用户名: 密码: 验证码:
胜利油田垦东北部油区储层特征与预测技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胜利油田垦东油区处于黄河入海口,为滩涂潮间带。胜利滩海地区浅层蕴藏着丰富的石油储量,而垦东油区是近年胜利油田滩海石油地震勘探重点之一。研究区前第三系的油藏类型主要是断块山、残丘山圈闭,古近系主要是地层超覆和岩性圈闭,新近系则发育三种油藏类型:构造-岩性油藏主要在潜山披覆构造主体上形成;岩性油藏则存在于北部斜坡带及构造较低部位;岩性断鼻油气藏存在于东部断阶。目的层埋藏浅,砂体厚度薄,储层纵横向变化大,油水关系复杂,地震资料存在多解性,储层预测难,是该区目前面临的油气勘探开发难题。
     针对垦东北部油区地质构造复杂、勘探难度大的构造-岩性油藏,从勘探技术和油气成藏规律两个方面进行了系统研究,重点对该区的断裂识别、储层预测、圈闭描述和评价进行了深入研究,并提出有利勘探目标。
     针对研究区断裂系统发育、地层破碎的特征,开展了复杂断裂系统识别技术研究。通过各种断层识别技术的试验分析,采用了基于相干分析的断层自动提取技术来识别断层。利用相干分析有效地突出了地层的不连续边界,根据相干数据体中断层倾角和方位角的变化,研究并采用了线性增强和断层矢量增强的方法,进一步强化了断层特征,并通过滤波压制噪声,在此基础上优选垂向和水平方向断层矢量,结合三维可视化技术得到该区的三维断裂系统。该方法有效地提高了断层识别的可靠性和效率。
     针对研究区断层发育、储层速度横向变化较大的特点,研究了变速成图技术在构造、层位解释中的应用。在钻井、测井及地震解释层位的约束下,利用模型层析法精确计算出各反射层的层速度、平均速度、地层倾角、入射点与反射点间偏移量等,在此基础上生成各层位构造图。通过与传统方法构造成图的对比分析,该方法更好地体现了研究区地层的横向变化。
     综合地质、测井和地震资料,对研究区进行了储层地震预测技术研究。采用地震时频分析、神经网络、波形分析等技术,对该区沉积相进行了研究与识别,将研究区河流相储集体的沉积亚相分为河道亚相、河道边缘亚相、泛滥平原亚相及废弃河道亚相四种类型,并分析了其沉积特征、物源方向及分布。对主要储层进行地震波阻抗反演研究,采用约束稀疏脉冲反演法,通过迭代优化得到全频带、高分辨率的波阻抗数据体,以此为基础对主要储层进行了预测。根据反演结果,研究落实了主要储层砂体的平面分布,并对已通过钻井证实的含油砂体进行了追踪,落实了9口井共计14套含油砂体的空间分布。通过与钻井资料的对比分析,储层预测符合率大于80%。
     通过正演模拟,研究了河道砂体在不同频率下的地震响应特征。通过频谱分解解决常规地震技术对该区薄互层储层识别困难的问题,研究认为频谱分解中的中~高频(40~60Hz)是该区薄砂体的体现;利用地震属性分析,提取了各种地震属性参数并进行各种试验分析,结合钻井成果确定了识别砂体的敏感属性。在采用常规属性对储层进行定性分析的基础上,利用多属性联合(优化)对储层饱和度进行了定量预测。在此基础上优选了勘探目标。
     综上,本文选取垦东北部油区开展储层地震预测方法研究,结合第三系岩石地球物理特征,分析储层的岩相、岩性、物性和流体变化对地震响应的影响,开展典型新近系河流相砂体的储层预测技术研究,形成了储层的岩性、物性和流体识别与预测的技术系列。
     通过研究主要取得了以下3项创新成果:
     ①复杂断裂系统识别技术。在垦东北部油区首次采用基于相干分析的断层自动识别技术对各层位进行了综合研究,可以形象、直观的发现断裂的空间展布规律及组合关系,该项技术有效地提高了断层识别的可靠性和效率。
     ②薄砂体储层准确识别技术。在垦东北部油区首次进行了河流相薄砂体储层准确识别技术的技术研究,通过地震资料的拓频处理、频谱分解、约束稀疏脉冲波阻抗反演等一系列技术,提高识别薄砂层的能力。
     ③河流相薄砂体储层特征曲线反演技术。针对垦东北部油区因储层、非储层波阻抗重叠过多,导致直接使用波阻抗无法准确预测储层岩性的问题,利用反映储层岩性特征的测井曲线重构拟声波曲线,并结合波阻抗反演技术来预测岩性,可以很好地得到薄储层的空间展布。
There are abundant hydrocarbon resources in the beach area of Shengli oilfield,and the oil reservoir of the Kendong area has been regarded as one of the mostimportant exploration targets. It also shows that the gas reservoir is controlled by twofactors of lithology and structure; the traps are mainly stratigraphic traps. The maintrap types of the Northern Area of Kendong include fault block hill trap and residualhill trap in Pre-tertiary, stratigraphic overlap trap and lithologic trap in lower Tertiary,and lithologic-structural trap in Neogene. There are the lithologic reservoirscontrolled by lithologic updip pinch out in the northern slope belt and the lower partof the structure. The lithologic-fault nose reservoir developed in the eastern fault zone,where the fluvial facies sandstone is dissected by antithetic faults. The target layersare characterized by shallow burial depth, thin sandbody, and lithology variesdramatically in both lateral and vertical directions. Additionally, oil-water relation ofthe reservoir is complicated and the seismic data are full of multiplicity, which makesit very difficult to predict the reservoirs.
     Aiming at the structural-lithologic reservoirs with complex geologic structure, thesystematic study was performed on the reservoir-forming law and explorationtechnology. On the basis of the deep study on the reservoir-forming law, reservoirprediction and trap evaluation, the favorable exploration targets are proposed.
     According to the fault dip&azimuth changes, the coherence analysis techniquewas used to enhance linear and planar features and the noise was reduced by thefiltering proceeding. On the basis of optimization of the vertical and horizontalvectors, the3-D fracture system was obtained with3-D visualization technology.
     For the objective interval of the study area has well developed faults and biglateral variation of velocity, the variable velocity mapping was applied for theprediction. Based on the interval velocity, formation dip and spatial offset ofreflection point deflecting incident point by the model chromatography, which isconstrained by drilling, logging and seismic interpreting horizons, the accuratestructural map was obtained. By contrast with the structural map of the traditional method, it could be used to identify low amplitude structure.
     Based on the synthetic analysis and study on the geology data, seismic data andlogging data, the study on seismic prediction techniques were made. By using thetime-frequency analysis, neural networks and waveform analysis technique, thesedimentary facies were divided into channel, embankment, flood plain andabandoned channel subfacies. The constrained sparse spike inversion was used inreservoir characters inversion and the impedance data volume obtained fromconstrained sparse spike inversion were used for prediction. From the inversionresults, the space distribution of14sets of oil-bearing sand were marked. By contrastwith the drilling well, the prediction accuracy is more than80%.
     By using the forward modeling, the seismic response characteristics of the channelsand body was described. The medium-high frequency (40~60Hz)of the seismicdata can reflect the thin sandstones.A variety of seismic attribute analysis and test ofmultiple seismic attribute parameters were maded, combined with the drilling result,the sensitivity attributes were determind which can be used to identify the thinsandbones.
     In this paper, integrated by the geophysical characteristics of rocks in Tertiary, theinfluence of the variations of the lithofacies, lithology, physical property and fluid onthe seismic response in the research area is analyzed. The study on the reservoirprediction technology of the fluvial facies sandstone in Neogene is carried out, andthe identification technology series of the lithology, physical property and fluid of thereservoir have been created.
     As a result of study three new techniques had been developed. They are asfollowing:
     ①the developed technology for identifying complex fault system in the northernarea of Kendong
     The automatic faults identification technology is applied to the comprehensivestudy on the horizons, which is one of the advanced faults identification technology.By using the automatic faults identification technology, the plane distributionregularity and complicated association of faults can be viewed straightforwardly.
     ②the developed technique for identifying correctly thin sandstones in the beacharea of Kendong
     The study on the reservoir identification technology of the thin sand bodies of braided river facies was made. By using the frequency expanding processing, spectraldecomposition and constrained sparse spike inversion technique, the faultsdistribution and pinchout boundary of the thin sandstones can be described correctly.
     ③the reservoir characters inversion for the thin sandstones in the beach area ofKendong
     The velocity difference between sandstone and mudstone is so weak that theacoustic curve can not demonstrate the lithologic characteristic of the strata effectively.Therefore, the reservoir characters log obained from well log which can showlithologic characteristic effectively, can be used for reservoir characters inversion.
引文
Alistair R B. Seismic attributes and their classification [J]. The Leading Edge,1996,15(10):1090
    Avijit C, David O. Frequency time decomposition of seismic data using wavelet-based methods[J]. Geophysics,1995,60(6):1906-1916.
    Barnes, A.E. Weighted average seismic attributes [J].Geophysics,2000,65(1):275~285
    Becquey M, Lavergne M. Willm C. Acoustic impedance logs computed from seismic traces[J].Geophysics,1979,44(9):1485~1501
    Berteussen K A, Ursinl B. Approximate computation of the acoustic impedance from seismicdata[J]. Geophysics,1983,48(10):1351~1358
    Brown, A. R. Understanding seismic attributes[J].Geophysics,2001,66(1):47~48
    Castagna J P, Sun S. Comparison of spectral decomposition methods [J].First Break,2006(24):75~79
    Castagna J P, Sun S, Siegfried R W. Instantaneous spectral analysis: Detection of low-frequencyshadows associated with hydrocarbons [J]. The Leading Edge,2003,(22):120,122,124~127.
    Cooke D A, Schneider W A. Generalized linear inversion of reflection seismic data[J].Geophysics,1983,48(6):665~676
    Greg P, James G, John L. Interpretational applications of spectral decomposition in reservoircharacterization[J]. The Leading Edge,1999,18(3):353-360.
    Hongbing Zhang, Zuoping Shang, Changchun Yang. Adaptive reconstruction method ofimpedance model with absolute and relative constraints[J], Journal of Applied Geophysics,2009,67(2):114~124
    Lawrence P, Aramco S, DhahranH and Arabia S. Seismic attributes in the characterization ofsmall-scale reservoir in Abqaiq Field [J]. The Leading Edge,1998,17(4):521~525
    Levy S, Fullagar P K. Reconstruction of a sparse spike train from a portion of its spectrum andapplication to high-resolution deconvolution[J]. Geophysics,1981,46(9):1235~1243
    Lindseth R O. Synthetic sonic logs-A process for stratigraphic interpretation [J].Geophysics,1979,44(1):3~26
    Liner et al. SPICE: A new general seismic attribute.Expanded Abstract of74th SEG Mtg,2004
    Liu Chuanhu. Seismic responses of texture-sequence models and their applications in hydrocarbonexploration [J]. Applied Geophysics,2005,2(1):21~25
    Lynn P, Rich B, Greg P. Interpretation of incised valleys using new3-D seismic techniques: a casehistory using spectral decomposition and coherency[J]. The Leading Edge,1998,17(9):1294~1298
    Maver K G, Rasmussen K B, Pdedrsen J M et al. Global stochastic seismic inversion with variableprior knowledge for lithology prediction[J].Expanded Abstracts of64th Annual Internat SEGMtg,1994,1024~1027
    M. Turhan Taner, James S, Schuelke,RonenO,Doherty and Edip Baysal,1994,Seismic attributesrevisted,64th ANNU SEG INT MTG.1104~1106
    Ostrander W J. Plane wave reflection coefficients for gas sands at nonnormao angels ofincidence[J]. Geophysics,1984,49:1637~1648
    Peterson R A, Fillipone W R, Coker F B. The synthesis of seismograms from well log data[J].Geophysics,1955,20(3):516~538
    Partyka G, Gridley J, Lopez J.Interpretational applications of spectral decomposition in reservoircharacterization [J].The Leading Edge,1999,18(3):353~360
    Pebecca B L,Rick D. An interpreter’s guide to understanding and working with seismic derivedacoustic impedance data [J]. The leading edge,2000,(3):246~255
    Quincy C, Steve S. Seismic attributes technology for reservoir forecasting and monitoring[J].The Leading Edge,1997,16(5):445~456
    Robertson J D, Nogmi H H. Complex trace analysis of thin beds [J].Geophysics,1984,49(4):344~352
    Sengbush R L, Lawrence P L, McDonal F J. Interpretation of synthetic seismogras[J].Geophsics,1961,26(2):138~157
    Shuying Wang, Huaishan Liu, Shuhua Wang, Siyou Tong. Paseudo-acoustic inversion method andapplication in Kendong area. Seventh International Conference on Fuzzy System andKnowledge Discovery, IEEE Press,2010.598-601
    Shuying Wang, Huaishan Liu, Shuhua Wang, Siyou Tong, Lei Xing.3-D visualization techniqueand its application.2010International Conference on Computer Application and SystemModeling.IEEE Press,2010.V3-345-348
    Sinha S, Routh P S, Anno P D, Castagna J P. Spectral decomposition of seismic withcontinuous-wavelet transforms[J]. Geophysics,2005,70,19~25
    Sun S, Castagna J P, Seigfried R W. Examples of wavelet t ransform time-frequency analysis indirect hydrocarbon detection [J].72nd Annual International Meeting, SEG, ExpandedAbstracts,2002,457~460.
    Turhan T M, Schuelke J S, Ronen O D, et al.Seismic attributes revisited[J].Soc ExplGeophys,1994,64:1104~1106.
    Walker C, Ulrych T J. Autoregressive recovery of the acoustic impendence[J]. Geophysics,1983,48(10):1338~1350
    Walls J D, Taner M T, Taylot G, et al. Seismic reservoir characterization of a mid-continent fluvialsystem using rock physics, postack seismic attributes and neural networks: A casehistory[J].Expanded Abstracts of70th Internet SEG Mtg,2000,1437~1439
    Widess M B. How thin is a thin bed [J] Geophysics,1973,38(6):1176~1180.
    Yilmaz O. Seismic data processing [M]. SEG Publication,1987,511~515
    毕俊凤,刘书会,陈学国,董立生.分频解释技术在桩106地区馆上段河道砂体描述中的应用[J].油气地质与采收率,2003,10(5):38~40
    蔡刚,吕锡敏,苏明军,等.频谱分解技术在准噶尔盆地油气勘探中的作用[J].天然气工业,2006,26(4):35~37
    蔡瑞.谱分解技术在储层预测中的应用[J].CT理论与应用研究,2003,12(2):22~25
    陈剑光,唐之庆,刘怀山,李金山,周军.相干技术在地震构造解释中的应用[J].南方油气,2005,18(4):37~39
    陈光俊,伊万顺,许建明,解晓平.断层自动拾取技术在大布苏地区地震资料解释中的应用[J].石油物探,2009.4(5):521~530
    程日辉,李飞,沈艳杰,唐华风.火山岩地层地震反射特征和地震-地质联合解释:以徐家围子断陷为例[J].地球物理学进展,2011,54(2):611~618
    崔凤林,管叶君.时频分析—薄互层结构研究的新途径[J].石油物探,1992.31(2):1~15
    邓宏文,王红亮,阎伟鹏,苏宗富,谢晓军,宋国齐,林会喜.河流相层序地层构成模式探讨[J].沉积学报,2004.22(3):373~379
    付兆辉,李敏.郯庐断裂对垦东地区构造和成藏的影响[J].海洋石油,2005,25(2):15~19
    付兆辉,高喜龙,陆友明,李敏,侯仔明.渤海湾盆地垦东凸起构造特征与油气聚集[J].现代地质,2008,22(4):620~627
    付兆辉.垦东凸起及邻区构造特征与油气聚集[D].北京:中国地质大学,2009
    付志方,张君,邢卫新,许浩.拟声波构建技术在砂泥岩薄互层储层预测中的的应用[J].石油物探,2006,45(4):415~417
    高喜龙,孙希瑞,李顺铃,杨明常.测井约束反演在埕岛油田储层预测中的应用[J].石油地球物理勘探,2001,36(3):334~338
    高月华,杨凤丽,林玉祥.垦东高凸起成藏动力学系统研究[J].海洋石油,2003,23(4):12~18
    葛双成,陈焕疆,丁晓.花状构造及其对油气勘探的意义[J].石油地球物理勘探,1993,28(4):453~461
    郝骞,张晶晶,李鑫,毛婉慧,张宇航.地震属性油气储层预测技术及其应用[J].湖北大学学报,2010,32(3):339~342
    何必朱,周杰,汪功怀.利用多元地震属性预测储层信息[J].石油地球物理勘探,2003,38(3):258~262
    贺电波,杜晓峰,李才,张志强.渤中21-2潜山内幕地层的地震识别与划分[J].石油物探,2011,50(1):45~50
    贺懿,刘怀山,毛传龙等.多曲线声波重构技术在储层预测中的应用研究.[J].石油地球物理勘探,2008,43(5):549~556
    胡宗全,唐钢.波阻抗反演在气藏描述中的应用[J].成都理工学院学报,1999,26(4):423~426
    季玉新,陈娟,谢雄举.测井曲线精细处理解释技术在复杂储层预测中的应用[J].石油物探,2004,43(2):139~144
    姜传金,马学辉,周恩红.拟声波曲线构建的意义及应用[J].大庆石油地质与开发,2004,23(1):12-14
    姜秀清,江洁,高平,季玉新,邹东波.地震属性分析技术在不同油气藏中的应用[J].石油物探,2004,43(增):70-72
    姜秀清.储层地震属性优化及属性体综合解释[D].北京:中国科学院,2006
    乐友喜,王永刚,张军华.储层参数平面分布预测方法评价[J].地质与勘探,2001,37(5):56~60
    李国发,廖前进,王尚旭,袁淑琴,王守东.合成地震记录层位标定若干问题的探讨[J].石油物探,2008,47(2):145~149
    李国发,王尚旭,马彦彦.基于叠前波场模拟的合成地震记录层位标定[J].中国石油大学学报(自然科学版),2010,34(1):29~33
    李海亮,张丽萍,万传治,石亚军,黄云锋.层位标定方法的研究和应用[J].中国西部油气地质,2005,1(1):114~116
    李劲松,李艳东,张昕,孙夕平.地震谱分解技术在岩性油气藏描述中的应用[J].石油天然气学报,2008,30(2):239~241
    李雷涛,肖秋红.地震波形分类技术在地震相分析中的应用-以清溪场地区为例[J].天然气技术,2010,4(5):4~7
    梁锋,袁淑琴.储层反演技术在埕北断阶区岩性油气藏评价中的应用[J].石油地球物理勘探,2008,43(1):54~58
    刘百红,李建华.测井和地震资料宽带约束反演的应用[J].石油物探,2004,43(1):76~79
    刘百红,郑四连,任鹏.时频分析技术及其在储层预测中的应用[J].勘探地球物理进展.2008,31(3):219~224
    刘力辉,常德双,殷学军.人工神经网络在预测储层中的应用[J].石油地球物理勘探,1995,30(增刊):90~95
    刘喜武,宁俊瑞.地震时频属性及其在油气地震地质技术中应用的综述[J].勘探地球物理进展.2009,32(1):18~22
    毛宁波,戴塔根,常德双,范哲清,李建英.沉积旋回的地震时频特征、地震分形特征和地震灰色特征研究[J].石油地球物理勘探.2003,38(增):134~137
    牛嘉玉,李峰.渤海湾盆地滩海地区油气富集规律与油气勘探[J].石油学报,2000,21(2):9~13
    牛敏荃译,Seymour R H.利用地震地质控制由井外推储集层岩性[J].国外油气勘探,1990,2(2):74~87
    彭存仓,顾菊萍.垦东地区上第三系馆陶组上段成藏规律研究[J].江汉石油学院学报.2002,24(4):10~12
    佘德平,曹辉,郭全仕.断裂系统解释与储层预测中的三维相干技术[J].石油与天然气地质,2007,28(1):100~105
    沈向存,杨江峰.声波曲线重构技术在地震反演中的应用[J].中国西部油气地质,2006,2(4):436~439
    孙义梅,杨春峰,陈程,贾曙光,田世澄.相干技术的参数选取及其效果分析[J].石油地球物理勘探,2001,36(5):640~645
    孙渊,李津.地震多参数储层及油气预测应用研究[J].西安工程学院学报,1998,20(1):55~60
    童思友,刘怀山,陈容.地震属性优化技术在胜利油田CJZ东坡的应用[J].西北地质,2004,37(4):91~95
    王保丽,印兴耀,张繁昌.弹性阻抗反演及应用研究.地球物理学进展,2005,20(1):89~92.
    王楠.沾车地区速度场的建立及应用[J].油气地球物理,2010,8(4):15~18
    王世瑞,王树平,狄帮让,任敦占,王振国,陆道林.基于地震属性特征的河道砂体预测方法[J].石油地球物理勘探,2009,44(3):304~313
    王树华,刘怀山,张云银,刘国宏,刘志勇.变速成图方法及应用研究[J].中国海洋大学学报,2004,34(1):139~145
    王伟,张世奇,纪友亮.青坨子凸起馆陶组地震相研究[J].断块油气田,2007,14(1):16~18
    王西文.相对波阻抗数据体约束下的多井测井参数反演方法及应用[J].石油地球物理勘探,2004,39(3):291~299
    王永刚,乐友喜,刘伟,曹丹平.地震属性与储层特征的相关性研究[J].石油大学学报(自然科学版),2004,28(1):26-30
    王玉学,汤达祯,龚建华等.拟声波反演技术在储层预测中的应用—以吐哈盆地台北凹陷胜北地区白垩系为例[J].石油物探,2004,26(3):303~30
    隗寿东译,M Turhan Tanner著.地震属性[J].油气地球物理,2006,4(1):55~59
    吴国忱,印兴耀,杨风丽.油藏描述中多层次地震预测技术的应用.石油大学学报(自然科学版),1999,23(5):20~23
    吴建华,王绪龙.合成地震记录中的漂移标定[J].新疆石油地质,1991,12(3):206~211
    武丽,董宁,朱生旺.川东北通南巴构造带飞仙关组鲕滩储层预测[J].石油物探,2009,48(3):277~284
    夏竹,刘兰锋,任敦占,魏文博.基于地震道时频分析的地层结构解析原理和方法[J].石油地球物理勘探.2007,42(1):57~69
    徐丽英,徐鸣洁,陈振岩.利用谱分解技术进行薄储层预测[J].石油地球物理勘探,2006,41(3):299~302
    徐梅,谭明友,张明振,韩翠华.垦东滩海上第三系油藏地震描述技术[J].石油物探,2007,46(6):633~636
    徐新军,石砥石,刘成彬.新滩油田馆上段油气藏特征研究[J].油气地质与采收率,2002,9(6):33~35
    严又生译.地震属性及其分类[J].国外油气勘探,2004,37(4):91~95
    杨凤丽,印兴耀,吴国忱.埕岛油田河流相储层地震描述方法.石油学报,1999,20(4):24~28
    杨凤丽,周祖翼,印兴耀,等.应用人工神经网络技术预测曲流河砂体分布.同济大学学报(自然科学版),1999,27(1):115~118
    杨林.于奇西地区砂泥岩薄互层反演方法应用研究[J].石油物探,2008,47(2):186~191
    杨占龙,沙雪梅.储层预测中层位-储层的精细标定方法[J].石油物探,2005,44(6):627~631
    姚逢昌,甘利灯.地震反演的应用与限制[J].石油勘探与开发,2000,27(2):53~56
    印兴耀,孔国英,张广智.基于核主成分分析的地震属性优化方法及应用[J].石油地球物理勘探,2008,43(2):179~183
    印兴耀,张奎,张广智.联合时频分布及其属性的应用.石油地球物理勘探,2003,38(5):522~526
    余鹏,李振春.分频技术在储层预测中的应用[J].勘探地球物理进展,2006,29(6):419~423
    苑书金.地震相干技术的研究综述[J].勘探地球物理进展,2007,30(1):7~15
    翟中喜,白振瑞.渤海湾盆地石油储量增长规律及潜力分析[J].石油与天然气地质,2008,29(1):88~94
    战春光,王学军,张家震,范振峰,毕彩芹.应用变速成图技术解释富台油田砂砾岩体构造[J].石油勘探与开发,2003,30(5):75~76
    张本爱,武磊彬.地震资料分频处理效果[J].中国煤田地质,2004,16(3):51~53
    张国栋,刘萱,田丽花,吴鑫,王冬娜.综合应用地震属性与地震反演进行储层描述[J].石油地球物理勘探,2010,45(增刊):137-144
    张宏兵,方前发.波阻抗约束反演的几种方法[J].水文地质工程地质,2005,(5):80~83
    张进铎,杨平,王云雷.地震信息的谱分解技术及其应用[J].勘探地球物理进展,2006,29(4):235~238
    张抗.渤海海域和滩海勘探工作的新进展及发展方向[J].石油学报,2002,23(5):1~5.
    张奎凤,蓝晖.短时窗地震信号谱分析方法[J].石油物探,1995,34(2):94~98
    张明学,刘淑芬.乌尔逊凹陷南部大磨拐河组地震相[J].物探与化探,2009,33(6):638~641
    张延玲,杨长春,贾曙光,李明生,林会喜,刘华.辽河油田东部凹陷中段走滑断层与油气的关系[J].地质通报,2006,25(5):1152~1155
    张永刚.地震波阻抗反演技术的现状和发展[J].石油物探,2002,41(4):285~390
    张玉芬,熊维纲,杜聿麟.时频分析方法在薄储集层横向预测中的应用[J].地质科技情报.1995,14(1):83~88
    张忠伟,马劲风,李合群译,Partyka G, Gridley J, Lopez.频谱分解在油藏描述中的解释性应用[J].国外油气勘探,2000,12(1):94~101
    赵力民,郎晓玲,康洪全,芦天明.波阻抗反演在预测岩性油气藏描的应用[J].石油地球物理勘探,1999,34(增刊):39~44
    甄兆聪,肖慈珣.补偿模糊神经网络在储层参数预测中的应用[J].物探化探计算技术,2002,24(2):124~128
    朱成宏,黄国骞,秦瞳.断裂系统精细分析技术[J].石油物探,2002,41(1):42~48
    朱庆荣,张越迁,于兴河,李胜利.分频解释技术在表征储层中的运用[J].矿物岩石,2003,23(3):104~108
    朱庆荣.频谱分解技术在表征储层中的运用[J].矿物岩石,2003,23(3):104~108.
    邹东波,吴时国,刘刚,韩文功.渤海湾盆地桩海地区NNE向断层性质及其对油气的影响[J].天然气地球科学,2004,15(5):503~507

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700