用户名: 密码: 验证码:
储层裂缝动态变化规律及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气田开发的不断深入,人们对裂缝性油气藏的研究日趋加强。其中,对于储层裂缝动态变化规律的正确把握已成为该类油气藏储层保护和最大限度提高油气采收率的关键。裂缝在油气开采过程中随储层流体压力变化而变化的规律的现有研究主要集中在3个方面:①裂缝孔隙度、渗透率的应力敏感性实验研究;②以裂缝表面的微凸起模型为基础,通过理论计算研究裂缝的闭合规律;③以有限元为工具,弹塑性接触力学模型为基础计算分析裂缝的闭合规律。现有的实验研究宏观易实现,数值计算量化,利于对特定岩石在特定压力环境下闭合规律的研究,但对机理认识不清;微凸起模型便于机理研究,但研究不深入且对不同岩石裂缝表面的微凸起的表征和刻画难度大,理论认识与实际应用存在差距。鉴于此,本论文将裂缝应力敏感性实验与岩石变形规律实验相结合对裂缝渗透性、裂缝开度的变化规律及机理进行了研究。通过实验研究和理论分析获得了以下认识:
     (1)裂缝孔隙度和裂缝渗透率受作用压力的变化与基质孔隙度和基质渗透率在相同条件下受作用压力的变化具有相似的规律,即随作用压力的增加,裂缝孔隙度和裂缝渗透率逐渐降低,且在较低作用压力下降低速率较快;随作用压力的继续增加,其降低速率趋缓。
     (2)相对基质岩心而言,裂缝孔隙度和裂缝渗透率受作用压力影响的变化表现出的规律性更复杂,主要是因为受到如裂缝面粗糙程度、裂缝初始开度、裂缝面矿物成分等多种因素的共同影响。
     (3)试验获得的裂缝岩心应力-变形量曲线的形状具有高度非线性且向上弯曲特征,即在法向作用压力较低时,裂缝岩心变形量较大,曲线的斜率较小;随作用压力的增加,斜率逐渐增大。起初曲线表现出的非线性特征主要是接触面微凸体的破坏,后来是由于裂缝面接触面积随法向载荷增大而增大产生非线性的弹性变形。裂缝渗透率随作用压力变化而变化的规律受裂缝岩心变形量随作用压力变化的规律的影响。
     (4)采用半对数方程、幂函数方程、指数方程和二项指数方程对裂缝在不同载荷作用下的试验数据进行拟合。拟合结果表明,二项指数方程对所有数据拟合效果最好,拟合得到的相关系数均在0.99以上。因此,二项指数方程能很好的表征裂缝闭合量随作用压力的动态变化规律。
     (5)根据裂缝开度与有效应力的耦合模型并结合裂缝渗透率、裂缝孔隙度随裂缝开度变化的耦合模型,采用裂缝开度敏感系数来评价裂缝渗透率和裂缝孔隙度的动态变化敏感性。通过该方法发现裂缝开度、裂缝渗透率和裂缝孔隙度敏感系数均受裂缝初始开度、岩石弹性模量、泊松比和有效应力作用共同影响。
     (6)根据裂缝渗透率随有效应力变化的乘幂拟合关系式,考虑乘幂关系的压敏效应开展了对气井产能影响的评价,并推导了考虑压敏效应的高压气井和低压气井产能公式。研究结果表明,压敏效应对裂缝性储层气井产能影响严重,采用低压气井产能公式能较好的评价压敏效应对裂缝性储层气井产能的影响。
With the deepening development of the gas and oil field, people are increasing taking the researches on fractured reservoirs. Among them, correctly grasp the dynamic changes in cracks has already became the key point to protect a kind of oil and gas reservoirs and to maximize the oil and gas recovery. In exploitation process, the law of the existing research of the fracture with reservoir fluid pressure changes focuses on three areas:①experimental study of permeability stress sensitivity in fractures;②researches on closure laws of fractures through theoretical calculation, which based on the convex model of fracture surface;③analysis of closure laws of fracture by means of finite element, which based on the elastic-plastic contact mechanics model.Present experimental study is macro-easy to achieve, numerical calculation to quantify the benefit of a particular rock in the specific circumstances of the closure pressure study law, but there are some uncertainties on clearly understanding of the mechanism; micro-convex model facilitate the mechanism researches, but superficially study and difficult in characterization and description of different types of the protruding surfaces result in the disparity between theoretical knowledge and practical application. In view of this, the paper takes the researches on change law and mechanism of fracture permeability and aperture with a combination of fracture stress sensitivity experiment and rock deformation experiment. Through experiment study and theoretical analysis we can obtain the following results:
     (1) The change law of fracture porosity and permeability under pressures is similar to the matrix porosity and permeability under the same stress conditions, that is, with the increase in pressure, fracture porosity and permeability decreased gradually, and at a relatively low pressure the change rate is larger; with the proceeding load, the change rate would slow down.
     (2) For matrix core, the change regularity of fracture porosity and permeability is much more complex due to the common effects of surface roughness, the initial opening of fracture, mineral composition of crack plane.
     (3) The deformation magnitude of fractured core from experiment behaves highly non-linear and curved upward, it means that fracture deformed larger under a lower normal pressure, the slope of curve is smaller and increases with the proceeding load. The non-linear characteristics at the beginning of the deformation curve mainly due to the damage of convex contact surface, and later as a result of non-linear elastic deformation owing to the increase of contact surface with increasing normal load. The relationship between fracture permeability and pressure is affected by the change law of crack deformations under different pressures.
     (4) Matching the data of fracture under different loads with semi-logarithmic equation, power function equations, exponential equations and an improved two indices equations, the matching result tells us that two indices is the best for test, and the correlation coefficient is above 0.99. So, two indices equations can effective characterize the relationship between closure magnitude and pressure.
     (5) This paper used sensitive coefficient of fracture opening to evaluate the sensitivity of fracture permeability and porosity according to the couple model of fracture opening and effective stress, and combined with the relationship between fracture permeability, porosity and fracture opening respectively. The result tells us that the sensitive coefficients of fracture opening, permeability and porosity are both controlled by the initial fracture opening, rock elastic modulus, Poisson's ratio and effective stress.
     (6) This paper conducted the deliverability equation of high-pressure gas wells and low-pressure gas wells which considered the stress sensitivity, according to the power function of fracture permeability and effective stress which take into account the effect of stress sensitivity on reservoir deliverability. The result shows that stress sensitivity seriously effects the deliverability of fractured gas reservoir, and the deliverability equation of low-pressure can better evaluate the effect of stress sensitivity on gas production.
引文
[1]彭仕宓.油藏开发地质学[M].石油工业出版社,1998.
    [2]周新桂,操成杰,袁嘉音.储层构造裂缝定量预测与油气渗流规律研究现状和进展[J].地球科学进展,2003,18(3):398-402.
    [3]袁士义,宋新民,冉启全.裂缝性油藏开发技术[M].石油工业出版社,2004.
    [4]刘向君,罗平亚.岩石力学与石油工程[M].石油工业出版社,2004.
    [5]R.A.Nelson:"Geologic Analysis of Naturally Fractured Reservoirs," 2nd Edition,Gulf Professional Publishing a subsidiary of Butterworth-Heinemann,Boston,MA.2001.
    [6]Jack Allan,and S Qing Sun:"Recovery factor in fractured reservoirs:lessons learned from 100 fractured fields,"Pertoleum exploration and development,2003,30(6):129-136.
    [7]E.M.斯麦霍夫著,陈定宝,等译.裂缝性油气储层勘探的基本理论与方法[M].石油工业出版社,1985.
    [8]Fatt I,and Davis T H:"The Reduction in Permeability with Overburden Pressure,"JPT (December 1952) 16;Trans,AIME,1953:329.
    [9]Fatt I:"The Effect of Overburden Pressure on Relative Permeability,"Trans,AIME(1953)198:325-326.
    [10]Wilson J W:"Determination of Relative Permeability Under Simulated Reservoir Conditions,"AIChE Jour.(1956) 2,94.
    [11]McLatchie L S,Hemstock R A.and Young J W:"Effective Compressibility of Reservoir Rocks and Effects on Permeability,"Trans.,AIME(1958) 213,386-388.
    [12]Vairogs,luris,Hearn C L,and Dareing D W:"Effect of Rock Stress on Gas Production from Low-Permeability Reservoirs," J.Pet.Tech.(Sept.,1971)1161-1167.
    [13]Thomas R D,and Ward D C:"Effect of Overburden Pressure and Water Saturation on Gas Permeability of Tight Sandstone Cores," JPT.February,1972,120-124.
    [14]高博禹.碳酸盐岩储层应力敏感性研究[D].成都理工大学,2002.
    [15]Abgrall,and Edouard:"Study of Hydrodynamic Activity in the Mishrif Fields Offshore Iran,"SPE7508,1980.
    [16]陈钟祥译.裂缝油藏工程基础[M].石油工业出版社,1989.
    [17]许浚远,彭大钧,罗蛰潭.围压对构造裂缝孔隙度的重要影响[J].石油学报,1995,16(3):44-47.
    [18]刘建军,刘先贵,曾流芳.低渗裂缝性储层渗透性能变化的动态模拟[J].辽宁工程技术大学学报(自然科学版),2001,20(4):543-545.
    [19]高博禹,周涌沂,彭仕宓.储层孔隙度应力敏感性研究[J].石油实验地质,2005,27(2):197-202.
    [20]Jones F O:"A Laboratory Study of the Effects of Confining Pressure on Fracture Flow and Storage Capacity in Carbonate Rocks," JPT,Jan,1975,21-27.
    [21]Jones F O,and Owners W W:"A Laboratory Study of Low-Permeability Gas Sands,"JPT(September,1980),1631-1640.
    [22]Engelder.T,and Seholz C.H:"Fluid Flow Along Very Smooth Joints at Effeetive Pressures up to 200 MwgaPaseals," in Meehanieal Behavior of crustal Roeks,GeoPhysieal Monograph 24,1981,147-152.
    [23]Buehsteiner H,and Whrpinski N R:"Stress Indeed Permeability Reduction in Fissured Reservoirs,"SPE26513,1993
    [24]Buehsteine H:"Stress-indueed Permeability reduetion in fissured reservoirs,"SPE26513,1994.
    [25]蒋海军,鄢捷年,李荣.裂缝性储层应力敏感性实验研究[J].石油钻探技术,2000,28(6):32-33.
    [26]李宁,张清秀.裂缝型碳酸盐岩应力敏感性评价室内实验方法研究[J].天然气工业,2000,20(3):30-33.
    [27]阮敏,王连刚.低渗透油田开发与压敏效应[J].石油学报,2002,23(2):73-76.
    [28]景岷雪,袁小玲.碳酸盐岩岩心应力敏感性实验研究[J].天然气工业,2002,22(增刊):114-117.
    [29]向阳,向丹,黄大志.裂缝-孔隙型双重介质应力敏感模拟试验研究[J].石油实验地质,2003,25(5):498-500.
    [30]张军,徐福华.有效应力下裂缝性岩石物性特征分析[J].太原理工大学学报,2005,36(5):27-28.
    [31]郝明强,杨正明,等.裂缝性低渗透油藏压力敏感性研究[J].新疆石油地质,2006,27(4):471-473.
    [32]马收,杨其彬,等.低渗透裂缝性储层应力敏感性评价[J].油气地质与采收率,2006,13(5):88-90.
    [33]卢家亭,李闽.低渗砂岩渗透率应力敏感性实验研究[J].天然气地球科学,2007,18(3):339-341.
    [34]郭平,邓垒,等.低渗气藏多次应力敏感测试及应用[J].西南石油大学学报(自然科学版),2008,30(2):78-82.
    [35]杨满平,李允.考虑储层初始有效应力的岩石应力敏感性分析[J].天然气地球科学,2004,15f6):601-603.
    [36]Qun Lei,Wei Xiong,Jiangru Yuan.Analysis of Stress Sensitivity and Its Influence on Oil Production From Tight Reservoirs[C].SPE 111148,2007.
    [37]于忠良,熊伟,等.低渗透储层应力敏感分析[J].天然气技术,2008,2(4):26-29.
    [38]宋广寿,熊伟,等.致密储层应力敏感分析新方法及其对开发的影响[J].水动力学 研究与进展,2008,23(2):220-225.
    [39]黄远智,王恩志.低渗透岩石渗透率对有效应力敏感系数的试验研究[J].岩石力学与工程学报,2007,26(2):410-414.
    [40]罗瑞兰,程林松,等.确定低渗岩心渗透率随有效覆压变化关系的新方法[J].中国石油大学学报(自然科学版),2007,31(2):87-89.
    [41]郑维师,刘易非.低渗透砂岩气藏中压敏效应对产能的影响[J].天然气工业,2004,24(12):113-115.
    [42]张琰,崔迎春.砂砾性低渗气层压力敏感性的试验研究[J].石油钻采工艺,1999,20(6):1-6.
    [43]蒋海军,鄢捷年.裂缝性储集层应力敏感性实验研究[J].特种油气藏,2000,7(3):39-41.
    [44]王富华,邱正松,等.火成岩裂缝性储层应力敏感性实验研究[J].钻井液与完井液,2000,17(6):1-4.
    [45]储层敏感性流动实验评价方法.中华人民共和国石油天然气行业标准,SY/T 5358—2002.
    [46]兰林,康毅力,等.储层应力敏感性评价实验方法与评价指标探讨[J].钻井液与完井液,2005,22(3):1-4.
    [47]何健,康毅,等.孔隙型与裂缝—孔隙型碳酸盐岩储层应力敏感研究[J].钻采工艺,2005,28(2):84-86.
    [48]李传亮.储层岩石的应力敏感性评价方法[J].大庆石油地质与开发,2006,25(1):40-42.
    [49]李闽,乔国安,陈昊.低渗砂岩储层岩石应力敏感实验与理论研究[J].钻采工艺,2006,29(4):91-93.
    [50]Bhushan B:"Contact Mechanics of Rough Surfaces in Tribology:Multiple Asperity Contacts," Tribol.Lett.1998,4:1-35.
    [51]Liu G,and Wang Q J:"A Survey of Current Models for Simulating the Contact Between Rough Surfaces," Tribol.Trans,1999,42:581-591.
    [52]Barber J R,and Ciavarella M:"Contact Mechanics," Int.J.Solids Struct,2000,37:29-43.
    [53]Adams G G,and Nosonovsky M:"Contact Modeling-Forces," Tribol.Int,2000,33:431-442.
    [54]Greenwood J,and Williamson J B P:"Contact of Nominally Flat Surfaces," Proc Roy Soc London,1966,Ser A,295:300-319.
    [55]Greenwood J,and Tripp J H:"The Contact of Two Nominally Flat Rough Surfaces,"Proc Inst Mech Engrs,1971,185:625-633.
    [56]Yamada K,and Takeda N,et al:"Mechanisms of Elastic Contact and Friction Between Rough Surfaces," Wear,1978,48:15-34.
    [57] Sun Zongqi: "Fracture Mechanics and Tribology of Rocks and Rock Joints,"Doctoral Thesis,1983:22.
    [58] Swan G: "Determination of Stiffness and Other Joint Properties from Roughness Measuresments," Rock Mech and Rock Engr,1983,16:16-38.
    [59] Brown S R, and Scholz C H: "Closure of Random Elastic Surfaces in Contact,"Geophys Res,1985,90(B7):5531-5545.
    
    [60] Timoshenko S, and Godier J N: "Theory of Elasticity, McGraw-Hill, "New York, 1951.
    [61] Greenwood J A, and Tripp J H: "The Elastic Contact of Rough Spheres," ASME J.Appl. Mech,1967,34:153-159.
    [62] Greenwood J A, and Tripp J H: "The Contact of Two Nominally Flat Rough Surfaces," Proc.Inst.Mech.Eng,1970,185:625-633.
    [63] Hisakado T: "Effect of Surface Roughness on Contact Between Solid Surfaces," Wear, 1974,28:217-234.
    [64] Bush A W, and Gibson R D: "The Elastic Contact of a Rough Surface," Wear, 1975, 35:87-111.
    [65] Bush A W, and Gibson R D: "Strong Anisotropic Rough Surface," ASME J.Tribol, 1979,101:15-20.
    [66] Chang W R, and Etsion I: "An Elastic-Plastic Model for the Contact of Rough Surfaces," ASME J.Tribol,1987,109:257-263.
    [67] ZhaoY, and Maietta D M: "An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow," ASME J. Tribol, 2000,122:86-93.
    [68] Kogut L, and Etsion I: "Elastic-Plastic Contact Analysis of a Sphereand a Rigid Flat," ASMEJ.Appl.Mech,2002,69:657-662.
    [69] Jackson R L, and Green I: "A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat,"ASME J.Tribol,2005,127:343-354.
    [70] Horng J H: "An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surface," ASME J.Tribol,1998,120:82-88.
    [71] Jeng Y R, and Wang P Y: "An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation," ASME J.Tribol,2003,125:232-240.
    [72] Majumdar A, and Bhushan B: "Fractal Model of Elastic-Plastic Contact Between Rough Surfaces,"ASME J.Tribol,1991,113:1-11.
    [73] Webster M N, and Sayles R: "A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces," ASME J.Tribol, 1986,108:314-320.
    [74] Liang X, and Linqing Z: "A Numerical Model for the Elastic Contact of Three-Dimensional Real Rough Surfaces," Wear,1991,148:91-100.
    [75] Ren N, and Lee S C: "A Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method,"ASME J.Tribol,1993,115:597-601.
    [76]Chang L,and Gao Y:"A Simple Numerical Method for Contact Analysis of Rough Surfaces," ASME J.Tribol,1999,121:425-432.
    [77]Cai S,and Bhushan B:"A Numerical Three-Dimensional Contact Model for Rough,Multilayered Elastic/Plastic Solid Surfaces," Wear,2005,259:1408-1423.
    [78]Abbott E J,and Firestone F A:"Specifying Surface Quality—A Method Based on Accurate Measurement and Comparison," Mech.Eng.(Am.Soc.Mech.Eng.),1933,55:569-572.
    [79]Yuting Duan,and Yingfeng Meng:"Stress Sensitivity of Naturally Fractured porous Reservoir with Dual-porosity," SPE50909,1998:295-302.
    [80]杨新明.江苏阂桥地区火山岩油藏裂缝闭合条件研究.特种油气藏[J].2003,10(1):76-79.
    [81]刘向君,梁利喜,等.裂缝闭合临界流体压力对油气田开发的影响[J].天然气工业,2005,25(10):89-90.
    [82]梁利喜,刘向君,等.基于接触理论研究裂缝性储层应力敏感性[J].特种油气藏.2006,13(4):14-16.
    [83]颜海.致密砂岩气藏裂缝闭合机理研究[D].成都:西南石油大学,2006.
    [84]练章华,康毅力,等.裂缝宽度预测的有限元数值模拟[J].天然气工业,2001,21(3):47-50.
    [85]练章华,康毅力,等.井壁附近垂直裂缝宽度预测[J].天然气工业,2003,23(3):44-46.
    [86]刘战君.青西油田裂缝特征及其对开发过程的影响[D].成都:西南石油学院,2003.
    [87]刘向君,刘战君,等.裂缝闭合规律研究及其对油气田开发的影响[J].天然气工业,2004,24(7):39-41.
    [88]兰林.裂缝性砂岩油层应力敏感性及裂缝宽度研究[D].成都:西南石油学院,2005.
    [89]李相臣,康毅力,等.致密砂岩与井筒连通2条垂直裂缝宽度变化的计算机模拟[J].钻井液与完井液,2007,24(4):57-59.
    [90]包强,徐世倚,等.资阳地区震旦系裂缝特征及控制因素初探[J].天然气工业,1996,16(5):28-31.
    [91]吴兴录.柴达木盆地南翼山构造裂缝储层特征.特种油气藏[J],特种油气藏,2003,10(6):16-19.
    [92]王新建.川东石灰系碳酸盐岩人工裂缝宽度与渗透率关系图版建立及储集岩分类[J].天然气工业,1991,11(5):44-49.
    [93]张绍槐,罗平亚.保护储集层技术[M].北京:石油工业出版社,1993.
    [94]张旭.裂缝性混积岩储层测井评价技术[J].天然气工业,2002,22(2):34-37.
    [95]顾军.裂缝-孔隙性储层保护机理与钻井工作液研究——以吐玉克油田为例[D]. 成都理工大学,2003.
    [96]Yoshika,N:"Elastic behavior of contacting surfaces under normal loads:A computer simulation using three-dimensional surface topographies," Geophys.Research,1994,99(15):459-560.
    [97]Goodman R E:"The Mechanical Properties of Joints," In:Proc Congs ISRM Denver,1966,127-133.
    [98]孙宗颀.不连续面应力变形研究[J].岩石力学与工程学报,1978,6(4):287-300.
    [99]夏才初,孙宗颀,潘长良.节理接触机理和闭合性质研究[J].同济大学学报,1995,23(1).
    [100]Goodman R E:"Methods of Geological Engineering in Discontinuous Rocks," West,New York:1976.
    [101]Bandis S C,Lumden A C,Barton N R:"Fundamentals of Rocks Joint Deformation," Int J Rock Mech Min Sci&Geomech Abstr,1983,22:121.
    [102]李传亮.油藏工程原理[M].石油工业出版社,2005:258-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700