用户名: 密码: 验证码:
高承压含水层上煤层开采底板断裂活化致灾机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着采煤深度的加大,遇到的承压含水层中的水压越来越高,如山东星村煤矿的奥陶系石灰岩含水层水压可达13MPa。而高水压易于引发断裂活化突水。所以,研究高承压含水层上煤层开采底板断裂活化致灾机制,对于煤矿水害预测和防治具有重要意义。
     本论文采用地质分析、物理试验、理论推导等手段对高承压含水层上煤层开采底板断裂活化致灾机制进行了细致的研究,得到以下研究成果:
     (1)指出了煤层底板断裂活化突水的水力劈裂特征,建立了基于多层次熵权法和多源地学信息融合技术的底板断层活化突水危险性指数综合评价方法。通过对煤层底板断裂突水事件的分析,发现断裂活化突水现象符合水力劈裂特征。同时,在煤层底板断裂活化突水诸多致灾地质环境因素中找到了影响煤层底板断裂活化突水的三个主控因素。采用单因素分析方法,提炼出每个主控因素的多个评价指标因子。运用信息论中的熵权法对每个评价指标因子的权重进行确定。选用10个评价指标因子,借助于GIS平台建立评价指标因子信息图层以及空间属性数据库,采用多源地学信息融合技术对10个评价指标因子图层信息进行采集、叠加、分析。而后求解出评价区网格单元的综合评价值,并用危险性指数来表征。以兖州煤田某矿E3206工作面得出基于多层次熵权法和多源地学信息融合技术的底板断层活化突水危险性指数综合评价分区。
     (2)采用物理模拟试验获得了有充填物的断裂在高围压、高水压条件下的渗透特性及影响因素。制作模拟带充填物的断裂体试样,并在三轴应力条件下对裂隙充填物及其与试件接触面的渗透系数进行高围压、高水压条件下的测试,得出其渗透性能在高压条件下的变化特征。在低围压、轴压情况下,一般都表现为渗透系数随着渗透压差的增大而增大。而在高围压、轴压情况下,初始阶段仍表现为渗透系数随着渗透压差的增大而增大,随着水压的继续增大,出现了渗透系数稳定期,若继续增大渗透压差,渗透系数将出现变小趋势。其内在原因为:在高围压、轴压情况下,且水头压力差较大的条件下,同一围压、轴压条件下应力场受到了渗透荷载的影响,从而使得裂隙充填物及其与试件接触面的渗透系数表现随着水压的增大而减小的趋势。
     (3)从地下水动力学、岩体力学和断裂力学理论上阐明了水力劈裂引起断层活化的机理。基于弹塑性力学理论和地下水动力学理论,推导出带有应力场参数的渗透系数表达式。应用岩体力学和断裂力学理论,推导出在自然营力作用下水力劈裂后裂隙演化扩展的长度公式。
     基于上述研究,通过对断裂带从初始状态到活化状态的过程分析,得出高承压含水层上煤层开采底板断裂活化致灾机制是在采动效应的激发下渗流场和应力场的耦合作用,其关键作用为高承压含水层中水流的水力劈裂作用。
Deep coal mining engineering get more chances to encounter high water-pressure inconfined aquifers. This dissertation focuses on the problem of a high water-pressure of nearly13MPa in the Ordovician limestone aquifer, in the Xingcun coalmine, Shandong Province. Itis well known that high water-pressure could lead to groundwater inrush easier from faultreactivation, which may cause serious coalmine disaster. Therefore, the research on themechanism of fault reactivation-induced disasters during coal mining above highwater-pressure confined aquifers has a great significance for the prediction and control ofcoalmine water disaster.
     In this dissertation, geological analysis, physical testing and theoretical analysis wereadopted to carry out a detailed study on the mechanism of fault reactivation inducedgroundwater inrush while coal mining above high pressure confined aquifers and get thefollowing results.
     (1) This dissertation points out that groundwater inrush from seam floor faultreactivation has the characteristics of hydraulic splitting and establishes a groundwater inrushrisk index evaluation method in fault reactivation based on entropy weight method andmultiple-source geological information fusion technology. The common phenomenon of faultreactivation after groundwater inrush from coalmine floors were summed up after analysissome typical accidents. These phenomena comply with hydraulic splitting characteristicsunder natural dynamic forces. Based on several typical groundwater inrush accidents, themain cause factors of groundwater inrush from fault reactivation were identified, whichinclude the aquifer, fault and aquifuge factors. Single factor analysis method was used toidentify the main ten evaluating indicator factors. At the same time, the weights of tenevaluating indicator factors were determined with using entropy weight method (EWM) ininformation theory. Then, the GIS platform was introduced to set up information layer andspatial properties database of the ten evaluating indicator factors, which were collected,stacked and analyzed with using multi-source geo-information fusion technology. After thatbased on multi-level, EWM and multi-source geo-information fusion technology, acomprehensive evaluation value of the evaluation grid cell was solved and characterized bythe groundwater inrush risk index. As a result, the figure of risk distribution was given.Particularly, the control measures for different risk area were promoted. Agroundwater inrushrisk comprehensive evaluation and risk index partitions were given for Panel E3206inYanzhou coalmining area.
     (2) Permeability characteristics and influencing factors were pbtained by series physicalsimulation tests of a fault with filling under high confining pressure and high cell pressure. A large number of physical tests were carried out under triaxial condition with a high cellpressure and a high permeability pressure gradient. The results show that the permeabilitycoefficient of fissure fillings and their contact surfaces with wall rocks increased aspermeability pressure gradient increases at a low confining pressure and cell pressure.However, at high confining pressure and cell pressure, the permeability coefficient of fissurefillings and their contact surfaces with wall rocks increased as permeability pressure gradientincreases at beginning. Then the permeability coefficient of fissure fillings will keep stable.Once the water-pressure raised a high level, the permeability coefficient of fissure fillingswould decrease. The main reason of this phenomenon was the high water-pressure adds aspecial infiltration load to stress field.
     (3) The mechanism of hydraulic fracturing induced fault reactivation was explained fromgroundwater dynamics and rock mass mechanics. Theoretical analysis, especially, theelastoplastic mechanics theory and groundwater dynamics theory were introduced to calculatethe permeability coefficient which contains stress field parameters. Based on coupled analysisof stress field and seepage field, the minimum principal stress and the maximum principalstress influence the aperture of a single fissure. The changing of aperture of single fissure wasthe main cause of permeability changing. As a result, the possibility of groundwater inrushaccident steeply increased. Moreover, rock mechanics and fracture mechanics theory wereused to set up a formula to calculate the length of fissures after hydraulic splitting.
     To sum up, based on the above research result, the original state and reactivation state offault zones were shown. The mechanism of fault reactivation-induced disasters during coalmining above high water-pressure confined aquifers is the result of the coupling effect ofseepage field and stress field, and the key action is the hydraulic splitting of high pressurewater in confined aquifers.
引文
[1]毛节华,许惠龙.中国煤炭资源预测与评价[M].北京:科学出版社,1999:231–270.
    [2]何满潮.深部开采工程岩石力学的现状及其展望[A].北京:科学出版社,2004:88–94.
    [3]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803–2813.
    [4]桂和荣,孙本魁.深部开采底板突水控制论研究意义及核心内容[J].淮南工业学院学报,1999,9(3):1–4.
    [5]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1993:22–23,105–111.
    [6]胡宽瑢,曹玉清.采掘工作面底板突水和防治原则的基本理论研究[J].华北地质矿产杂志,1997,12(3):203–292.
    [7]武强,金玉洁.华北型煤田矿井防治水决策系统[M].北京:煤炭工业出版社,1995:198–214.
    [8] Santos F C, Bieniawski Z T. Floor design in underground mines [J]. Rock Mechanics and Rock Engineering,1989,22(4):226–249.
    [9] Kuscer D, Veselie M. The Role of Porewater Pressure and Seepage Forces on the Stability of Protection Layers[C].Granada: Proceedings of2nd International Mine WaterAssociation Congress,1985,(1):203–213.
    [10]张金才,刘天泉.采煤工作面底板应力及位移的模拟实验研究[M].北京:煤炭科研参考资料,1991:10–15.
    [11]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1993:50–103.
    [12]尹万财.工作面底板突水因素分析及防治对策研究[J].中国煤田地质,1997,(3):19–20.
    [13]宋景义,王成绪.论承压水在岩体裂隙中的静力学效应[C].煤科总院西安分院文集(第五集),1991:15–21.
    [14]黎良杰,钱鸣高,殷有泉.采场底板突水相似材料模拟研究[J].煤田地质与勘探,1997,25(l):33–36.
    [15]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报,1999,18(4):4–7.
    [16]高延法,施龙青,娄华君,等.底板突水规律与突水优势面[M].徐州:中国矿业大学出版社,1999:74–75.
    [17]邵爱军,彭建萍,刘唐生.矿坑底板突水的突变模型研究[J].岩土工程学报,2001,(1):38–41.
    [18]王经明.承压水沿煤层底板递进导升突水机理的模拟与观测[J].岩土工程学报,1999,21(5):546–549.
    [19]王经明.承压水沿煤层底板递进导升突水机理的物理法研究[J].煤田地质与勘探.1999,27(6):40–43.
    [20]王经明.承压水沿煤层底板递进导升的突水机理及其应用[D].西安:煤炭科学研究总院西安院,2004:38–40.
    [21] Bell F G, Jermy C A. An investigation of primary permeability in strata from a mine in the Eastern TransvaalCoalfield[C]. SouthAfrica: Quarterly Journal of Engineering Geology and Hydrogeology,2002,(35):391–402.
    [22] Burgi C, Parriaux A, Franciosi C. Geological characterization of weak anticlastic fault rocks with regards to theassessment of their geotechnical properties[C]. Quarterly Journal of Engineering Geology and Hydrogeology.2001,(34):225–232.
    [23]魏久传.煤层底板岩体断裂损伤与底板突水机理研究[D].青岛:山东科技大学,2000.
    [24]施龙青.薄隔水层底板突水机理及预测预报研究[D].泰安:山东科技大学,1995.
    [25]施龙青,韩进.底板突水机理及预测预报[M].徐州:中国矿业大学出版社,2004:35–37.
    [26]冯启言,杨天鸿,于庆嘉,等.基于渗流-损伤耦合分析的煤层底板突水过程的数值模拟[J].安全与环境学报,2006,(3):1–4.
    [27]杨善安.采场底板断层突水及其防治方法[J].煤炭学报,1994,19(6):620–625.
    [28]黎良杰,钱鸣高,李树刚.断层突水机理分析[J].煤炭学报,1996,21(2):119–123.
    [29]谭志祥.断层突水的力学机制浅析[J].江苏煤炭,1998,(3):16–18.
    [30]邱秀梅,王连国.断层采动型突水自组织临界特性研究[J].山东科技大学学报,2002,21(1):59–61.
    [31]刘燕学.峰峰煤田煤层底板强度及断裂构造控水作用[J].河北煤炭,1998,(3):19–20.
    [32]杨新安,程军.峰峰矿区矿井突水分类及发生机理研究[J].地质灾害与环境保护,1999,10(2):24–36.
    [33]武强,刘金韬,钟亚平,等.开滦赵各庄矿断裂滞后突水数值仿真模拟[J].煤炭学报,2002,27(5):511–516.
    [34]李青锋,王卫军,朱川曲,等.基于隔水关键层原理的断层突水机理分析[J].采矿与安全工程学报,2009,26(1):87–90.
    [35]李连崇,唐春安,李根,等.含隐伏断层煤层底板损伤演化及滞后突水机理分析[J].岩土工程学报,2009,31(12):1838–1844.
    [36] Wang J A, Park H D. Coal mining above a confined aquifer [J]. International Journal of Rock Mechanics and MiningSciences,2003,40:537–551.
    [37] Cundall P A. Numerical modelling of jointed and faulted rock [A]. Mechanics of jointed and faulted rock[C]. Rotterdam:A.A.Balkema,1990:11–18.
    [38] Singh R N, Atkins A. S. Application of Analytical Solution to Simulate some Mine Inflow Problem in UndergroundCoal Mining [J]. Int. J. Mine Water,1984,3(4):1–27.
    [39] Singh T N, Singh B. Model Simulation Study of Coal Mining Under River Beds in India [J]. Int. J. Mine Water,1985,4(3):1–8.
    [40] Whithread J J, Williams R E, Miller S M. A Statistical Method to evaluate potentially similar Zones of GroundwaterDischarge at the Bunker Hill Mine near Kellog, Idaho[J]. Mine Water and the Environment,1992,11(3):17–25.
    [41] Dieterich J H. Modeling of Rock Friction Experimental results and constitutive equations [J]. Geophys Res,1979,(84):2161–2168.
    [42] Malservisi R, Gans C, Furlong K P. Numerical modeling of strike-slip creeping faults and implications for the Haywardfault, California [J]. Teconophysics,2003,361:121–137.
    [43] Ju S H, Lesniak J R, Sandor B L. Numerical Simulation of Stress Intensity Factors via the Thermoelastic Technique [J].Experimental Mech,1997,37(3):278–284.
    [44] Lesnic D, EIIiott L, Ingham D, et al. AMathematical Model and Numerical Investigation for Determining the HydraulicConductivity of Rocks [J]. Int.J.Rock.Mech.Min.Sci.,1997,34(5):741–759.
    [45] Napier J A, Malan D F. Vicsoplastic Discontinuum Model of Time-dependent Fracture and Seismicity Effects in BrittleRock [J]. Int.J.Rock Mech.Min.Sci.,1997,34(7):1075–1089
    [46] Shen B, Stephansson O. Numerical Analysis of Mixed Mode I and Mode II Fracture Propagation [J]. Int.J.RockMech.Min.Sci.&Geomech.Abstr.,1993,30(7):861–867.
    [47] Marcelo R, et al. Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province,Argentina [J]. Hydrogeology journal,1999,7(2):180–187.
    [48] Zhang Yanjun, et al. Study on numerical simulation to water lowering in an open coal mine digging [J]. GLOBALGEOLOGY,2006,9(2):199–203.
    [49] Crouch S L. Two-dimensional analysis of near-surface, single-seam extraction [J]. Int Rock J Mech Min Sci&Geomech Abstr.,2005,(10):74–78.
    [50] Yang W F, Sui W H, Xia X H. Model test of overburden deformation and failure law in close distance multi-seammining[J]. Journal of Coal Science&Engineering,2008,14(2):925–933.
    [51] Dong Q H, Cai R, Yang W F. Simulation of water-resistance of a clay layer during mining:analysis of a safe water head[J]. Journal of China University of Mining and Technology,2007,17(3):345–348.
    [52] Feng M M, Mao X B, Bai H B. Analysis of water insulating effect of compound water-resisting key strata in deepmining[J]. Journal of China University of Mining and Technology,2007,17(1):1–5.
    [53] Kong H L, Miao X X, Wang L Z, et al. Analysis of the harmfulness of water-inrush from coal seam floor based onseepage instability theory [J]. Journal of China University of Mining and Technology,2007,17(4):253–258.
    [54] Wang Jingming, Ge Jiade, WuYuhua, et al. Mechanism on progressive intrusion of pressure water under coal seams intoprotective aquiclude and its application in prediction of water inrush [J]. Journal of Coal Science&Engineering,1996,2(2):9–15.
    [55] Arguello J G, Stone C M, Lorenz J C. Geomechanical numerical simulations of complex geologic structures [A]. In:Aubertin M, Hassani F, ed. Rock Mechanics (Vol.2)[C]. Rotterdam:AA.Balkema,1996:1841–1848.
    [56] Pariseau W G. Applications of finite element analysis to mining engineering [A]. In:Hudson J A ed. ComprehensiveRock Engineering[C]. Oxford: Pergamon Press,1993:491–522.
    [57] Jorge M, Javier S, Ruben J. Numerical modeling of the transient hydrogeological response produced by tunnelconstruction in fractured bedrocks [J]. Eng.Geol.,2002,64(4):369–386.
    [58] Islam M R, Shinjo R. Mining-induced fault reactivation associated with the main conveyor belt roadway and safety ofthe Barapukuria Coal Mine in Bangladesh: Constraints from BEM simulations [J]. International Journal of Coal Geology,2009,79:115–130.
    [59] Bailey W R, Walsh J J, Manzocchi T. Fault populations, strain distribution and basement fault reactivation in the EastPennines Coalfield, UK [J]. Journal of Structural Geology,2005,27:913–928.
    [60]赵海军,马凤山,李国庆,等.开挖引起断层活化对井巷围岩的变形破坏[J].金属矿山,2008,(384):9–12.
    [61]周笑绿,付民强,赖映星.综放工作面顶板突水与断层活化的关系[J].煤矿安全,2005,35(1):26–27.
    [62]冯恩杰,付民强.东滩矿断层活化对3煤顶板突水的影响[J].煤田地质与勘探,2004,(4):33–36.
    [63]武强,周英杰,刘金韬,等.煤层底板断层滞后型突水时效机制的力学试验研究[J].煤炭学报,2003,28(6):561–565.
    [64]武强,刘金韬,董东林,等.煤层底板断裂突水时间弱化效应机理的仿真模拟研究[J].地质学报,2001,75(4):554–561.
    [65] Wu Q, Wang M, Wu X. Investigations of groundwater bursting into coal mine seam floors from fault zones [J].International Journal of Rock Mechanics and Mining Science,2004,41(4):557–571.
    [66]施龙青,宋振骐.肥城煤田深部开采突水评价[J].煤炭学报,2000,25(3):273–277.
    [67] Hippler S J. Deformation microstructures and diagenesis in sandstone adjacent to an extensional fault; implications forthe flow and entrapment of hydrocarbons [J].AAPG Bulletin,1993,77(4):625–637.
    [68] David W, Mark Z. Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea[J]. Geology,2000,28(7):595–598.
    [69]林舸.活化构造的动力学机制研究进展[J].大地构造与成矿学,2005,29(1):56–62.
    [70]卜万奎、茅献彪.断层倾角对断层活化及底板突水的影响研究[J].岩石力学与工程学报,2009,28(2):386–395.
    [71]吴基文,童宏树,童世杰,等.断层带岩体采动效应的相似材料模拟研究[J].岩石力学与工程学报,2007,26(S2):4170–4176.
    [72]胡耀青.带压开采岩体水力学理论与应用[D].太原:太原理工大学,2003.
    [73]高德福.深矿井底板岩层采动变形与阻水能力分析[J].煤田地质与勘探,1990,18(4):42–47.
    [74]李晓昭,罗国煜,陈忠胜.地下工程突水的断裂变形活化导水机制[J].岩土工程学报,2002,24(6):695–700.
    [75]王经明,董书宁,吕玲,等.采矿对断层的扰动及水文地质效应[J].煤炭学报,1997,22(4):361–365.
    [76]刘燕锋.岩体水力劈裂基本理论与方法初步研究[D].南京:河海大学,2006.
    [77]杨国勇,车灿辉,刘树才.突水断层水量预测的数值模拟[J].采矿与安全工程学报,2010,27(3):351–356.
    [78]于广明,谢和平,杨伦,等.采动断层活化分形界面效应的数值模拟研究[J].煤炭学报,1998,23(4):396–400.
    [79]钱鸣高,缪协兴,黎良杰.采场底板岩层破断规律的理论研究[J].岩土工程学报,1995,17(6):55–62.
    [80]纪洪广,史明霞.频繁矿震作用下断层活化机理及其危害评价[J].中国矿业,2005,14(3):37–42.
    [81]卢兴利,刘泉声,吴昌勇,等.断层破裂带附近采场采动效应的流固耦合分析[J].岩土力学,2009,30(s1):165–169.
    [82]左建平,陈忠辉,王怀文,等.深部煤矿采动诱发断层活动规律[J].煤炭学报,2009,34(3):305–310.
    [83]彭苏萍,孟召平,李玉林.断层对顶板稳定性影响相似模拟试验研究[J].煤田地质与勘探,2001,29(3):1–4.
    [84]李连崇,唐春安,梁正召,等.含断层煤层底板突水通道形成过程的仿真分析[J].岩石力学与工程学报,2009,28(2):290–298.
    [85]白海波,茅献彪,吴宇,等.高压奥灰水大型逆断层下盘煤层安全开采研究[J].岩石力学与工程学报,2009,28(2):246–253.
    [86] Wang L, Miao X. Numerical Simulation of Coal Floor Fault Activation Influenced by Mining [J]. J. China Univ. ofMining&Tech.2006,16(4):385–388.
    [87]李子林.大采深条件下徐、奥灰突水机理及防治技术研究[D].泰安:山东科技大学,2007.
    [88]李白英,沈光寒,荆自刚,等.预防采掘工作面底板突水的理论与实践[J].山东矿业学院学报,1986,10(3):47–48.
    [89]高延法.岩石强度理论与采场底板变形破坏规律研究[D].泰安:山东矿业学院,1991.
    [90]黎良杰.采场底板突水机理的研究[D].徐州:中国矿业大学,1995.
    [91]张文泉.矿井(底板)突水灾害的动态机理及综合判测和预报软件开发研究[D].泰安:山东科技大学,2004.
    [92]郑伯年.杨庄矿9101工作面突水淹井事故原因的分析[J].山东矿业学院学报,1988,7(2):6–15.
    [93]王厚柱,丁厚稳.新集一矿111311工作面突水机理探讨[J].矿业安全与环保,2002,29(1):24–26.
    [94]王慧明,张成银,李荣学.三河尖煤矿高压奥灰突水原因及机理分析[J].煤炭科技,2004,(1):41–43.
    [95]陈忠胜,杨思光,张成银.三河尖煤矿21102面底板奥灰特大突水原因及治理[J].煤田地质与勘探,2005,33(2):44–46.
    [96]李子林,施龙青,刘同彬,等.良庄煤矿51101W工作面突水机理[J].煤田地质与勘探,2006,34(5):48–51.
    [97]王则才.国家庄煤矿8101工作面动水注浆堵水技术[J].煤田地质与勘探,2004,32(4):26–28.
    [98]莫德鼒,吕朋菊.对国家庄矿-210m北大巷突水通道的认识[J].煤田地质与勘探,2000,28(4):50–52.
    [99]刘显云,付民强.对东滩煤矿14301工作面突水的认识[J].山东煤炭科技,2003,(6):9–10.
    [100]曲有刚,施龙青,徐望国.底板最大突水量预测[J].焦作工学院学报,2000,19(6):411–413.
    [101]王剑峻.单侯矿井滞后突水原因分析[J].中国矿山工程,2007,36(2):28–31.
    [102]鲍杰,毛德信,陈传东.大刘煤矿1115突水事故构造因素分析[J].淮南工业学院学报,2002,22(增刊):147–148.
    [103]陈卫忠,杨建平,杨家岭,等.裂隙岩体应力渗流耦合模型在压力隧洞工程中的应用[J].岩石力学与工程学报,2006,25(12):2384–2391.
    [104]唐红侠,周志芳,王文远.水劈裂过程中岩体渗透性规律及机理分析[J].岩土力学,2004,25(8):1320–1322.
    [105]李利平,李术才,张庆松.岩溶地区隧道裂隙水突出力学机制研究[J].岩土力学,2010,31(2):2292–2296.
    [106]李利平,李术才,崔金生.岩溶突水治理浆材的试验研究[J].岩土力学,2009,30(12):3642–3648.
    [107]李利平,路为,李术才,等.地下工程突水机理及其研究最新进展[J].山东大学学报(工学版),2010,40(6):104–113.
    [108]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000,19(5):573–576.
    [109]王树洪.高地应力高外水压隧洞围岩稳定和支护结构研究及应用[D].南京:河海大学,2004.
    [110]蒋中明,傅胜,李尚高,等.高压引水隧洞陡倾角断层岩体高压压水试验研究[J].岩石力学与工程学报,2007,26(11):2318–2323.
    [111]孙玉杰.裂隙岩体渗流应力耦合机制研究及突水数值模拟[D].武汉:长江科学院,2009.
    [112]谢兴华.岩体水力劈裂机理试验及数值模拟研究[D].南京:河海大学,2004.
    [113]郭啟良,赵仕广,丁立丰.地下硐室围岩应力状态及其相关参数测量结果的分析与评价[J].岩石力学与工程学报,2007,26(增1):3361–3366.
    [114]谢兴华,速宝玉,高延法,等.矿井底板突水的水力劈裂研究[J].岩石力学与工程学报,2005,22(6):42–46.
    [115]尹尚先.煤层底板突水模式及机理研究[J].西安科技大学学报,2009,29(6):661–666.
    [116] Wang J A, Park H D. Fluid Permeability of sedimentary rocks in a complete stress-strain Process [J]. EngineeringGeology,2002,63:291–300.
    [117]王卫军,赵延林,李青锋,等.矿井岩溶突水灾变机理[J].煤炭学报,2010,35(3):443–448.
    [118]尹尚先.矿井突(涌)水预测及预警研究[J].华北科技学院学报,2009,6(4):1–6.
    [119] Wolkersdorfer C, Bowell R. Contemporary reviews of mine water studies in Europe [J]. Mine Water and theEnvironment,2004.23:161.
    [120]王忠昶.矿井底板岩层阻水性能的研究[D].泰安:山东科技大学,2003.
    [121]杨天鸿.岩石破裂过程的渗流特征—理论、模型与应用[M].北京:科学出版社,2004.
    [122]曹吉胜.高承压水作用下工作面突水机理数值模拟研究[D].泰安:山东科技大学,2006.
    [123]张红日,张文泉,温兴林.矿井底板突水过程中岩溶承压水的作用[J].中国地质灾害与防治学报,1999,10(1):88–92.
    [124]牛建立.煤层底板采动岩水耦合作用与高承压水体上安全开采技术研究[D].北京:煤炭科学研究总院,2008.
    [125]尹尚先,武强.煤层底板陷落柱突水模拟及机理分析[J].岩石力学与工程学报,2004,23(15):13–17.
    [126]张文泉,刘伟韬,张红日.煤层底板岩层阻水能力及其影响因素的研究[J].岩土力学,1998,32(04):76–79.
    [127]顾秀根,王家臣,刘玉德.煤层下伏岩层采动变形规律及承压水突水机理研究[J].湖南科技大学学报,2010,32(2):86–89.
    [128]尹尚先,虎维岳.岩层阻水性能及自然导升高度研究[J].煤田地质与勘探,2008,36(1):105–109.
    [129]项远法.陷落柱突水过程的力学模型[J].煤田地质与勘探,1993,21(5):36–39.
    [130]安康.陈四楼煤矿底板破坏及突水预测研究[D].泰安:山东科技大学,2009.
    [131]刘其声,蔡东红,彭龙超.刘桥一矿II622工作面充水条件与防治水技术探讨[J].煤田地质与勘探,2002,30(6):44–47.
    [132]朱志澄.构造地质学[M].中国地质大学出版社.2005:21–23.
    [133]何绍勇,马凤良.断层带结构特征及其封堵性[J].西部探矿工程,2009,(1):51–53.
    [134]彭苏萍,王金安.承压水体上安全采煤[M].煤炭工业出版社,2001:25–35.
    [135] Carlson, J.M, Langer, J.S. Meehanieal Model of an Earthquake Fault [J]. Phys.Rew,1989,(40):99–112.
    [136]孟祥化,葛铭.沉积建造学讲座[J].岩相古地理,1990,(4):49–60.
    [137]朱世奇.桃园煤矿F2断层防水煤柱留设的三维数值分析[D].合肥:合肥工业大学,2006.
    [138]虎维岳,田干,李抗抗.煤层底板隔水层阻抗高压水侵入机理及其控制因素[J].煤田地质与勘探,2008,36(6):38–04.
    [139]田干.煤层底板隔水层阻抗高压水侵入机理研究[D].西安:煤炭科学研究总院西安分院,2005.
    [140]钱家忠,赵卫东,刘咏,等.小隙(b<3mm)单一流径基岩水平均流速的实验研究[J].煤田地质与勘探,1999,27(2):35–38.
    [141]王心义,钱家忠,孙峰根.基岩网络系统中地下水的运动及壁面阻力系数[J].水文地质工程地质,1996,(6):42–44.
    [142]凌贤长,蔡德所.岩体力学[M].哈尔滨:工业大学出版社,2002:31.
    [143]施龙青.采场底板突水力学分析[J].煤田地质与勘探,1998,26(5):10.
    [144]施龙青,张东,尹增德.隔水底板应力溶蚀机理[J].焦作工学院学报,1999,(1):14–17.
    [145]许悦汉.煤矿突水预测预报研究[M].北京:地质出版社,1992:18–25.
    [146]陈守煜.论相对隶属度[J].大自然探索,1993,12(44):25–27.
    [147]张文泉,张世英,江立勤.基于熵的决策评价模型及应用[J].系统工程学报,1995,10(3):69–75.
    [148]周惠成,张改红,王国利.基于熵权的水库防洪调度多目标决策方法及应用[J].水利学报,2007,38(1):100–106.
    [149]孟宪萌,胡和平.基于熵权的集对分析模型在水质综合评价中的应用[J].水利学报,2009,40(3):257–258.
    [150]陶玉敬.不同JRC单裂隙渗流特征的试验研究[D].成都:西南交通大学,2007.
    [151] Louis C. Rock Hydraulics in rock mechanics [M]. NewYork: Springer-Verlag,1974:299–387.
    [152]范景伟,何江达.含定向闭合断续节理岩体的强度特性[J].岩石力学与工程学报,1992,(2):190–199.
    [153]王桂尧,孙宗,徐纪成.岩石压剪断裂机理及强度准则的探讨[J].岩土工程学报,1996,(4):68–74.
    [154] Papanastasiou P. An efficient algorithm for propagating fluid-driven fractures [J]. Computational Mechanics,1999,24(4):258–267.
    [155]阳友奎,肖长富,邱贤德,等.水力压裂裂缝形态与缝内压力分布[J].重庆大学学报,1995,15(3):20–26.
    [156] Slowik V, Saouma V E. Water pressure in propagating concrete cracks [J]. Journal of Structural Engineering,2000,126(2):235–242.
    [157] Brtlhwiler E, Saouma V E. Water fracture interaction in concrete-part I: Fracture properties [J]. ACI Materials Journal,1995,92(3):296–303.
    [158] Bruhwiler E, Saouma V E. Water fracture interaction in concrete-part II: Hydrostatic pressure in cracks [J]. ACIMaterials Journal,1995,92(4):383–390.
    [159]罗绍河,孙峰根.单一流迳基岩裂隙水平均流速试验研究[J].河南地质,1996,14(4):277–281.
    [160]孙峰根,罗绍河,王心义.单一流迳基岩水流平均流速方程[J].水文地质工程地质,1996,(4):25–27.
    [161]孙峰根,潘国营,郑继东.单一流迳基岩水流的水位沿程变化[J].水文地质工程地质,1996(5):11–12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700