    黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用—以鄂尔多斯盆地三叠系延长组为例[J].地球科学—中国地质大学学报,2003,28(4):419-424.
    黄思静,谢连文,张萌,等.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报(自然科学版),2004,31(3):273-281.
    黄思静,张萌,朱世全,等.砂岩孔隙成因对孔隙度/渗透率关系的控制作用——以鄂尔多斯盆地陇东地区三叠系延长组为例[J].成都理工大学学报(自然科学版),2004,28(6):419-424.
    侯明才.鄂尔多斯盆地东北部二叠系层序地层和砂体展布规律研究[R].成都理工大学博士后研究出站报告,成都理工大学档案馆,2006.
    季汉成,杨潇.鄂尔多斯盆地东部山西组山2段储层孔隙类型及成因分析[J].高校地质学报,2008,14(2):181-190.
    李芳,蒋加钰,杨彩娥.鄂尔多斯盆地上古生界山二3亚段储层预测方法及效果[J].石油天然气学报(江汉石油学院学报),2005,27(6):859-861.
    李贵红,张泓.鄂尔多斯盆地晚古生代煤层作为气源岩的成烃贡献[J].天然气工业,2009,29(12):1-4.
    李景明,罗霞,李东旭.中国天然气地质研究的战略思考[J].天然气地球科学,2007,18(6):777-781.
    刘林玉,陈刚,柳益群,等.碎屑岩储集层溶蚀型次生孔隙发育的影响因素分析[J].沉积学报,1998,16(2):97-101.
    刘锐娥,孙粉锦,拜文华,等.苏里格庙盒8气层次生孔隙成因及孔隙演化模式探讨[J].石油勘探与开发,2002,29(4):47-52.
    刘岩,张哨楠,丁晓琪,等.鄂尔多斯盆地定边北部石盒子组—山西组储层成岩作用[J].成都理工大学学报(自然科学版),2009,36(1):29-34.
    柳益群,李文厚.陕甘宁盆地东部上三叠统含油长石砂岩的成岩特点及孔隙演化[J].沉积学报,1996,14(3),87-96.
    卢焕勇,陈景维,邸世祥,等.内蒙乌兰格尔地区上古生界砂岩的成岩作用[J].石油实验地质,1991,13(1):41-52.
    南珺祥,解丽琴,刘绥保,等.鄂尔多斯苏里格气田二叠系低孔低渗储层成因[J].西北大学学报(自然科学版),2005,35(2):207-211.
    史丹妮,金巍.砂岩中自生石英的来源、运移与沉淀机制[J].岩相古地理,1999,19(6):65-70.
    汪正江,陈洪德,张锦泉.鄂尔多斯盆地晚古生代沉积体系演化与煤成气藏[J].沉积与特提斯地质,2002,22(2):18-23.
    王春梅,黄思静,裴昌蓉,等.西湖凹陷古近系碳酸盐阴极发光特征分析[J].断块油气田,2008,15(2):1-3.
    王峰,田景春,李凤杰,等.苏格里地区上古生界盒8储层成岩作用[J].兰州大学学报(自然科学版),2009,45(4):18-23.
    王瑞飞,孙卫.储层沉积—成岩过程中物性演化的主控因素[J].矿物学报,2009,29(3):399-405.
    吴素娟,黄思静,孙治雷,等.鄂尔多斯盆地三叠系延长组砂岩中的白云石胶结物及形成机制[J].成都理工大学学报(自然科学版),2005,32(6):569-575.
    席胜利,李文厚,魏新善,等.鄂尔多斯盆地上古生界两大气田不同石英砂岩储层特征对比研究[J].沉积学报,2009,27(2):221-229.
    谢风猛,陈克勇,张哨楠,等.塔巴庙上古生界砂岩储层成岩作用对孔隙结构的影响[J].物探化探计算技术,2007,29(3):223-227.
    谢庆邦,黄思静,杨承运.陕甘宁盆地中部气田奥陶系风化壳碳酸盐岩储层特征研究[J].天然气工业(增刊),1994,14:13-18.
    闫建萍,刘池洋,张卫刚,等.2010.鄂尔多斯盆地南部上古生界低孔低渗砂岩储层成岩作用特征研究[J].地质学报,84(2):272-279.
    杨华,席胜利,魏新善,等.鄂尔多斯多旋回叠合盆地演化与天然气富集[J].中国石油勘探,2006,1:17-24.
    杨华,杨奕华,石小虎,等.鄂尔多斯盆地周缘晚古生代火山活动对盆内砂岩储层的影响[J].沉积学报,2007,25(4):526-534.
    杨起,潘治贵,翁成敏,等.华北石炭—二叠纪煤变质特征与地质因素探讨[M].北京:地质出版社,1988.
    杨奕华,包洪平,贾亚妮,等.鄂尔多斯盆地上古生界砂岩储集层控制因素分析[J].古地理学报,2008,10(1):25-34.
    袁珂,周文,关森,等.鄂尔多斯靖边气田盒8段砂岩储层特征[J].物探化探计算技术,2009,31(3):271-276.
    张理刚.稳定同位素有地质科学中的应用[M].西安:陕西科学技术出版社,1985.
    张敏强,黄思静,吴志轩,等.东海盆地丽水凹陷古近系储层砂岩中碳酸盐胶结物及形成机制[J].成都理工大学学报(自然科学版),2007,34(3):259-266.
    张萌,黄思静,王麒翔,等.碎屑岩成岩过程中各种造岩矿物溶解特征的热力学模型[J].新疆地质,2006,24(2):187-192.
    张文涛,关平,熊金玉.成岩作用的热力学分析及应用实例[J].自然科学进展,2007,17(9):1209-1215.
    张文正,李建锋.鄂尔多斯盆地油气源研究[J].中国石油勘探,2001,6(4):28-36.
    张文正,杨华,解丽琴,等.鄂尔多斯盆地上古生界煤成气低孔渗储集层次生孔隙形成机理——乙酸溶液对钙长石、铁镁暗色矿物溶蚀的模拟实验[J].石油勘探与开发,2009,36(3):383-391.
    朱剑兵,陈丽华,纪友亮,等.鄂尔多斯盆地西缘逆冲带上古生界孔隙发育影响因素[J].石油学报,2006,27(3):37-40.
    朱平,黄思静,李德敏,等.粘土矿物绿泥石对碎屑储集岩孔隙的保护[J].成都理工大学学报(自然科学版),2004,31(2):153-156.
    朱筱敏,孙超,刘成林,等.鄂尔多斯盆地苏里格气田储层成岩作用与模拟[J].中国地质,2007,34(2):276-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700