用户名: 密码: 验证码:
基于“能量测试”和优化方法的结构单元损伤识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构损伤识别也称为无损探伤技术,其主要研究内容是在不破坏现有结构的基础
    上,采用各种试验手段对结构进行探测,并通过对测试结果的分析,确定结构的健康状
    况。结构损伤识别要解决的问题主要有以下三个层次:(1) 、判断结构是否发生损伤;
    (2) 、确定结构损伤产生的位置;(3) 、识别结构损伤的程度。
    目前,国内外有很多已经发表的损伤识别方法应用到实际工程中,从磁粉、超声
    波、X光以至于到工业CT技术,各式各样的测量手段在损伤识别问题中得到了广泛的应
    用。而基于结构力学响应的损伤识别方法因其试验简单、费用低廉近20年来越来越受到
    工程和学术界的关注。本文主要是就基于力学响应的损伤识别方法中存在的不足和缺陷
    展开研究。现有的基于力学响应的损伤识别方法存在的主要问题有:(1) 、结构力学响应
    相对于损伤参数的灵敏度较低:(2) 、识别结果的不适定性;(3) 、结构发生多处损伤
    时,模型中未知变量过多导致优化方法失败等。
    结构的力学响应主要包括静力响应、自振分析和强迫振动,在传统的损伤识别方法
    中,不同的响应类型是按照不同的列式进行推导和计算的。本文提出了结构能量“测
    试”的概念,将结构的各类力学响应(主要是目前应用最多的自振分析和静力响应)统
    一起来,推导同样的列式,在损伤识别过程中只需得到结构的应变能,而不用考虑观测
    数据的来源及其计算公式。仅从应变能的变化考虑如何提高结构响应对于损伤参数的灵
    敏度。
    为了克服结构力学响应相对于损伤参数灵敏度太低的问题,本文在能量测试的基础
    上提出了“附加子系统”的思想,就是在测试结构上增加附加的外部系统,如外力、附加
    质量块、附加支撑、阻尼等。通过这些“附加子系统”的引入,改变结构的应变能密度
    分布情况,使得结构损伤部位的应变能密度极大化,从而提高损伤造成的结构力学响应
    变化,实现提高结构力学响应相对于损伤参数灵敏度的目的。理论推导和数值算例表明
    了方法的实用性和有效性。
    结构的损伤不止一处时,如果将损伤描述成为结构单元刚度的变化,那么整个结构
    的所有单元刚度都将成为损伤识别优化模型中的设计变量(待识别损伤参数),设计变
    量的数目太多将导致结构优化方法失败;如果用损伤位置和损伤尺寸描述结构的损伤,
    由于损伤数目无法确定,损伤识别的优化模型成为一个设计变量不定的离散结构优化问
    题,目前还没有成熟的算法可以求解。本文引入一种新型损伤指示函数,首先确定结构
    中损伤的数目,采用损伤处结构单元刚度降低描述损伤程度,以测试数据组合的损伤指
    
    基于“能量测试”和优化方法的结构单元损伤识别
    示函数和有限元模型计算损伤指示函数的最小二乘作为目标函数构造损伤识别问题的优
    化模型,很好地解决了上述问题。
     本文采用极大极小问题构造损伤识别的优化模型,通过凝聚函数将极大极小问题转
    化为一个目标函数连续可微的无约束优化问题,采用基于灵敏度分析的序列线性规划方
    法求解。为了考查方法的抗噪能力,在原始观测数据中引入随机误差,连续粱、板结构
    的数值算例证明了方法的可行性和实用性。
     最后,对全文工作进行了总结,并提出了需进一步研究的工作内容。
     务
    子“卜
     、
    产州曰
    关键词:损伤识别,反问题,结构优化,能量“测试”,灵敏度分析,凝聚函数
Structural damage identification is a type of non-destructive detection technique. The main purpose of this technique is to determine the status of the structural health through analysis of the test results obtained using various experimental methods without destRictions to the existing structures. Three levels of problems can be dealt with structural damage identification, namely, (1) to judge if a structural damage exists; (2) to locate the positions of the damage; (3) to determine the extent of the damage.In the literatures, many damage identification methods have been applied in the practical engineering. A great variety of test techniques, such as magnetic power, ultrasonic wave, X-ray and industrial CT, have found wide applications in the structural damage identification problems. Particularly, the damage identification approach based on structural response changes have drawn much attention of both engineering and academic communities for the last two decades, due to its ease of implementation and low cost. This treatise is devoted to the study on avoiding the weakness and limitations of existing approaches based on response changes. The major difficulties of damage identification techniques relying on response changes are: (1) structural response are not sensitive enough with respect to the damage parameters; (2) the identification model are usually ill-posed; (3) the approaches using optimization techniques may fail in case of multiple damages as a result of too many variables in the mathematical model.Structural response includes static response, natural vibration properties and forced vibration response. In conventional damage identification methods, the problem is formulated in different ways according to the structural response adopted. In this research, the concept of structural energy "measurements" is proposed, thus different kinds of structural response are unified in the problem formulation. In this context, only the structural strain energy is needed in the derivation, regardless of the source of test data and the mathematical formula.To alleviate the difficulty caused by the insufficient sensitivities of the structural response to the damage parameters, the idea of "additional sub-system" is proposed, in which additional external system, such as external force, additional mass, additional supports, damping and similar, are attached to the structure to be tested. By this means, the distribution of the structural strain density is adjusted and the strain density in the vicinity of the damage position is maximized. As a result, the sensitivities of the response changes with respect to the damage are substantially increased. Theoretical derivations and numerical examples demonstrated the
    
    applicability and the validity of the proposed method.For identification of multi-damages, the optimization approach may fail due to the extremely large number of design variables (parameters to be identified) if the damages are modeled as elemental stiffness changes and therefore all the elemental stiffness parameters in the finite element model become the design variables of the optimization model for the damage identification problem. On the other hand, if the damage position and the damage size are used for description of the structural damage, the mathematical model is actually stated as a discrete structural optimization problem with unknown number of design variables, since the number of damages can not be given in advance. Such a problem can not be easily solved. An approach is proposed in this treatise by introducing a new type of damage index function. The number of damages is firstly determined, and then, the stiffnesses decreases of structural elements are used as a description of the damage size. The least square of the damage index functions of the test data and the finite element prediction is used as the objective function of the optimization model for the damage identification. The difficulties mentioned above are therefore successfully avoided.The damage identification problem is formulated as a Min-ma
引文
[1] . 张俊哲,无损检测技术及其应用。科学出版社,1993
    [2] . 栾文贵,地球物理中的反问题。科学出版社,1989
    [3] . 杨慧珠,张远高,鲁小蓉,固体动力学的反问题。固体力学发展趋势,北京理工 大学出版社,55-73,1995
    [4] . Kubo S., Computational inversion schemes for various categories of inverse problems arising in solid mechanics. Proc. Int. Conf. Computer Eng. Sci., Hong Kong, 373,1992
    [5] . Berman A., Nagy E. J., Improvement of a large analytical model using test data. AIAA Journal,21(8) : 1168-1173,1983
    [6] . Baruch M., Bar Itzhack Ⅰ. Y., Optimal weighted orthogonalization of measured modes. AIAA Journal, 16: 346-351,1978
    [7] . O'Callahan J., Avitabile P. Riemer R., System equivalent reduction expansion process (SEREP). Proceeding of the 7th International Modal Analysis Conference, Las Vegas, Nevada, 1989
    [8] . Kammer D. C., Test analysis model development using an exact modal reduction. International Journal of Analytical and Experimental Model Analysis, 2: 174-179,1987
    [9] . Freed A . M., A Comparison of test-analysis model reduction methods. Proceedings of the 8th International Modal Analysis Conference, Kissmmee, Florida, 1990
    [10] . Guyan R. J., Reduction of stiffness and mass matrices. AIAA Journal, 3(2) :380,1965
    [11] . Smith S. W., Seattle C. A., Simultaneous expansion and orthogonalization of measured mode for structure identification. Proceeding of the AIAA SDM Dynamics Specialist Conference, Long Beach, California, 1990
    [12] . Kabe A., Stiffness Matrix Adjustment Using Mode Data. AIAA Journal, 23(9) , 1431-1436,1985
    [13] . Chen J. C., Garba. On-orbit damage assessment for large space structures. AIAA Journal, 26:1119-1126,1988
    [14] . Hajela P., Soeiro F. J. Structural damage detection based on static and modal analysis. AIAA Journal, 28: 1110-1115,1990
    [15] . Walton W.,Ibanez P., Yessaie G.. Remote structural damage detection via substructuring. Proceedings of the 6th International Modal Analysis Conference, Kissmmee, Florida, 1988
    [16] . J. Alberto Escobar, J. Jesu' s Sosa, Roberto Go'mez, Structural damage detection using the transformation matrix, Computers and Structures 83: 357-368,2005
    [17] . Jiann-Shiun Lew, Optimal controller design for structural damage detection, Journal of Sound and Vibration 281: 799-813,2005
    [18] . S. Vanlanduit, E. Parloo, P. Guillaume, Combined damage detection techniques, Journal of Sound and Vibration 266: 815-831,2003
    [19] . Fissette E., Stavrinidis C., Ibrahim S. Error location and updating of analytical dynamic models using a force balance method. Proceedings of the 7th International Modal Analysis Conference, Las Vegas, Nevada, 1989
    
    [20]. Lim T. T., A Submatrix Approach to Stiffness Matrix Correction Using Modal Test Data, AIAA Journal, 28(6): 1123-1130,1990
    [21]. Kashangaki T. A. L., Smith S. W., Lim T. W. Underlying modal data issues for detecting damage in truss structures. AIAA Paper, 92-2264-CP
    [22]. Fox R. L., Kapoor M. P. Rates of change and eigenvalue and eigenvectors. AIAA Journal, 6,2426-2429,1968
    [23]. Rytter A., Vibration Based Inspection of Civil Engineering Structures, Ph. D. Dissertation, Department of Building Technology and Structural Engineering, Aalborg University, Denmark, 1993
    [24]. Vandiver J. K., Detection of Structural Failure on Fixed Plate forms by Measurement of Dynamic Response. Proc. Of the 7th Annual Offshore Technology Conference, 243-252, 1975
    [25]. Vandiver, J.K., Detection of structural failure on fixed platforms by measurement of dynamic response. Proceedings 7th Annual Offshore Technololgy Conference, 2: 243-252.1975
    [26]. Loland O., J. C. Dodds, Experience in Developing and Operating Integrity Monitoring System in North Sea. Proc. Of the 8th Annual Offshore Technology Conference, 313-319.1976
    [27]. Wojnarowski M. E., S. G. Stiansen and N. E. Reddy, Structural Integrity Evalution of the Fixed Platform Using Vibration Criteria. Proc. 9th Annual Offshore Tech. Conference, 247-256,1977
    [28]. Cawley P., R. D. Adams, The Locations of Defects in Structures from Measurements of Natural Frequencies. Journal of Strain Analysis, 14(2), 49-57,1979
    [29]. Coppolino R. N., S. Rubin, Detectability of Structural Failures of Offshore Platforms by ambient Vibration Monitoring. Proc. 12th Annual Offshore Tech. Conference, 4: 101-110,1980
    [30]. Kenley R. M., C. J. Dodds, West Sole WE Platform: Detection of Damage By Structural Response Measurements. Proc. of The 12th Annual Offshore Technology Conference, 111-118,1980
    [31]. Gudmundson P., Eigenfrequency Changes of Structures Due to Cracks, Notches, or other Geometrical Changes. Journal of the Mechanics and Physics of Solids, 30(5): 339-353,1982
    [32]. Tracy J. J. and G. C. Pardoen, Effect of delamination on the natural frequencies of composite laminates. Journal of Composite Materials, 23: 1200-1215,1989
    [33]. Ismail F., A. Lbrhim and H. R. Martin, Identification of Fatigue Cracks from Vibration Testing. Journal of Sound and Vibration, 140: 305-317,1990
    [34]. Fox, C.H.J., The Location of Defects in Structures: A Comparison of the Use of Natural Frequency and Mode Shape Data, Proc. 10th Int. Modal Analysis Conf, 522-528,1992
    [35]. Srinivasan, M.G., C.A. Kot, Effects of Damage on the Modal Parameters of a Cylindrical Shell, Proc. 10th Int. Modal Analysis Conf., 529-535,1992
    
    [36] . Pape, D.A., A Modal Analysis Approach to Flaw Detection in Ceramic Insula-tors, in Proc. of the 11th International Modal Analysis Conference, 35-40,1993
    [37] . Penny, J.E.T., D.A.L. Wilson, M.I. Friswell, Damage Location in Structures Using Vibration Data, Proc. 11th Int. Modal Analysis Conf., 861-867,1993
    [38] . Meneghetti, U. and A. Maggiore, Crack Detection by Sensitivity Analysis, in Proc. of the 12th International Modal Analysis Conference, 1292-1298,1994
    [39] . Silva, J.M.M. and A.J.M.A. Gomes, Crack Identification of Simple Structural El-ements Through the use of Natural Frequency Variations: The Inverse Problem, in Proc. of the 12th International Modal Analysis Conference, 1728-1735,1994
    [40] . Brincker, R., P. Anderson, P.H. Kirkegaard, and J.P. Ulfkjaer, Damage Detection in Laboratory Concrete Beams, in Proc. of the 13th International Modal Analysis Conference, 1:668-674,1995
    [41] . Begg R. D., A. C. Machenzie, c. J. Dodds, O. Loland, Structural Integrity Monitoring Using Digital Processing of Vibration Signals. Proc. 8th Annual Offshore Technology Conference, Houston, TX, 205-311
    [42] . 张东利,李霆,孙锡龙,利用固有频率特征量诊断混凝土结构损伤位置,测试技 术学报,17(3) :265-269,2003
    [43] . 向天宇,赵人达,刘海波,基于静力测试数据的预应力混凝土连续梁结构损伤识 别,土木工程学报,36(11) :79-82,2003
    [44] . 薛松涛,钱宇音,陈镕,王远功,采用二阶频率灵敏度的损伤识别和试验,同济 大学学报,31(3) :263-267,2003
    [45] .谢峻,韩大建,一种改进的基于频率测量的结构损伤识别方法,工程力学,21 (1) :21-25,2004
    [46] . 刘文峰,柳春图,应怀樵,通过频率改变率进行损伤定位的方法研究,振动与冲 击,23(2) :28-31,2004
    [47] . H.Y. Hwanga, C. Kim, Damage detection in structures using a few frequency response measurements, Journal of Sound and Vibration 270: 1-14, 2004
    [48] . Nam-Gyu Park and Youn-Sik Park, Damage Detection using Spatially Incomplete Frequency Response Functions, Mechanical Systems and Signal Processing 17(3) : 519-532,2003
    [49] . Adams, R.D., P. Cawley, C.J. Pye and B.J. Stone, A Vibration Technique for Non-Destructively Assessing the Integrity of Structures, Journal of Mechanical Engineering Science, 20:93-100,1978
    [50] . Wang W. and Zhang A., Sensitivity analysis in fault vibration diagnosis of structures Proc. 5th Int. Conf. on Modal Analysis, pp 496-501,1987
    [51] . Stubbs, N., T.H. Broome and R. Osegueda, Nondestructive Construction Error Detection in Large Space Structures, AIAA Journal, 28(1) : 146-152,1990
    [52] . Stubbs, N. and R. Osegueda, Global Non-Destructive Damage Evaluation in Solids, Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis, 5(2) : 67-79,1990
    
    [53] . Stubbs, N. and R. Osegueda, Global Damage Detection in Solids-Experimental Verification, Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis, 5(2) : 81-97,1990
    [54] . Hearn, G. and R.B. Testa, Modal Analysis for Damage Detection in Structures, Journal of Structural Engineering, 117(10) : 3042-3063,1991
    [55] . Richardson, M.H. and M.A. Mannan, Remote Detection and Location of Structural Faults Using Modal Parameters, in Proc. of the 10th International Modal Analysis Conference, 502-507,1992
    [56] . Sanders, D., R.N. Stubbs, and Y.I.Kim, Global Nondestructive Damage Detec-tionin Composite Structures, in Proc. of the 7th International Modal Analysis Conference, 1501-1507,1989
    [57] . Narkis, Y., Identification of Crack Location in Vibrating Simply Supported Beams, Journal of Sound and Vibration, 172(4) : 549-558,1994
    [58] . Brincker, R., P. H. Kirkegaard, P. Anderson, and M. E. Martinez, Damage De-tection in an Offshore Structure, in Proc. of the 13th International Modal Analysis Conference, 1: 661-667,1995
    [59] . Balis Crema, L., A. Castellani and G. Coppotelli, Generalization of Non Destructive Damage Evaluation Using Modal Parameters, in Proc. of the 13th International Modal Analysis Conference, 428-431,1995
    [60] . Balis Crema, L., F. Mastroddi, Frequency-Domain Based Approaches for Dam-age Detection and Localization in Aeronautical Structures, in Proc. of the 13th International Modal Analysis Conference, 1322-1330,1995
    [61] . Skjaerbaek, P.S., S.R.K. Nielsen, and A.S. Cakmak, Assessment of Damage in Seismically Excited RC-Structures from a Single Measured Response, in Proc. Of the 14th International Modal Analysis Conference, 133-139,1996
    [62] . Timothy J. Johnson, Chulho Yang, Douglas E. Adams and Sam Ciray, Embedded Sensitivity Functions for Characterizing Structural Damage, Smart Mater. Struct. 14: 155-169,2005
    [63] . 刘济科,李雪艳,基于振动特性灵敏度分析的梁结构损伤识别,华南理工大学学 报(自然科学版),31(增刊):119-121,2003
    [64] . 饶文碧,徐锐,尚钢,基于遗传算法的结构损伤识别,武汉理工大学学报,25 (7) :75-77,2003
    [65] . 饶文碧,谈怀江,Bost rom Henrik,基于归纳学习的结构损伤识别方法研究,西 安交通大学学报,39(2) :142-145,2005
    [66] . R. D. JIMI-NEZ, L. C. SANTOS ,N. M. KUHL and Faculdade SENAC, J. C. ECA-M AND R. L. SOTO, An Inverse Eigenvalue Procedure for Damage Detection in Rods, Computers and Mathematics with Applications 47: 643-657,2004
    [67] . 郑猛,陈恩利,史玉红,基于曲率模态和神经网络的结构损伤诊断,石家庄铁道 学院学报,18(1) :29-32,2005
    
    [68] . W.T. Yeunga, J.W. Smithb, Damage detection in bridges using neural networks for pattern recognition of vibration signatures, Engineering Structures, 27: 685-698,2005
    [69] . Jong Jae Leea, Jong Won Leeb, Jin Hak Yia, Chung Bang Yuna, Hie Young Jungc, Neural networks-based damage detection for bridges considering errors in baseline finite element models, Journal of Sound and Vibration, 280: 555-578,2005
    [70] . 陈江义,陈花玲,秦东晨,一种基于模型修改的结构多点损伤识别方法,机械强 度,26(5) :497-500,2004
    [71] . F. T. K. Au, Y. S. Cheng, L. G. Tham and Z. Z. Bai, Structural Damage detection based on a Micro-genetic Algorithm using Incomplete and Noisy Modal Test Data, Journal of Sound and Vibration, 259(5) : 1081-1094,2003
    [72] . Smith, S.W. and C.A. Beattie, Model Correlation and Damage Location for Large Space Truss Structures: Secant Method Development and Evaluation, NASA-CR-188102, 1991
    [73] . Zimmerman, D.C. and S.W. Smith, Model Refinement and Damage Location for Intelligent Structures, from Intelligent Structural Systems, H.S. Tzou and G.L. Anderson, Eds.,Kluwer Academic Publishers, 403-452,1992
    [74] . Hemez, F.M., Theoretical and Experimental Correlation Between Finite Element Models and Modal Tests in the Context of Large Flexible Space Structures, Ph. D. Dissertation, Dept. of Aerospace Engineering Sciences, University of Colorado, Boulder,CO., 1993
    [75] . Kaouk, M., Finite Element Model Adjustment and Damage Detection Using Measured Test Data, Ph. D. Dissertation, Dept. of Aerospace Engineering Mechanics and Engineering Science, Univ. of Florida, Gainesville, FL., 1993
    [76] . Baruch, M., Optimization Procedure to Correct Stiffness and Flexibility Matrices Using Vibration Tests, AIAA Journal, 16(11) , 1208-1210,1978
    [77] . Kabe, A.M., Stiffness Matrix Adjustment Using Mode Data, AIAA Journal, 23(9) : 1431-1436,1985
    [78] . Smith, S.W. and C.A. Beattie, Model Correlation and Damage Location for Large Space Truss Structures: Secant Method Development and Evaluation, NASA-CR-188102, 1991
    [79] . Smith, S.W., Iterative Use of Direct Matrix Updates: Connectivity and Convergence, in Proc. of 33rd AIAA Structures, Structural Dynamics and Materials Conference, 1797-1806,1992
    [80] . Kim, H.M. and T.J. Bartkowicz, Damage Detection and Health Monitoring of Large Space Structures, Sound and Vibration, 27(6) : 12-17,1993
    [81] . 张向东,王志华,马宏伟,基于残余力向量法的悬臂梁损伤识别研究,太原理工 大学学报,34(5) :529-531,2003
    [82] . 刘济科,杨秋伟,基于残余力向量的结构损伤识别两步法,中山大学学报(自然科 学版),43(4) :1-4,2004
    
    [83]. Zimmerman, D.C. and M. Kaouk, Eigenstructure Assignment Approach for Structural Damage Detection, AIAA Journal, 30(7): 1848-1855,1992
    [84]. Zimmerman, D.C. and M. Kaouk, Structural Damage Detection Using a Minimum Rank Update Theory, Journal of Vibration and Acoustics, 116: 222-230,1994
    [85]. Zimmerman, D.C, M. Kaouk, and T. Simmermacher, Structural Damage Detection Using Frequency Response Functions, in Proc. of the 13th International Modal Analysis Conf., 179-184,1995
    [86]. Zimmerman, D. C, M. Kaouk, and T. Simmermacher, On the Role of Engineering Insight and Judgement Structural Damage Detection, in Proc. of the 13th International Modal Analysis Conf., 414-420,1995
    [87]. Kaouk, M., Finite Element Model Adjustment and Damage Detection Using Measured Test Data, Ph. D. Dissertation, Dept. of Aerospace Engineering Mechanics and Engineering Science, Univ. of Florida, Gainesville, FL., 1993
    [88]. Kaouk, M. and D.C. Zimmerman, Evaluation of the Minimum Rank Update in Damage Detection: An Experimental Study, in Proc. of the 11th International Modal Analysis Conference, 1061-1067,1993
    [89]. Kaouk, M. and D.C. Zimmerman, Structural Damage Assessment Using a Generalized Minimum Rank Perturbation Theory, AIAA Journal, 32(4), 836-842,1994
    [90]. Kaouk, M. and D.C. Zimmerman, Assessment of Damage Affecting All Structural Properties, in Proc. of the 9th VPI&SU Symposium on Dynamics and Control of Large Structures, 445-455,1994
    [91]. Kaouk, M. and D.C. Zimmerman, Structural Damage Detection Using Measured Modal Data and No Original Analytical Model, in Proc. of the 12th International Modal Analysis Conf., 731-737,1994
    [92]. Kaouk, M. and D.C. Zimmerman, Structural Health Assessment Using a Partition Model Update Technique, in Proc. of the 13th International Modal Analysis Conf, 1673-1679,1995
    [93]. Kaouk, M. and D.C. Zimmerman, Reducing the Required Number of Modes for Structural Damage Assessment, in Proc. of 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., 2802-2812, AIAA-95-1094-CP., 1995
    [94]. Aktan, A.E., K.L. Lee, C. Chuntavan and T. Aksel, Modal Testing for Structural Identification and Condition Assessment of Constructed Facilities, in Proc. of 12th International Modal Analysis Conference, 462-468,1994
    [95]. Pandey, A.K., and M. Biswas, Damage Detection in Structures Using Changes in Flexibility, Journal of Sound and Vibration, 169 (1): 3-17,1994
    [96]. Toksoy, T. and A.E. Aktan, Bridge-condition Assessment by Modal Flexibility, Experimental Mechanics, 34: 271-278,1994
    [97]. Mayes, R.L., An Experimental Algorithm for Detecting Damage Applied to the 1-40 Bridge over the Rio Grande, in Proc. 13th International Modal Analysis Conference, 219-225,1995
    
    [98] . Peterson, L.D., S.W. Doebling and K.F. Alvin, Experimental Determination of Local Structural Stiffness by Disassembly of Measured Flexibility Matrices, in Proc. Of 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2756-2766, AIAA-95-1090-CP., 1995
    [99] . Zhang, Z. and A.E. Atkan, The Damage Indices for Constructed Facilities, in Proc. of the 13th International Modal Analysis Conference, 1520-1529,1995
    [100] .孙国,顾元宪,连续梁结构损伤识别的改进柔度阵方法,工程力学,20(4) : 50-54,2003
    [101] .杜思义,陈淮,基于应变模态法识别刚架桥梁的损伤,世界地震工程,19 (2) :113-115,2003
    [102] .鞠彦忠,张增军,陈景彦,王显利,基于柔度法的结构损伤识别,东北电力学院 学报,24(1) :47-50,2004.
    [103] .万小朋,李小聪,鲍凯,赵美英,利用振型变化进行结构损伤诊断的研究,航空 学报,24(5) :422-426,2003
    [104] .陈淮,禹丹江,基于曲率模态振型进行梁式桥损伤识别研究,公路交通科技, 121(110) :55-57,2004
    [105] . Lin, C. S., Location of Modeling Errors Using Modal Test Data, AIAA Journal, 28, 1650-1654,1990
    [106] . Lin, C.S., Unity Check Method for Structural Damage Detection, in Proc. Of 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 347-354, AIAA-94-1717-CP., 1994
    [107] . He, J. and D.J. Ewins, Analytical Stiffness Matrix Correction Using Measured Vibration Modes, Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis, 1(3) , 9-14,1986
    [108] . Gysin, H.P., Critical application of an Error Matrix Method for Location of Finite element Modeling Inaccuracies, in Proc. of the 4th International Modal Analysis Conference, 1339-1351,1986
    [109] . Park, Y.S., H.S. Park, and S.S. Lee, Weighted-Error-Matrix Application to Detect Stiffness Damage-Characteristic Measurement, Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis, 3(3) : 101-107,1988
    [110] . Doebling, S.W., L.D. Peterson, and K.F. Alvin, Measurement of Static FlexibilityMatrices for Experiments with Incomplete Reciprocity, in Proc. of 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2777-2791, AIAA-95-1092-CP., 1995
    [111] . Doebling, S.W., Damage Detection and Model Refinement Using Elemental Stiffness Perturbations with Constrained Connectivity, in Proc. of the AIAA/ASME/AHS Adaptive Structures Forum, 360-370, AIAA-96-1307,1996
    [112] . Salawu, O.S. and C. Williams, Structural Damage Detection Using Experimental Modal Analysis-A Comparison of Some Methods, in Proc. of 11th International Modal Analysis Conference, 254-260,1993
    
    [113] . Peterson, L.D., K.F. Alvin, S.W. Doebling, and K.C. Park, Damage Detection Using Experimentally Measured Mass and Stiffness Matrices, in Proc. of 34th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1518-1528, AIAA-93-1482-CP., 1993
    [114] .柳春图,陈卫江,缺陷识别反问题的研究状况与若干进展,力学进展,28(3) : 361-373,1998
    [115] . Z. Mroz and T. Lekszycki, Identification of damage in structures using parameter dependent modal response, Proceeding of ISMA23,1998
    [116] . J.V. Araujo dos Snatos, C.M. Mota Scares, C.A. Mota Scares, and H.L.G. Pina, Development of a numerical model for the damage identification on composite structures. Composite Structues, 48: 59-65,2000
    [117] . P. Hajela and F. J. Soeiro, Recent developments in damage detection based on system identification methods, Structural Optimization, 2:1-10,1990
    [118] . Wolfgang G. Luber, Structural Localization using Optimization Method. In the SPIE Conference on Nondestructive Evaluation of Aging Airecraft, Airports and Aerospace Hareware Ⅲ, Newport Beach, California, March 1999
    [119] .刘丰年,李宏男,刘明,一种有效的结构动态参数识别方法,地震工程与工程振 动,18(1) :30-34,March 1998
    [120] .马宏伟,杨桂通,基于结构振动的损伤探测的基本方法,太原理工大学学报, 30(5) :461-468,1999
    [121] . Abel N. H., Solution de Quclqucs Problems a l'idc D' ntegraies Defines, Magazin for Naturvidenskabema, Aergang, Bind2, Christiana, 1823
    [122] . Lord Rayleigh, The Theory of Sound. New York: Dover Prosp, 1:214-216,1945
    [123] .Krein M. G,Dokl. Akad. Nauk SSSR76: 345,1951
    [124] .栾文贵,地球物理中的反问题,北京,科学出版社,1989
    [125] .吕爱钟,蒋斌松,岩石力学反问题,北京,煤炭出版社,1998
    [126] .范桢祥,郑仙种,地震波参数反演与应用技术,郑州,河南科学技术出版社, 1998
    [127] .马兴瑞,陶良,黄文虎等,弹性波反演方法及其应用,北京,科学出版社,1999
    [128] .王仁,力学的反演,反演的力学,力学与实践,2000,22:71-74
    [129] .李世雄,刘家琦,小波变换和反演数学基础,北京,地质出版社,1994
    [130] .黄光远,刘小军,数学物理反问题,济南,山东科学技术出版社,1993
    [131] .张开鹏,吴代华,李卓球,结构损伤识别反演方法,武汉理工大学学报,25(10) : 43-46,2003
    [132] . J. D. Riley, Solving systems of linear equations with a positive definite, symmetric but possibly ill-conditioned matrix, Math .Tables Aids Comput, 9: 96-101,1955
    [133] . D. L. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach, 9:84-97,1962
    
    [134] . N. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4:1035-1038,1963
    [135] .金其年,候宗义,求解第一类算子方程的最大熵方法,中国科学(A辑),27(3) : 231-239,1997
    [136] .金其年,候宗义,线性不适定问题的渐进正则化方法,数学年刊,20A(3) :365-374,1999
    [137] . Tikhonov A. and Arsenin V., Solutions of ill-posed problems, 1977, John Wiley & Sons, Inc.
    [138] . H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, 1996, Kluwer, Dordrecht
    [139] . C. L. Mallows, Some comments on Cp, Technometrics, 15:661-675,1973
    [140] . G. Wahba, Practical approximate solution to linear operator equations when the data are noisy, SIAM Journal on Numerical Analysis, 14:651-667,1977
    [141] . Martin Hanke, Per Christian Hansen, Regularization methods for large-scale problems, Surveys on Mathematics for Industry, 3:253-315,1993
    [142] . Ali Mohammad-Djafari, J. Idier, Maximum likelihood estimation of the Lagrange parameters of the maximum entropy distributions, C. R. Smith, G. J. Frikson, P. O. Neudorfer (eds), Kluwer Academic Publishers, Seattle, USA, 131-140,1991
    [143] . J. F. Bercher, G. Le Besnerais, G. Demoment, The maximum entropy on the mean method, noise and sensitivity, Maximum entropy and Bayesian methods, Cambridge, UK, J. Skilling (eds), Kluwer Academic Pulishers, 1995
    [144] .宋海斌,张关泉,层状介质弹性参数反演问题研究综述,地球物理学进展, 13(4) :67-78,1998
    [145] .杨晓春,李小凡,张美根,地震波反演方法的研究的某些进展及其数学基础,地 球物理学进展,16(4) :96-109,2001
    [146] .魏培君,章梓茂,弹性动力学反问题的数值反演方法,力学进展,31(2) :172-180, 2001
    [147] .王芝银,杨志法,王思敏,岩石力学位移反演分析回顾及进展,力学进展,28(4) : 488-498,1998
    [148] .唐示浩,朱启疆,闫广建,遥感地表参量反演的理论和方法,北京师范大学学报 (自然科学版),37(2) :266-273,2001
    [149] .王登刚,非线性反演算法及其应用研究,大连理工大学博士学位论文,大连, 2001
    [150] .王登刚,刘迎曦,李守巨,弹性力学非线性反演方法概述,力学进展,33(2) : 166-174,2003
    [151] .赵新铭,刘宁,张剑,岩土力学反分析的数值反演方法,水利水电科技进展, 23(2) :55-58,2003
    [152] .杨文采,非线性地球物理反演方法:回顾与展望,地球物理学进展,17(2) :255- 261,2002
    
    [153] .赵新铭,刘宁,张剑,岩土力学反分析的数值反演方法,水利水电科技进展, 23(2) :55-58,2003
    [154] .杨文采,非线性地球物理反演方法:回顾与展望,地球物理学进展,17(2) :255-261,2002
    [155] . M. Hanke, A regularizing Levenberg-Marquardt scheme, with applications to inverse ground-water filtration problems, Inverse problems, 13(1) : 78-95,1997
    [156] . B. Kaltenbacher, Some Newton-type methods for the regularization of nonlinear inverse problems, Inverse problems, 13(3) : 729-753,1997
    [157] . M. Burger and W. Muhlhuber, Iterative regularization fo parameter identification problems by SQP methods, Inverse problems, 18(4) : 943-970,2002
    [158] .唐立民,张文飞,刘迎曦,微分方程反问体的梯度正则化方法,计算结构力学及 其应用,8(2) :123-129,1991
    [159] .李晓江,张文飞,声波方程数值反演的GR方法,石油地球物理勘探,30(2) :201-206,1995
    [160] .刘迎曦,王登刚,张家良等,材料物性参数识别的梯度正则化方法,计算力学学 报,17(1) :69-75,2000
    [161] . S. C. Constable, R. L. Parker, C. G. Constable, Occam's Inversion: a practical algorithm for generating smooth models from EM sounding data, Geophysics, 52: 289-300,1987
    [162] . deGroot-Hedlin C., S. C. Constable, Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics, 55:1613-1624,1990
    [163] . deGroot-Hedlin C., S. C. Constable, Occam's inversion and North American Central Plains electrical anomaly, J. Geomag. Geoelect, 45: 985-1000,1993
    [164] .金其年,侯宗义,非线性不适定问题的Tikhonov正则化的参数选择方法,数学年 刊,18A(4) :483-490,1997
    [165] .党亚民,陈俊勇,晁定波,大地测量非线性随机反演方法,测绘通报,No.3, 1999
    [166] .邢文训,现代优化计算方法,北京,清华大学出版社,1999
    [167] .石琳珂,孙铭心,王广国,地球物理遗传反演方法,北京,地震出版社,2000
    [168] .高玮,郑颖人,岩体参数的进化反演,水利学报,8:1-5,2000
    [169] .熊盛武,李元香,演化参数反演方法,武汉大学学报(理学版),47(1) :37-41,2001
    [170] .熊盛武,李元香,康立山等,用演化方法求解抛物型方程扩散系数的识别问题, 计算机学报,23(3) :261-265,2000
    [171] .丁立新,康立山等,演化计算研究进展,武汉大学学报(自然科学版),44(5) :, 1998
    [172] . K. L. Katsifarakis, D. K. Karpouzos, N. Theodossiou, Combined use of BEM and genetic algorithms in groundwater flow and mass transport problems, Engineering Analysis with Boundary Elements, 23: 555-565,1999
    
    [173] . F. Giacobbo, M. Marseguerra, E. Zio, Solving the inverse problem of parameter estimation by genetic algorithms: the case of a groundwater contaminant transport model, Annals of Nuclear Energy, 29: 967-981,2002
    [174] . Michael V. Mannino, Murlidhar V. Koushik, The cost-minimizing inverse classification problem: A genetic algorithm approach, Decision Support Systems, 29: 283-300,2000
    [175] .姜波,汪秉文,基于遗传算法的非线性系统模型参数估计,控制理论与应用, 2000,17(1) :150-152
    [176] .李守巨,刘迎曦,王登刚,土体渗流固结参数识别方法,水文地质工程地质,2: 14-17,2001
    [177] .袁曾任,人工神经元网络及其应用,北京,清华大学出版社,1999
    [178] .徐宜桂等,基于神经网络的动力学反解算法及其应用研究,机械工程学报,34(4) : 106-110,1998
    [179] .周仙通,王柏生,倪一清,用神经网络和优化方法进行结构参数识别,计算力学 学报,18(2) :235-238,2001
    [180] .孙道恒,胡俏,徐灏,力学反问题的神经网络分析法,计算结构力学及其应用, 13(3) :308-312,1996
    [181] .侯卫东,莫玉龙,电阻抗成像中求解反问题的新方法,计算机工程,27(5) :71-72, 2001
    [182] .康立山,谢云,尤矢勇等,非数值并行算法(第一册)--模拟退火算法,北京 科学出版社,1998
    [183] .师学明,王家映,一维层状介质大地电磁模拟退火反演法,地球科学,23(5) : 542-546,1998
    [184] . Z. Weber, Seismic travel time tomography: a simulated annealing approach, Physics of the Earth and Planetary Interiors, 119:149-159,2000
    [185] .王新生,姜友华等,模拟退火算法及其在非线性地学模型参数估计中的应用,华 中师范大学学报(自然科学版),35(1) :103-106,2001
    [186] .傅慧萍,乔志德,张宇文,基于模拟退火算法的水下航行流体动力参数辨识,系 统仿真学报,13(4) :434-435,2001
    [187] .尹成,周熙襄,热槽法模拟退火分析及其改进,石油物探,37(1) :63-70,1998
    [188] .顾汉明,江涛,王家映,改进快速模拟退火方法进行AVO岩性参数反演,地球科 学--中国地质大学学报,24(4) :418-422,1999
    [189] .杨斌,肖慈殉等,基于神经模糊系统的储层参数反演,石油与天然气地质,21(2) : 173-176,2000
    [190] .尹成等,一种改进的遗传箅法及其在剩余静校正中的应用,石油地球物理勘探, 32(4) :486-491,1997
    
    [191] .尹成,周翼,谢桂生等,基于综合的混沌优化算法估计地震子波,23(2) :97-100, 2001
    [192] . G. R. Liu, X. Han, K. Y. Lam, A Combined genetic algorithm and nonlinear least squares method for material characterization using elastic waves, Comput. Methods Appl. Mech. Engrg, 191: 1909-1921,2002
    [193] .王文萍,王庆良,利用遗传算法和最小二乘联合反演共和地震位错参数,地震学 报,21(3) :285-290,1999
    [194] .张霖斌,姚振兴,层状介质参数反演的混合最优化法,地球物理学进展,15(1) : 46-53,2000
    [195] .朱培民,王家映等,随即共轭梯度反演法,石油地球物理勘探,35(2) :208-212, 2000
    [196] .林海燕,戴云,肖慈殉,改进的模拟退火--变尺度优化方法在测井解释中的应 用,矿物岩石(增刊),18:203-205,1998
    [197] . K. J. Hollenbeck, H. H. Jensen, Maximum likelihood estimation of unsaturated hydraulic parameters, Journal of Hydrology, 210:192-205,1998
    [198] . Fernando S. Moraes and John A. Scales, Local Bayesian inversion: theoretical developments, Geophys. J. Int., 141: 713-723,2000
    [199] .岳振军,曹祖庆,陈浩球,非线性系统参数估计的迭代Bayes方法,东南大学学 报,25(5) :58-61,1995
    [200] .王佳鹤,金忠青,流体力学参数控制反问题的控制论求解方法,水科学进展, 8(3) :247-252,1997
    [201] .王佳鹤,现代控制论在工程流体力学反问题中的应用,水利水电科技进展,15(6) : 1-4,1995
    [202] .王佳鹤,金忠青,一种求解流体力学分布参数系统反问题的新方法,河海大学学 报,25(6) :1-3,1997
    [203] . Stallman R. O., Numerical analysis of regional water levels to define aquifer hydrology, Eos Trans. AGU, 37(4) : 451-460,1956
    [204] . Gottfried, B., Weisman, J. Introduction to Optimization Theory. Englewood Cliffs, NJ: Prentice-Hall, 1973
    [205] . Haftka R. and Gurdal Z. Elements of Structural Optimization. Dordrecht, The Netherlands: Kluwer, 1976.
    [206] . Vanderplaats G., Numerical Optimization Techniques for Engineering Design. Colorado Springs, CO: Vanderplaats Research & Development, 1999
    [207] . Cauthy, A. Mehode Generate pour la Resolution des Systemes D'Equations Simultanees. Comp. Rend. 1'Academie des Sciences, Paris, 5:536-538,1947
    [208] . Fletcher, R. Practical Methods of Optimization. New York: Wiley.1980
    [209] .程耿东,工程结构优化设计基础,水利水电出版社,1984
    [210] .陈宝林,最优化理论与算法,清华大学出版社,1986
    
    [211] .唐文艳,顾元宪,桁架优化遗传算法的若干改进,机械强度,24(1) :10-12,2002
    [212] . Hajela P and Soeiro F J. Recent developments in damage detection based on system identification methods, Structural Optimization, 2:1-10,1990
    [213] . Salawu O S .Detection of Structural Damage through Changes in Frequencies: A Review, Engineering Structures, 19(9) : 718-723,1997
    [214] . Lekszycki T and Bednarz P., Experimental and numerical investigation of the effect of damage on eigenfrequencies of beams, Internal Report No. 98/C3/3, INCO Copernicus, Inverse Problems in Structural and Material Mechanics, 1999
    [215] . Sun Guo, Gu Yuanxian. Damage Identification of Continuum Structure using Blanketing Effect. Proc. CJK-OSM 2,207-514, Busan, Korea, 2002
    [216] . Sun Ne-zheng, Inverse problems in groundwater modeling, Kluwer academic publishers, Boston, 79-81,1994
    [217] .李兴斯,解非线性极大极小问题的凝聚函数方法,计算结构力学及其应用,8: 85-92,1991
    [218] .李兴斯,非线性极大极小问题的一个有效解法,科学通报,36(9) :1448-1450, 1991
    [219] . Li Xingsi, An Entropy-based Aggregate Method for Minimax Optimization, J. of Engineering Optimization, 18: 277-285,1992
    [220] .李兴斯,一类不可微问题的有效解法,中国科学(A辑),24(2) :371-377,1994
    [221] . Li Xingsi, Fang Shu-Cherng, On the Entropic Regularization Method for Solving Min-Max Problems with Application, Mathematical Methods of Operations Research, 46: 119-130,1997
    [222] . Jaynes, E. T. Physical Review, 106:620-630,1957

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700