用户名: 密码: 验证码:
基于飞秒激光抽运—探测技术的纳米薄膜热输运特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子等器件尺寸的减小、工作频率的提高,散热问题已成为其主要限制瓶颈之一。对微器件系统及其组成单元在特定的空间和时间尺度内的热行为的研究已极为迫切且极其关键。本文应用飞秒激光抽运-探测技术对纳米薄膜热输运特性进行研究。考虑单脉冲激光能量的累积效应,利用热反射信号满足线性时不变系统(LTI)的假设对实验数据进行拟合分析。
     本文第一项工作是对单波长飞秒激光抽运-探测热反射测量系统的光学系统进行了优化改进,一定程度上提高了信噪比。利用该单波长测量系统得到的热反射信号较前人的信号的质量及测量精度更高。
     利用该单波长测量系统,研究了不同厚度的金属纳米薄膜的非平衡传热过程。通过抛物两步模型对实验数据进行拟合,在拟合过程中还引入电子温度与声子温度对反射率影响的比例关系,从而优化了对样品热物性值的拟合结果。实验结果表明电子-声子耦合系数同时受薄膜材料的厚度以及颗粒直径的影响;在样品数十到数百纳米厚度时,样品的热导率随着厚度的增大而变大。此外,实验验证了探测光的反射率同时受电子温度与声子温度的影响。
     本文第二项工作在单波长测量系统基础上,建立了一种双波长飞秒激光抽运-探测热反射系统。该双波长测量系统利用倍频模块,将抽运激光束生成二次谐波,用于加热样品。在抽运光与探测光到达探测器之前使用对倍频激光的透过率为109滤光片滤除倍频后的抽运光,从而避免抽运光对信号的干扰,可实现准确高效的测量。该双波长测量系统可实现飞秒到纳秒时间域内的热输运过程的研究。
     利用双波长抽运-探测热反射测量系统,测量了各种不同厚度的金属/半导材料,包括:Al/Si, Ni/Si, Au/Si等样品;测量了三层纳米结构的Al/HfO2/Si薄膜样品。结合采样定理对频域信号进行分析,建立热反射信号与调制频率的关系式,最终得到多层膜结构的热传导模型。通过多层膜热传导模型与实验数据的对比,得到纳米薄膜材料的界面热阻及热导率。测量结果表明金属与半导体的界面热阻在10-8m2K/W数量级,Si的热导率接近体材料值。Al/HfO2/Si的界面热阻值与SiO2/Si的界面热阻相当。
As the reduction in size and the increase in speed of microelectronic devices, heat management at nano-scale is a critical issue.It is urgent and important to study the thermal transport behavior in specific space and time domain of micro/nano devices and their components. This thesis examines the characterization of thermal transport in nanometers using femtosecond laser pump-probe method. The theory for interpreting the measurement results is developed using a linear time-invariant systems, account-ing for pulse accumulation effects.
     The first work of this thesis was optimized and improved the optical system of single-color of femtosecond laser pump-probe.method, which can improve the sig-nal-to-noise in a certain degree. The signal quality and measurement accuracy was higher than the former's measurements by using this single wavelength measurement system.
     The experimental system was used to study the nonequilibrium heat transfer in nano metal films with different thickness. Exploring parabolic two-step model (PTS) to fit the experimental data. During the fitting process, we considered the proportional relationship with the change of electron and phonon temperature, which affect the reflectivity. The experimental results show that the electron-phonon coupling factors are affected by the film thickness and grain diameter, and in the thickness-range from tens to hundreds of nanometers, the thermal conductivity increases with the increasing thicknesses of the film. In addition, the experimental result verifies that the reflectivity of probe laser is affected by electron and phonon temperature at the same time.
     The second work of this thesis was established a two-color femtosecond pump-probe thermoreflectance system, which was based on the single-color pump-probe method. This experimental system used the second-harmonic generator to double the frequency of the pump pulses. Before pump and probe beams radiating the detector, a color filter which has a transmission of10-9at the wavelength around double frequency of pump beam was used to isolate the scattered pump beam. As results, it can avoid the interference of pump signal and achieve accurate and efficient measurements. In addi-tion, this two-color experimental system can be explored for the study the characteri-zation of thermal transport over time scales from femtoseconds to nanoseconds.
     The two-color pump-probe experimental system measured the different thickness metal/semiconductor samples with two layers nano-structure, including: Al/Si, Ni/Si and Au/Si samples; besides that, it also measured Al/HfO2/Si samples with three lay-ers nano-structure. The sampling theorem was used to analysis the frequency domain signal, establish the relationship between the thermoreflectance signals and modula-tion frequency, and finally got the heat transfer model of multilayer structure. By comparing between the experimental data and heat transfer model, the interface ther-mal resistance and thermal conductivity were obtained. The results show that the or-der of interface thermal resistances between the metals and semiconductor were at10-8m2K/W., the thermal conductivity of silicon was close to the bulk conductivity. The value of interface thermal resistances, including the three of Al/HfO2, HfO2and HfO2/Si were quite equal to the value of the SiO2/Si.
引文
[1]Chen G.. Nanoscale Energy Transport and Conversion[M]. Oxford University Press,2005.
    [2]Cahill D. G., Ford W. K., Goodson K. E., Mahan G. D., Majumdar A., Maris H.J., Merlin R., Phillpot S. R.. Nanoscale thermal transport [J]. J. Appl. Phys., 2003,93(2):793.
    [3]Smith A. N., Calame J. P. Impact of thin film thermophysical properties on thermal management of wide bandgap solid-state transistors, International Journal of Thermophysics,2004,25(2):409-422.
    [4]Goodson K. E, Ju Y. Sungtaek. Heat conduction in novel electronic films [J]. Annual Review of Materials Science,1999,29(1):261-293.
    [5]Chen Gang, Heat transfer in micro-and nanoscale photonic devices[J]. Annual Review of Heat Transfer,1996,7:1-57.
    [6]Cahill D. G., Goodson K. E., Majumdar A.. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures [J]. Journal of Heat Transfer, 2002,124(2):223-241.
    [7]Goodson K. E, Ju Y. Sungtaek. Heat conduction in novel electronic films [J], Annual Review of Materials Science,1999,29(1):261-293.
    [8]Harman T. C., Walsh M. P., Laforge B. E., Turner G. W., Nanostructured thermoelectric materials [J]. J. Electronic Materials,2005,34(5):L19-L22.
    [9]Chen G., Zeng, T., Borca-Tasciuc, T.,Song, D.. Phonon engineering in nano-structures for solid-state energy conversion [J]. Materials Science and Engineering, 2000, A292:155-161.
    [10]Harman T. C., Taylor P. J., Walsh M. P., LaForge B. E., Quantum dot superlattice thermoelectric materials and devices[J]. Science,2001,297(5590):2229-2232.
    [11]Chen G., Thermal conductivity and ballistic-phonon transport in the crossplane direction of superlattices [J]. Phys. Rev. B,1998,57(23):14958-14973.
    [12]Yang Ronggui, Chen Gang. Thermal conductivity modeling of periodic two-dimensional nanocomposites [J]. Phys. Rev. B,2004,69(19):195316.
    [13]Wellershoff S S, Hohlfeld J, Gudde J, et al. The role of electron-phonon coupling infemtosecond laser damage of metals [J]. Applied Physics A: Materials Science & Processing,1999,69:S99-S107.
    [14]Grigoropoulos C.P.. Heat Transfer in Laser Processing of Thin Films[J]. Ann.Rev. Heat Transfer V,1994,77-130.
    [15]T.Q.Qiu, C.L.Tian, Heat Transfer Mechanisms during Short-pulse Laser Heating of Metals [J].ASME J. Heat transfer,1993,115:835-841.
    [16]Qiu T Q, Tien C L. Femtosecond laser-heating of multilayer metals.1. Analysis [J].International Journal of Heat and Mass Transfer,1994,37(17):2789-2797.
    [17]Kaganov, M. I., Lifshitz, I. M., and Tanatarov, L. V., Relaxation between electrons and crystalline lattices [J]. Sov. Phys. JETP,1957,4(2)173-178.
    [18]Anisimov S., Kapeliovich B., Perelman T.. Electron emission from metal surfaces exposed to ultrashort laser pulses [J]. Soviet Physics JETP,1974,39:375-377.
    [19]Allen P B. Theory of thermal relaxation of electrons in metals[J]. Physical Review Letters,1987,59(13):1460-1463.
    [20]Eesley, G. L. Observation of Nonequilibrium Electron Heating in Copper [J]. Phys.Rev. Lett.,1983,51(23):2140-2143.
    [21]Fujimoto J G, Liu J M, Ippen E P, et al. Femtosecond laser interaction with me-tallic tungsten and nonequilibrium electron and lattice temperatures [J]. Physical Review Letters,1984,53(19):1837-1840.
    [22]Elsayed-Ali H E, Norris T B, Pessot M A, et al. Time-resolved observation of electron-phonon relaxation in copper [J]. Physical Review Letters,1987,58 (12):1212-1215.
    [23]Brorson S D, Fujimoto J G, Ippen E P. Femtosecond electronic heat-transport dynamics in thin gold-films [J]. Physical Review Letters,1987,59(17):1962-1965.
    [24]Groeneveld R H M, Sprik R, Lagendijk A. Ultrafast relaxation of electrons probed by surface-plasmons at a thin silver film [J]. Physical Review Letters,1990, 64(7):784-787.
    [25]Brorson S D, Kazeroonian A, Moodera J S, et al. Femtosecond room-temperature measurement of the electron-phonon coupling constant-lambda in metallic super-conductors [J]. Physical Review Letters,1990,64(18):2172-2175.
    [26]Fann W. S., et al., Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films [J]. Phys. Rev. Lett.,1992, 68(18):2834-2837.
    [27]Groeneveld R. H. M., Sprik R., Lagendijk A.. Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals [J]. Phys. Rev. B,1992,45(9):5079-5082.
    [28]Juhasz T, Elsayedali H E, Smith G O, et al. Direct measurements of the transport of nonequilibrium electrons in gold-films with different crystal-structures [J]. Physical Review B,1993,48(20):15488-15491.
    [29]Sun C. K., et al..Femtosecond-tunable measurement of electron thermalization in gold [J]. Physical Review B,1994,50(20):15337-15348.
    [30]Qiu T Q, Juhasz T, Suarez C, et al. Femtosecond laser-heating of multilayer met-als.II. Experiments [J]. International Journal of Heat and Mass Transfer,1994, 37(17):2799-2808.
    [31]Tzou D.Y.. A unified field approach for heat conduction from macro-to micro-scales [J]. Journal of heat transfer,1995,117(1):8-16.
    [32]Groeneveld R H M, Sprik R, Lagendijk A. Femtosecond spectroscopy of elec-tron-electron and electron-phonon energy relaxation in Ag and Au [J]. Physical Review B,1995,51(17):11433-11445.
    [33]Hostetler J. L., Smith A. N., Czajkowsky D. M., Norris P. M. Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al [J]. Appl. Optics,1999,38(16):3614.
    [34]Dou K., et al., Femtosecond studies of highly excited electrons in metals [J]. Journal of Luminescence,2001,94:617-621.
    [35]Smith A. N., Norris P. M. Influence of intraband transitions on the electron-thermoreflectance response of metals [J]. Applied Physics Letters, 2001,78(9):1240-1242.
    [36]Gamaly, E. G., et al.,Transient reflectivity of gallium films induced by femtose-cond laser [J] Applied Surface Science,2002,197:730-736.
    [37]Stevens Robert J., Smith Andrew N., Norris P. M. Signal analysis and characte-rization of experimental setup for the transient thermoreflectance technique [J]. Review of Scientific Instruments,2006,77:084901.
    [38]Hopkins P E, Kassebaum J L, Norris P M. Effects of electron scattering at met-al-nonmetal interfaces on electron-phonon equilibration in gold films [J]. Journal of Applied Physics,2009,105:023710.
    [39]韩鹏,唐大伟,程光华,祝捷,赵卫.金属纳米薄膜微尺度热输运过程实验研究[J].工程热物理学报,2008,29(2):297-300
    [40]祝捷,唐大伟,程光华,韩鹏,赵卫,张兴,飞秒激光抽运_探测热反射系统的建立与调试[J],工程热物理学报,2008,29(7):1227-1230.
    [41]马维刚,王海东,张兴,等.飞秒脉冲激光加热金属薄膜的理论和实验研 究[J].物理学报,2011,60:064401.
    [42]Ma W G, Wang H D, Zhang X, et al. Experiment study of the size effects on electron-phonon relaxation and electrical resistivity of polycrystalline thin gold films [J]. Journal of Applied Physics,2010,108:064308
    [43]Cahill D G,Thermal Conductivity Measurement from 30 to 750K: the 3ω method [J]. Rev. Sci. Instrum.1990,61:802-808.
    [44]Lee S. M., Cahill D. G. Heat Transport in thin dielectric films [J] J. Appl. Phys. 1997,81:2590-2595.
    [45]Ahmed, S., Liske, R., Wunderer, T., et al., Extending the 3ω-method to the MHz range for thermal conductivity measurements of diamond thin films [J]. Diamond and Related Materials,2006,15:389-393.
    [46]Olson, B. W., Graham, S., Chen, K. A. practical extension of the 3co method to multiplayer structure [J], Rev. Sci. Instrum.,2005,76(1):1-6.
    [47]Raudzis, C. E., Schatz, F., Extending the 3ω method for thin-film analysis to high frequencies [J], J. Appl. Phys.,2003,93(10):6050-6055.
    [48]Yamane, T., Nagai, N., Katayama, S., Todoki, M. Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method [J]. J. Appl. Phys. 2002,91 (12):9772-9776.
    [49]Moon, S., Hatano, M., Lee, M. Thermal conductivity of amorphous silicon thin films [J] Int. J. Heat Mass Transfer,2002,45 (12):2439-2447.
    [50]Ju Y. S., Goodson K. E., Process-dependent thermal transport properties of silicon dioxide films deposited using low-pressure chemical vapor deposition [J].J. Appl. Phys.,1999,85(10):7130-7134.
    [51]Ju Y. S., Kurabayashi K., Goodson, K. E. Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating [J], Thin Solid Films, 1999,339:160-164.
    [52]Cahill D. G., Katiyar M., Abelson J. R. Thermal conductivities of a-Si:H thin Film [J]. Phys. Rev. B,1994,50 (9):6077-6081.
    [53]Y. S. Ju, K. Kurabayashi, K. E. Goodson. Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating thin solid films [J],Thin Solid Films,1999,339:160-164.
    [54]Yang B., Liu W. L., Liu J. L., Wang K. L., Chen, G. Measurements of anisotropic thermoelectric properties in superlattices [J]. Appl. Phys. Lett.,2002, 81(19):3588-3590.
    [55]Jin J., Manoharan M. P., Wang Q., Haque M. A. In-plane thermal conductivity of nanoscale polyaniline thin films [J]. Appl. Phys. Lett.,2009,95(3):033113.
    [56]Holland L. R, Smith R. C. Analysis of temperature fluctuations in ac heated Filaments [J]. J. Appl. Phys.,1966,7(12):4528-4536.
    [57]Kieiner M B, KBhn S A, Weber W. Thermal conductivity measurements of thin silicon dioxide films in integrated circuits [J],IEEE Trans. Electron Devices,1996,43:1602-1609.
    [58]Nath P, Chopra K L. Experimental determination of the thermal conductivity of thin films [J].Thin Solid Films,1973,18:29-37.
    [59]K. E. Goodson, M. I. Flik, L. T. Su, D. A. Antoniadis prediction and measurement of the thermal conductivity of amorphous dielectric layers [J]. ASME J. Heat. Transfer,1994,116:317-324.
    [60]Cahill D. G., Fischer H., Klisner T., etc. Thermal conductivity of thin films: measurements and understanding [J] J. Vac. Sci. Technol.,1989, A7(3):1259-1266.
    [61]宋青林,夏善红,陈绍凤,张建刚,微尺度薄膜热导率测试技术[J].物理学进展,2002,22(3):283-295.
    [62]Terry M.Tritt. Thermal conductivity:theory, propertities and applications [M]. Kluwer Academic/Plenum Publishers,2004.
    [63]Zhang Xiang, Grigoropoulus C P., Thermal conductivity and diffusivity of free-standing silicon nitride thin films [J].Rev. Sci. Instrum.,1995,66 (2):1115-1119.
    [64]Lee S,Kwun D G. Heat capacity measurement of dielectric solids using a linear surface heater: Application to ferroelectrics [J].Rev. Sci. Instrum.,1994,65 (4):966-970.
    [65]W J Parker, R J Jenkins, C P Butler. Flash method of determining thermal diffu-sivity, heat capacity, and thermal conductivity [J]. Journal of Applied Physics, 1961,32:1679-1684.
    [66]F. Cernuschi, A. Figari. Thermal wave interferometry for measuring the thermal diffusivity of thin slabs [J]. Journal of Materials Science.2000,35:5891-5897.
    [67]F. Cernuschi, P. G. Bison, A. Figari, S. Marinetti, E. Grinzato. Thermal diffusivity measurements by photothermal and thermographic techniques [J]. International Journal of Thermophysics,2004,25(2):439-457.
    [68]唐大伟,荒木信幸,早川泰宏.应用激光闪光法测定半导体融体的热扩散率[J].工程热物理学报,2005,1:140-142.
    [69]唐大伟;荒木信幸.应用激光闪光法测量薄膜材料的热扩散率[J].锦州师范学院学报(自然科学版),2002,23(1):1-6.
    [70]A. C. Tam Applications of photoacoustic sensing techniques [J]. Rev. Modern Phys.,1986,58:381-434
    [71]M. Akabori, Y. Nagasaka, A. Nasashima Measurement of the thermal difisivity of thin films on substrate by the photoacoustic method [J]. Int. J. Thermophys.,1992, 13:499-514.
    [72]J. Xiao, M. Qian, M. A. Wei Detection of thermal disivity of thin metallic film using a photoacoustic technique [J]. J. Phys. Ⅳ Colloq.,1992,2 (C1):2809-812.
    [73]X. Wang, H. Hu, X. Xu. Photo-Acoustic Measurement of thermal conductivity of thin films and bulk materials [J] J. Heat Transfer 2001,123:138-144.
    [74]A Rosencwaig, A Gersho. Theory of the photoacoustic effect with solids [J]. Journal of Applied Physics.1976.47(1):64-69.
    [75]R. T. Swimm. Photoacoustic determination of thin-film thermal properties [J]. Applied Physics Letter.1983,42(2):955-957
    [76]U. Zammit, F. Gasparrini, M. Marinelli, R. Pizzoferrato, F. Scudieri, S. Martel-lucci. Surface states studies in semiconductors by photothermal deflection spec-troscopy [J]. Journal of Applied Physics. Phys.1991,69 (4):2577-2560.
    [77]A. Rosencwaig, J. Opsal, W. L. Smith, D. L. Willenborg detection of thermal waves through optical reflectance [J].Appl. Phys. Lett.,1985,46:1013-1015.
    [78]L. Pottier.Micrometer scale visualization of thermal waves by photoreflectance microscopy [J]. Appl.Phys. Lett.,1994,64:1618-1619.
    [79]G. Langer, J. Hartmann, M. Reichling Thermal conductivity of thin metallic films measured by photothermal profile analysis [J]. Rev. Sci Instrum,1997,68: 1510-1513.
    [80]刘鹏程,沈剑峰,施柏煊.投射式光热偏转技术实验装置的建立及应用[J].光学仪器.2002,24(45):73-77.
    [81]施柏煊,殷浩,王聪和,黄元华,谭家麟.横向激光光热偏转相位法测量金刚石薄片的热扩散率[J].光子学报.2000,29(5):474-477.
    [82]Kimihito Hatori, Naoyuki Taketoshi, Tetsuya Baba, Hiromichi Ohta. Ther-moreflectance technique to measure thermal effusivity distribution with high spatial resolution [J]. Review of scientific instruments.2005,76 114901-7.
    [83]James Christoffersona, Ali Shakouri. Thermoreflectance based thermal microscope [J]. Review of scientific instruments.2005,76(2):024903/6.
    [84]Stefan Dilhairea, Ste'phane Graubya, Wilfrid Claeysa, Jean-Christophe Batsale Thermal parameters identification of micrometric layers of microelectronic devices by thermoreflectance microscopy [J]. Microelectronics Journal.2004,35:811-816.
    [85]George Chen, Ping Hui. Pulsed photothermal modeling of composite samples based transmission-line theory of heat conduction [J]. Thin Solid Films.1999, 339:58-67
    [86]Schmidt A. J. Optical characterization of the thermal transport from the nanoscale to the macroscale [D]. Massachusetts institute of technology,2008.
    [87]Schmidt A J, Cheaito R, Chiesa M.Characterization of thin metal films via fre-quency-domain thermoreflectance[J] J. Appl. Phys 2010,107:24908.
    [88]Schmidt A. J., Collins K. C., Minnich A. J. Chen, G. Thermal conductance and phonon transmissivity of metal—graphite interfaces [J]. J. Appl. Phys.,2010, 107(10):10490.
    [89]A.J. Schmidt, X. Chen, G. Chen. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance [J]. Rev. Sci. Instrum.,2008,79:114902.
    [90]Zhu J, Tang D W, Wang W, Liu J, Kristopher W. Holub,Yang R G. Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films [J]. J. Appl. Phys,2010,108:094315.
    [91]Borca-Tasciuc T., Kumar A. R., Chen, G. Data reduction in 3 omega method for thin-film thermal conductivity determination [J]. Review of Scientific Instruments, 2001,72(4):2139-2147.
    [92]Koh, Y. K., Singers, U. L., Kim, W., Zide, J. O., Lu, H.,Cahill, D. G., Majumdar, A., Gossard, A. C., Comparison of the 3 omega method and time-domain thermoref-lectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors [J]. Journal of Applied Physics,2009,105(5):054303.
    [93]R.J. Stoner, H.J. Maris. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K [J]. Phys. Rev. B,1993,48:16373.
    [94]R.M. Costescu, M.A. Wall, D.G. Cahill. Thermal conductance of epitaxial inter-faces [J]. Phys. Rev. B,2003,67:054302.
    [95]P.E. Hopkins, R.N. Salaway, R.J. Stevens, P.M. Norris. Temperature-dependent thermal boundary conductance at Al/Al2O3 and Pt/Al2O3 interfaces [J] Int. J. Thermophys.,2007,28:11.
    [96]K. L. Chopra,P. Nath Thermal conductivity of ultrathin metal films in multilayer structures[J].J. Appl. Phys.1974,45:1923-1925.
    [97]C. Leu, H. Lin, C. Hu, C. Chien, M. J. Yang, M. C. Yang, T. Huang. Effects of titanium and tantalum adhesion layers on the properties of Sol-Gel gerived SrBi2Ta209 thin films [J]. J. Appl.Phys.2002,92:1511-1517.
    [98]P. Nath, K.L. Chopra.Thermal conductivity of copper films [J]. Thin Solid Films, 1974,20:53-62.
    [99]K. L. Chopra, P. Nath.Thermal conductivity of ultrathin metal films in multilayer structures [J] J. Appl. Phys.1974,45:1923-1925.
    [100]Martan J,Semmar N, Boulmer-Leborgne C, Platin P, Le Menn E T. Thermal characterization of tungsten thin films by pulsed photothermal radiometry [J]. Nanoscale and Microscale Thermophys. Eng.2006,10:333.
    [101]Caffrey AP, Hopkins P E, Klopf J M, Norris P M.Thin film non-noble transition metal thermophysical properties [J].Microscale Thermophys. Eng.,2005,9:365.
    [102]] Genzou Matsui, Hideyuki Kato. Analysis of thermal diffusivity of Ti thin film by thermoreflectance and periodic heating technique [J].Rev. Sci. Instrum., 2011,82:034905.
    [103]Cahill D G,Allen T H. Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings[J]. Appl. Phys. Lett.,1994,65 (3):309-311.
    [104]Eriksson P,Andersson J Y,Stemme G. Thermal characterization of surface mi-cromachined silicon nitride membrances for thermal infrared detectors [J]. IEEE J MEMS,1997,6(1):55-61.
    [105]S. M. Lee, D. G. Cahill, T. H. Allen.Thermal conductivity of sputtered oxide films [J]. Phys.Rev. B,1995,52:253-257.
    [106]M. B. Kleiner, S. A. Kuhn, W. Weber.Thermal conductivity measurements of thin silicon dioxide films in integrated circuits [J]. IEEE Trans. Electron Dev., 1996,43:1602-1609.
    [107]J. H. Orchard-Webb. A new structure for measuring the thermal conductivity of integrated circuit dielectrics [C] in Proc. IEEE Int. Conf. on Microelectronic Test Structures,1991,41-45.
    [108]H. A. Schafft, J. S. Suehle, P. G. A. Mirel. Thermal conductivity measurements of thin-film silicon dioxide [C] in Proc. IEEE Int. Conf. on Microelectronic Test Structures,1989,121-125.
    [109]K. Goodson, M. Flik, L. Su, D. Antoniadis annealing-temperature dependence of the thermal conductivity of LPCVD s ilicon-dioxide layers [J]. IEEE Electron Device Lett.,1993,14:490-492.
    [110]R. F. Brotzen, P. J. Loos, D. P. Brady.Thermal conductivity of thin SiO2 films[J]. Thin Solid Films,1992,207:197-201.
    [111]K. Goodson, O. Kading, M. Rosler, R. Zachai. Experimental investigation of thermal conduction normal to diamond-silicon boundaries [J]. J. Appl. Phys., 1995,74:1385-1392.
    [112]H. Verhoeven, E. Boettger, A. Floter, H. Reiss, R. Zachai. Thermal resistance and electrical insulation of thin low-temperature-deposited [J].Diamond Films Di-amond Rel. Mater.1997,6:298-302.
    [113]M. Asheghi, M. N. Touzelbaev, K. Goodson, Y. Leung, S. Wong. Tempera-ture-dependent thermal conductivity of single-crystal silicon layers in SOI sub-strates [J] J. Heat Trans.,1998,120:30-36.
    [114]D. Song. Phonon heat conduction in nano and micro-porous thin films [D]. University of California,2003.
    [115]Liu, W. J., Asheghi, M.Thermal conductivity measurements of ultra-thin single crystal silicon layers [J]. ASME J. Heat Transfer,2006,128:75-83.
    [116]Y. C. Tai, C. H. Mastrangelo, R. S. Muller, Thermal conductivity of heavily doped lowpressure chemical vapor deposited polycrystalline silicon films [J]. J. Appl. Phys.,1988,63:1442.
    [117]V. M. Abrosimov, B. N. Yegorov, N. S. Lidorenko. An investigation of the thermoelectric figure of merit of bismuth films radio.Eng. Electro. [J]. Phys.,1971, 9:1578-1579.
    [118]F. Volklein, E. Kessler.Analysis of the lattice thermal conductivity of thin films by means of a modified Mayadas-Shatzkes model:the case of bismuth films [J]. Thin Solid Films,1986,142:169-181.
    [119]F. Volklein, V. Baier, U. Dillner, E. Kessler. Thermal conductivity and divinity of a thin film SiO2/Si3N4 sandwich system [J].Thin Solid Films,1990,188:27-33.
    [120]V. Baier, F. Volklein. Thermal conductivity of thin films [J]. Phys. Stat. Sol.,1990, (a) 118:K 69.
    [121]T. Yao. Thermal properties of AlAs/GaAs superlattices [J]. Appl. Phys. Lett., 1987,51:1798-1800.
    [122]Yang, B., Liu, W. L., Liu, J. L., Wang, K. L., Chen, G., Measurements of anisotropic thermoelectric properties in superlattices [J]. Appl. Phys. Lett.,2002, 81(19):3588-3590.
    [123]Capinski, W. S., Maris, H. J., Ruf, T., Cardona, M., Ploog, K., Katzer, D. S., Thermal-conductivity measurements of GaAs/AlAs superlattices using a picose-cond optical pump-and-probe technique [J]. Phys. Rev. B,1999,59 (12):8105-8113.
    [124]G. A. Slack, S. F. Bartram. Thermal expansion of some diamondlike crystals [J], J.Appl. Phys.1975,1:89-98.
    [125]K. Watari, M. Kawamoto, K. Ishizaki sintering chemical reactions to increase thermal conductivity of aluminum nitride [J] J. Mater. Sc.,1991,26(17):4727-4732.
    [126]K. Watari, H. Nakano, K. Urabe, K. Ishizaki, S. Cao, K. Mori.Thermal conduc tivity of AlN ceramic with a very low amount of grain boundary phase at 4 to 1000 KJ [J]. Mater. Res.,2002,17(11):2940-2944.
    [127]J. S. Haggerty, A. Lightfoot opportunities for enhancing the thermal conductiv-ities of SiC and Si3N4 ceramics through improved processing [J].Ceram. Eng. Sci. Proc.,1995,16(4):475-487.
    [128]S. W. Lee, H. B. Chae, D. S. Park, Y. H. Choa, K. Niihara, B. J. Hockey Thermal conductivity of unidirectionally oriented Si3N4W/Si3N4 composites [J]. J. Mater. Sci.,2000,35:4487-4493.
    [129]Kim, P., Shi, L., Majumdar, A., McEuen, P., Thermal transport measurements of individual multiwalled nanotubes, Phys. Rew. Lett.,2001,87(21):215502.
    [130]Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H., Shi-mizu,T., Measuring the thermal conductivity of a single carbon nanotube [J]. Phys. Rew.Lett.2005,95(6):065502.
    [131]Wang, Z., Tang, D., Li, X., Zheng, X., Zhang, W., Zheng, L., Zhu, Y. T., Jin, A.,Yang, H., Gu, C., Length-dependent thermal conductivity of an individual single-wall carbon nanotube [J]. Appl. Phys. Lett.,2007,91(12):123119.
    [132]Rantala, J. A measurement method for the determination of the anisotropy ratio of thermal conductivity of plastic foils [J]. Rev. Sci. Instrum.,1992,63 (11): 5472-5474.
    [134]Losego, M. D., Moh, L., Arpin, K. A., Cahill, D. G., Braun, P. V., Interfacial thermal conductance in spun-cast polymer films andpolymer brushes [J]. Appl.Phys. Lett,2010,97(1):011908.
    [135]祝捷.飞秒激光抽运探测法纳米材料及界面热输运机理研究[D].中国科学院研究生院,2011.
    [136]Little W. A. The transport of heat between dissimilar solids at low temperatures [J]. Can. J. Phys.,1959,37:334.
    [137]Swartz E. T., Pohl R. O. Thermal boundary resistance [J]. Rev. Mod. Phys., 1989,61(3):605.
    [138]Cherng-Jyh Twuand Jeng-Rong Ho.Molecular dynamics study of energy flow an the kapitza conductance across an interface with imperfection formed by two dielectric thin films [J]. Phys Rev (B),2003,67(20):205422.
    [139]张兴丽,孙兆伟.基于分子动力学对超晶格结构界面热阻的模拟研究[J].航空材料学报,2011,31(4):7-10.
    [140]Ming Hu, Pawel Keblinski, Patrick K. Schelling. Kapitza conductance of sili-con-amorphous polyethylene interfaces by molecular dynamics simulations [J]. Phys. Rev. B,2009,79:104305.
    [141]Hongliang Zhong. Jennifer R. Lukes,Interfacial thermal resistance between carbon nanotubes:Molecular dynamics simulations and analytical thermal modeling [J]. Phys Rev (B),2006,74:125403.
    [142]Tengfei Luo, John R. Lloyd. Molecular dynamics study of thermal transport in GaAs-self-assembly monolayer-GaAs junctions with ab initio characterization of thiol-GaAs bonds [J]. J. Appl. Phys.,,2011,109:03430.
    [143]Gang Chen.Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices [J]. Phys Rev (B),1998,57(23):14958.
    [144]Lee S. M., Cahill D. G.Heat transport in thin dielectric films [J]. J. Appl. Phys. 1997,81(6):2590-2595.
    [145]Cahill D. G., Bullen A., Lee S. M., Interface thermal conductance and the thermal conductivity of multilayer thin films [J].High Temp.-High Press.,2000, 32(2):135.
    [146]Alvarez-Quintana, J., Rodriguez-Viejo, J., Interfacial effects on the thermal conductivity of a-Ge thin films grown on Si substrates [J]. J. Appl. Phys.,2008, 104 (7):074903.
    [147]Jin, Y., Yadav, A., Sun, K., Sun, H., Pipe, K. P., Shtein, M., Thermal boundary resistance of copper phthalocyanine-metal interface [J]. Appl. Phys. Lett.,2011,98(9):093305.
    [148]Costescu, R. M., Wall, M. A., Cahill, D. G., Thermal conductance of epitaxial interfaces [J]. Phys. Rev. B,2003,67(5):054302.
    [149]Stevens, R. J., Smith, A. N., Norris, P. M. Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique[J]. ASME J. Heat Transfer,2005,127(3):315.
    [150]Gundrum B. C., Cahill, D. G., Averback R. S. Thermal conductance of metal-metal interfaces [J]. Phys. Rev. B,2005,72(24):245426.
    [151]Lyeo H. K., Cahill D. G., Thermal conductance of interfaces between highly dissimilar materials [J]. Phys. Rev. B,2006,73(14):144301.
    [152]Ge Z., Cahill D. G.,Braun,P. V. Thermal conductance of hydrophilic and hy-drophobic interfaces [J]. Phys. Rev. Lett.,2006,96(18):186101.
    [153]Hopkins P. E., Salaway R. N., Stevens R. J., Norris P. M., Temperature-dependent thermal boundary conductance at Al/Al2O3 and Pt/Al2O3 interfaces [J]. Int. J. Thermophys.,2007,28(3):11.
    [154]Hopkins P. E., Norris P. M., Stevens R. J., Beechem T. E., Graham S., Influence of interfacial mixing on thermal boundary conductance across a chromium/silicon interface [J]. ASME J. Heat Transfer,2008,130(6):062402.
    [155]Schmidt A. J., Chiesa M., Chen X., Chen G., An optical pump-probe technique for measuring the thermal conductivity of liquids [J]. Rev. Sci. Instrum.,2008, 79(6):064902.
    [156]Collins K. C., Chen S., Chen G. Effects of surface chemistry on thermal con-ductance at aluminum-diamond interfaces [J]. Appl. Phys. Lett.,2010,97 (8): 083102.
    [157]Schmidt A. J., Collins K. C., Minnich A. J., Chen G. Thermal conductance and phonon transmissivity of metal—graphite interfaces [J]. J. Appl. Phys.,2010, 107(10):104907.
    [158]Koh Y. K., Bae M.-H., Cahill D. G., Pop E., Heat conduction across monolayer and few-layer graphenes [J]. Nano Lett.,2010,10(11):4363-4368.
    [159]Kim W S, Hector L G, Ozisik M N. Hyperbolic heat-conduction due to axi-symmetrical continuous or pulsed surface heat-sources [J]. Journal of Applied Physics,1990,68(11):5478-5485.
    [160]Chen H T, Lin J Y. Analysis of 2-dimensional hyperbolic heat-conduction problems.International Journal of Heat and Mass Transfer,[J].1994,37(1): 153-164.
    [161]Marciak-Kozlowska J, Mucha Z, Kozlowski M. Picosecond thermal pulses in thingold-films [J]. International Journal of Thermophysics,1995,16(6):1489-1497.
    [162]Paddock C, A., Eeslay G.L.Transient thermoreflectance from thin metal films [J]. J. Appl. Phys.,1986,60:285.
    [163]Qiu T.Q.,Tien C. L. Size effects on nonequilibrium laser heating of metal films [J]. J. Heat Ttransf.,1993,115:842.
    [164]Rosei R., Lynch D. W. Thermomodulation Spectra of Al, Au, and Cu [J]. Phys.Rev. B,1972,5:3883.
    [165]Hostetler, J. L. Investigation of femtosecond transient thermoreflectance tech-nique applied to characterization of microscale heat transfer properties in thin films[D]. University of Virginia,2001.
    [166]刘树堂.信号与系统[M].西安交通大学出版社,1998.
    [167]William S. Capinski, Humphrey J. Maris. Improved apparatus for picosecond pump-and-probe optical measurements [J]. Review of Scientific Instruments, 1996,67(8):2720-2726.
    [168]H. S. Carslaw, J. C. Jaeger. Conduction of heat in solids [M]. Oxford University Press, New York,1959:109-112.
    [169]Swartz, E. T., Pohl, R. O., Thermal boundary resistance [J]. Rev. Mod. Phys., 1989,61:605-668.
    [170]Cahill, D. G. Analysis of heat flow in layered structures for time-domain Thermoreflectance [J]. Rev. Sci. Instrum.,2004,75(12):5119.
    [171]Stanford Research Systems, Sunnyvale, California. User's Manual:Model SR844 RF Lock-In Amplifier [M]. revision 2.6 edition,2003.
    [172]陈文友.声光技术的发展动态及其在军事上的应用.压电与声光[J].1994.16(002):21-28.
    [173]曹跃祖.声光效应原理及应用[J].物理与工程,2000.10(005):46-47.72.
    [174]Masood Ghotbi, M. Ebrahim-Zadeh. Optical second harmonic generation properties of BiB3O6 [J]. Opt. Express,2004,12(24):6002-6019.
    [175]K. Ujihara. Reflectivity of metals at high temperatures [J]. Journal of Applied Physics,1971,43:2376-2383.
    [176]陆璇辉,陈许敏,张蕾,薛大建.刀口法测量高斯光束光斑尺寸的重新认识[J].激光与红外.2002.32(3):186-187.
    [177]J.L.Hostetler, A.N.Smith, P.M.Norris. Thin film thermal conductivity and thickness measurement using picosecond ultraonics [J]. Microscale Thermo-physical Engineering,1997,9:237-244.
    [178]Chen J K, Latham W P, Beraun J E. The role of electron-phonon coupling in ultrafast laser heating [J]. J. Laser Appl.200517:63.
    [179]Gregory V. Hartland. Electron-phonon coupling and heat dissipation in metal nanoparticles [J]. International Journal of Nanotechnology,2004, 1(3):307-327
    [180]A. Arbouet, C. Voisin, D. Christofilos, P. Langot, N. Del Fatti, F. Vallee, J.Lerme, G. Celep, E. Cottancin, M. Gaudry, M. Pellarin, M. Broyer, M.Maillard, M.P.Pileni, M. Treguer. Electron-phonon scattering in metal clusters[J].Phys. Rev. Lett.,2003,90:177401.
    [181]J. H. Hodak, A. Henglein, G. V. Hartland, Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au Nanoparticles[J]. J. Chem. Phys.,2000,112:5942.
    [182]H.R.B. Orlande, M.N. Ozisik, D.Y. Tzou. Inverse analysis for estimating the electronphonon coupling factor in thin metal films[J]. J. Appl. Phys.1995,78: 1843.
    [183]J. Hohlfeld, S.S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, E. Matthias. Electron and lattice dynamics following optical excitation of metals [J]..Chem. Phys.,2000,251:237.
    [184]Hopkins P E, klopf J M, Norris P M. Influence of interband transitions on coupling measurements in Ni films [J]. Appl. Optics,2007,46:2076-2083.
    [185]Hanus J, Feinleib J, Scouler W J. Low-Energy interband transitions and band structure in nickel [J].Phys.Rev.Lett.1967,19:16-20.
    [186]Bolko B T, Pugachev A T, Bratsychin VM. Method for the determination of the thermophysical properties of evaporated thin films [J].Thin solid films,1972, 17:157.
    [187]Zhang C W,Bi K D,Wang J L, Ni Z H,Chen YF. Measurement of thermal boundary conductance between metal and dielectric materials using femtosecond laser transient thermoreflectance technique [J]. Science China Technological Sciences.2012,55:1044.
    [188]Panzer M A, Shandalov M, Rowlette J A, Oshima Y, Chen Y W, McIntyre P C, Goodson K E. Thermal properties of ultrathin hafnium oxide gate dielectric films [J]. Electron device letter.2009,30:1269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700