用户名: 密码: 验证码:
抗氧化新型冬虫夏草胞外多糖的制备、结构与溶液特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冬虫夏草(简称虫草)[Cordyceps sinensis (Berk.)Sace.]是我国珍稀的药用真菌,具有广泛的生理活性和独特的药用价值,多糖为其中主要活性成分之一。本文旨在从人工培养的冬虫夏草菌(Cs-HK1)菌丝发酵液中分离虫草胞外多糖,确定胞外多糖提取和分离的最佳工艺条件,通过对粗多糖分级分离,获得各种胞外多糖级分,比较各级分的体外抗氧化活性和作用机制,确定抗氧化活性最佳的多糖级分,并进一步纯化,对抗氧化活性纯多糖的理化性质、化学结构、溶液性质和分子链构象进行深入分析,研究结果如下:
     采用乙醇沉淀法从人工培养冬虫夏草菌丝发酵液中提取胞外多糖,乙醇浓度95% (v/v),乙醇添加倍数4.3倍,沉淀时间10.5 h和发酵液pH=6.8,胞外粗多糖的产率4.27 g/L,是目前所见报道的各类虫草菌胞外多糖提取的最高水平。化学组成为总糖50.1%、糖醛酸13.6%、蛋白28.4%。
     通过脱蛋白、脱色、透析预处理和离子交换柱层析分离分级,得到胞外多糖级分EPS-1和EPS-2。通过体外抗氧化筛选模型,发现胞外多糖EPS、EPS-1、EPS-2通过氢原子转移反应均能较好的清除O_2~(·-)、·OH和ABTS·+自由基,EPS-1的作用效果明显强于EPS及EPS-2,且对·OH自由基具有更好的清除作用,其IC_(50)值与Vc相当,是虫草菌胞外多糖的主要抗氧化活性组分。
     EPS-1经凝胶过滤得到纯胞外多糖EPS-1A,紫外光谱、比旋度和凝胶渗透色谱分析表明,胞外多糖EPS-1A为相对均一多糖组分,中性糖含量为99.0%,重均分子量(Mw)为4.0×10~4 Da,比旋度为+6.5o (c 0.26, H_2O),为非淀粉类,不含单糖、糖醛酸、蛋白质、核酸和多酚类物质的水溶中性多糖。
     通过酸水解、甲基化、高碘酸氧化、Smith降解、气相色谱(GC)、气质联用(GC-MS)色谱、红外光谱(IR)、1D和2D NMR等,确定EPS-1A的单糖组成为D-葡萄糖、D-甘露糖和D-半乳糖,分子摩尔比15.2:3.6:1.0,主链由(1→6)-α-D-葡萄糖和(1→6)-α-D-甘露糖组成,侧链出现在(1→6)-α-D-甘露糖残基的O-3位置,由(1→6)-α-D-葡萄糖、(1→6)-α-D-甘露糖和非还原性末端的β-D-半乳糖组成,为人工培养冬虫夏草菌(Cs-HK1)菌丝发酵液中发现的一新的多糖结构重复单元。
     刚果红反应揭示,EPS-1A在溶液中为无规线团链,通过不同溶液体系中特性粘度、比旋度和粒度分布的变化,推测该多糖在溶液中为柔顺无规线团链构象,在较大浓度易形成聚集。外界条件如温度、金属离子、变性剂和刚果红均不能改变多糖在溶液中的链构象,只是在不同程度上影响多糖分子的分子间或分子内氢键相互作用,使多糖变得松散、无序。
     粘度法和静、动态激光光散射分析EPS-1A在0.15 M NaCl水溶液中的构象参数特性粘度([η])、重均分子量(M_w)、均方根旋转半径((1/2))、水动力学半径(Rh)和特征参数(ρ)分别为6.02 dL/g, 5.03×10~4 g/mol, 133.80 nm, 145.35 nm和0.92,表明该多糖在水溶液呈柔顺无规线团“软球”状链构象,所形成“软球”的硬度要大于右旋糖酐的。原子力显微镜(AFM)显示EPS-1A为大小不等的球状结构,高度和直径分别为2-3 nm和10-50 nm,与右旋糖酐的相似。扫描电镜(SEM)显示胞外多糖EPS-1A的固态形貌为支化度较高的柔顺网状结构。
Cordyceps sinensis (Berk.) Sace., generally called Cordyceps or Dongchongxiacao (winter worm-summer grass) in Chinese, is a rare medicinal fungus in China and has a wide range of physiological activities and unique medicinal values. Polysaccharides are regarded as the one of major active ingredients. The aim of this research project was to isolate exopolysaccharides from mycelial fermentation of a Cordyceps sinensis fungus Cs-HK1 and to determine the optimal condition for extraction and isolation of exopolysaccharides. Various exopolysacharide fractions which were isolated and fractionated from crude exopolysaccharides were subjected to compare the antioxidant activities in vitro and mechanism, and the best antioxidant activity of polysaccharide fractions were determined and further purified. Physicochemical properties, chemical structure, solution properties and molecular chain conformation in aqueous solution of purified exopolysaccharide owned better antioxidant activity were analyzed. The results are as follows:
     Ethanol precipitation was used to isolate the exopolysaccharides from mycelial fermentation of cultured Cordyceps sinensis (Cs-HK1), and the extraction conditions were concentration of ethanol 95% (v/v), multiples of ethanol 4.3, sedimentation time 10.5 h, and pH of fermentation broth 6.8, and the yield of crude exopolysaccharide was about 4.27 g/L. This is the highest level in extraction of exopolysaccharides from reported various Cordyceps. Chemical constituents were total sugar 50.1%, uronic acid 13.6%, and protein 28.4%.
     Removals of protein, decolorization, dialysis and ion-exchange column chromatography were used for isolation and fractionation of crude exopolysaccharides to yield two fractions, namely EPS-1 and EPS-2. In vitro trials of antioxidant activities were chosen to evaluate the free-radical scavenging activity. The results showed that exopolysaccharides EPS, EPS-1, and EPS-2 could moderately scavenge O_2~(·-),·OH, and ABTS·+ radicals by the hydrogen atom transfer reaction. Amongst, EPS-1 had stronger effects on free radicals than EPS and EPS-2’s, and had significant free-radical scavenging activity on·OH. The IC_(50) value of EPS-1 on·OH was closed to the vitamin C (Vc)’s, and was regarded as the major antioxidant component in exopolysaccharide of Cordyceps.
     EPS-1 was subjected to gel filter chromatography to yield a purified exopolysaccharide EPS-1A. Analytical results of UV spectrum, specific rotation and gel permeation chromatography (GPC) suggested that EPS-1A was a relatively homogeneous component, neutral sugar content of 99.0%, the weight-average molecular weight (Mw) of 4.0×10~4 Da and the specific rotation of +6.5o (c 0.26, H_2O), a non-starch water-soluble and neutral polysaccharide which did not contain monosaccharides, uronic acids, protein, nucleic acids and polyphenols.
     The structural characteristics of EPS-1A were elucidated with acid hydrolysis, methylation, periodate oxidation, Smith degradation, gas chromatography (GC), gas chromatography-mass spectrograph (GC-MS), infrared spectroscopy (IR), 1D and 2D NMR, etc. EPS-1A was composed of D-glucose, D-mannose and D-galactose at 15.2:3.6:1.0, its backbone was composed of (1→6)-α-D-glucose and (1→6)-α-D-mannose, and branching occurred at O-3 position of (1→6)-α-D-mannose residue of the backbone with (1→6)-α-D-glucose, (1→6)-α-D-mannose and terminated withβ-D-galactose. This is a new structure of repeat units found in mycelial fermentation of Cordyceps sinensis (Cs-HK1).
     Congo red reaction revealed that EPS-1A was a random coil chain in different aqueous solutions. Changes of intrinsic viscosity, specific rotation and particle size distribution in various aqueous solutions suggested that EPS-1A was a flexible random coil chain in aqueous solutions and formed aggregates at higher concentrations. Factors including temperature, metallic ion, denaturing agent and Congo red could not alter the chain conformation in aqueous solution, but influence the inter- or intra-molecular hydrogen bond interactions of polysaccharide molecules in some extent, so that polysaccharides became loose and disordered.
     Viscosity method and static and dynamic laser light scattering technology were used to determine intrinsic viscosity ([η]), weight-average molecular weight (Mw), radii of gyration (~(1/2)), hydrodynamic radium (Rh) and structural parameter (ρ) of the EPS-1A, and the obtained results were 6.02 dL/g, 5.03×10~4g/mol, 133.80nm, 145.35nm, and 0.92 respectively, suggesting that EPS-1A exhibited a flexible random coil“soft sphere”chain conformation in aqueous solution, and the hardness of“soft sphere”was slightly greater than dextran’s. The chain conformation of EPS-1A was observed by atomic force microscopy (AFM) showing spherical structure of different sizes which was similar to dextran’s, and the height and diameter of the spheres ranged from 10 to 50 nm and 2 to 3 nm, respectively. The solid-state morphology of EPS-1A was also observed by scanning electron microscopy (SEM) showing a flexible network structure with a high degree of branching.
引文
[1] Pawan K.A. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides [J].Phytochemistry, 1992, 31(10):3307-3330
    [2] Wasser S.P., Wels A.L. Therapeutic effects of Substances Occurring in Higher Basidiomycetes Mushroom: A Modem Perspective [J].Critical Reviews in Immunology, 1999, 19: 65-96
    [3] Wasser S.P., Weis A.L., E., Ed. Shiitake mushrooms [Lentinus edodes (Berk.) Sing.]. In: Nevo E (ed) Medical Mushrooms [M]. Peledfus Pabl.Co.Haifa., 1997:39
    [4] Ooi V.E.C., Liu F. A review of pharmacological activities of mushroom polysaccharides [J]. Int. J.Med Mushr., 1999, 1:196-206
    [5] Miles P.G., Chang S.T. Mushroom Biology: Concise Basics and Current Developments [M].River Edge, NJ: World Scientific, 1997:107-118
    [6]陈金烟,卢政辉.真菌多糖的免疫效应抗肿瘤作用机理的探讨[J].福建轻纺, 2002, (4): 4-7
    [7]闳三弟.真菌的药用价值[J].食用菌学报,1997, 1(4):55-62
    [8]朱建华,杨晓泉.真菌多糖研究进展-结构、特性及制备方法[J].中国食品添加剂, 2005, (6):75-80
    [9]肖建辉,蒋侬辉,梁宗琦,等.食药用真菌多糖研究进展[J].生命的化学,2002, 22:148-151
    [10]马淑淘,张天民.硫酸软骨素生产工艺探讨[J].中国药学杂志,1993, 28(12):741-743
    [11]沈渤江,张天民.不同工艺制备的硫酸软骨素的理化性质差异[J].中国医药工业杂志, 1990, 21(5):208-210
    [12] Awal A., Haq Q.N., Quader A., et al. Structural study of a polysaccharide from the seeds of borassus flabellifer linn [J].Carbohydrate Research, 1995, 277:189-195
    [13]林宇野,杨虹.酶法提取多糖的研究[J].食品与发酵工业,1995, (1):13-17
    [14]陈哲超,林宇野.复合酶法提取香菇多糖的研究[J].生物工程进展,1995, 15(1):47-50
    [15]梁忠岩,张翼伸.长白山松杉灵芝子实体水溶多糖得分离鉴定与结构研究[J].生物化学与生物物理学报,1993, 25(1):59-63
    [16]叶振南,邵家坪,陆惠文.粗多糖的提取分离及结构研究[J].中国药事, 2000, 14(5):329-332
    [17]刘训红,阚毓铭,王玉玺.太子参多糖的研究[J].中草药,1993, 24(3):119-121
    [18]徐惠,于志洁.螺旋藻粘多糖的分离及其免疫学作用[J].中国生化药物杂志,1997, 18:72-74
    [19]张双凤,林香娟.苯酚-硫酸法测定胖大海凉茶中多糖的研究[J].河南预防医学杂志, 2000, 11(3):144-145
    [20]杨滨,李英.动植物多糖对人体的作用及含量测定[J].中国公共卫生,1997, 13(9):553-554
    [21]周学敏.槐耳多糖的含量测定[J].中草药,1993, 24(3):121,127-127
    [22]董文慧.云芝肝泰中云芝多糖的工业分析方法[J].中成药,1990, 12(2):33-34
    [23]方积年.多糖的分离纯化及其纯度鉴别与分子量测定[J].药学通报,1984, 19(10):46-49
    [24] Peters T, Meyer B, Stuike, P.R., et al. A Monte Carlo method for conformational analysis of saccharides [J].Carbohydrate Research, 1993, 238:49-73
    [25]曾凯宏,明建,曾凯芳.真菌多糖的结构与功能[J].食品科技,2001, 4:65-68
    [26]刘玉红,王凤山.真菌多糖研究进展[J].中国药学杂志,2007, 42(8):561-564
    [27] Wilson J.C., Hitchen P.G., Frank M., et al. Identification of a capsular polysaccharide from Momxella bovis [J].Carbohydr Research, 2005, 340(4):765-769
    [28] Kato T., Okamoto T., Tokuya T., et al. Solution properties and chain flexibility of pullulan in aqueous solution [J]. Biopolymers, 1982, 21:1623-1633
    [29] Basedow A.M., Ebert K.H. Production, characterization, and solution properties of dextran fractions of narrow molecular weight distributions [J]. J.Plym.Sci.Polym. Symp., 1979, 66:101-115
    [30] Bao X.F., Dong Q., Fang J.N. Structure and conformation behavior of a glucan from spores of ganoderma lucidum (Fr.) karst [J]. Acta Biochemical and Biophysica Sinica, 2000, 32(6):557-561
    [31] Janaaon P.E., Kene L., Lindberg B. Structure of the extrallula polysaccharide from Xanthomonas carmpestris [J]. Carbohydrate Research, 1975, 45:275-282
    [32] Saito H., Yoshioka Y. Yokoi M., et al. District gelation mechanism between linear and branched (1→3)-β-D-glucans as revealed by high-resolution solid-state 13C NMR [J]. Biopolymers, 1990, 29:1689-1696
    [33] Kashiwagi Y., Norisuye T., Fujita H. Translational friction coefficient of wormlike chains [J]. Macromolecules, 1973, 6: 407-415
    [34] Kamide K., Okajima K., Matsui T., et al.Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR [J]. Polym. J., 1984, 16: 857-866
    [35] Zhang L., Ding Q., Zhang P. Molecular weight and aggregation of Aeromonas gum in aqueous solution [J]. Polym. J., 1999, 31: 150-153
    [36] Fachet J., Abel G., Jusupova A., et al. Potentiation nonspecific host defense by polysaccharide like lentinin: possible mechanisms [J]. Int. J. Immunotherapy., 1989, 11(5): 167-170
    [37]周爱武,葛志东,梁君山.香菇多糖的免疫调节作用[J].中国药理学通报,1995, 11(2):157-159
    [38] Urushiya K.I. Host Defense Mechanisms against Cancer [M].Amsterdan: Excerta Medica, 1986:167
    [39]周世文,徐传福.多糖的免疫药理作用[J].中国生化药物杂志,1994, 2(15):143-147
    [40]吴丹勇,常兆生.来源于动物的抗肿瘤活性物质及其生物活性[J].中国药学杂志, 1992, 27(5):265-268
    [41]陈春霞,赵大明,张秀军.羧甲基茯苓多糖的抗肿瘤实验[J].福建中医药,2002, 33(3):38-40
    [42] Marx J.L. Oxygen free radicals linked to many diseases [J].Science, 1987, 235:529-531
    [43] Pang Z.J., Chen Y., Zhou M. The effect of polysaccharide krestin on GPx gene expression on macrophages [J].Acta Biochimica et Biophysica sinica, 1999, 31(3):284-288
    [44] Kobayashi Y., Kariya K., Saigenji K., et al. Enhancement of anti-cancer activity of cisdia minedichloroplatinum by the protein-bound polysaccharide of Coriolus versicolor QUEL (PS-K) in vitro [J].Cancer biotherapy, 1994, 9(4):351-358
    [45] Kariya K., Nakamura K., Nomoto, K., et al. Mimicking of superoxide dismutase activity by protein-bound polysaccharide of coriolus versicolor QUEL and oxidative stress relief for cancer patients [J].Mol Biother,1992, 4(1):40-46
    [46] Yeung J.H., Ciu L.C., Ooi V.E. Effect of polysaccharide peptide (PSP) on glutathione and protection against paracetamol-induced hepatotoxicity in the rat [J]. Methods Find Exp Clin Pharmacol, 1994, 16(10):723-729
    [47]魏文树,谭建权.云芝多糖对活性氧清除机制的增强作用[J].中国药学杂志,1997, 32(4):199-201
    [48]王仲孚,彭志英,黄琳娟,等.钝顶螺旋藻缀合物SPPA-1的理化性质及活性的研究[J].药学学报, 2001, 36(2):112-115
    [49]方唯硬,刘湘.具有抗HIV活性的天然产物[J].国外医药.植物药分册,1993, 8(2):65-69
    [50] Gonzale Z., Engenla M., Altaroon, B., et al. Polysaccharide as antiviral agents: antiviral activity of carrageenan [J]. Antimicrob Agents Chemother., 1989, 33:1482-186
    [51]王龙妹,付惠娣,周志兰.冬虫夏草对小鼠巨细胞病毒感染的作用[J].中国临床医学杂志, 1999, 8(2):109-111
    [52]刘庆洪,罗倩怡,冯昆.鹿角炭角菌等三种真菌多糖对HIV-RT的作用[J].中国食用菌, 2004, (4): 29-30
    [53]戴寿芝,黎雪如,王幕娣.枸杞和枸杞多糖与抗衰延寿[J].老年学杂志,1994, 14(10): 33-36
    [54] Suga T., Shiio T., Maeda Y.Y. Antitumor activity of lentinan in murine syngeneic and autochthonous hosts and its suppressive effect on 3-methyl-chlolanthrene induced carcinogenesis [J].Cancer Research, 1984, 44:5132-5137
    [55]吴新君,毛培宏,金湘.食(药)用真菌多糖的研究[J].化学与生物工程, 2004, (1):14-16
    [56]郑建仙.功能性食品[M].北京:中国轻工业出版社,2002
    [57]杨冠煌.中国昆虫资源利用和产业化[M].北京:中国农业出版社,1998:69-74
    [58]林海伦.冬虫夏草伪品-亚香棒虫草的鉴别[J]药物分析杂志,1994,14(1):58-59
    [59]小林义雄.清水大典冬虫夏草菌图谱[M].日本大阪:保育社,1983:1-280
    [60]张平.虫草属真菌研究进展[J].生物学杂志,2003, 20(6):43-45
    [61]傅岚,陈作红.虫草属真菌化学成分及药理作用研究进展[J].生命科学研究,2004, 8 (1):1-7
    [62] Kinjo N., Zang M. Morphological and phylogenetic studies on Cordyceps sinensis distributed in southwestern China [J]. Mycoscience, 2001, 42: 567-574
    [63]王国栋.冬虫夏草类生态培植应用[M].北京:科学技术出版社,1995:1
    [64]纪莎,施小兵,易骏.冬虫夏草化学成分研究概况[J].福建中医学院学报,1999, 9(2): 46-47
    [65]李绍平,李萍,季晖.天然与发酵培养冬虫夏草中核苷类成分的含量及其变化[J].药学学报, 2001, 36(6):436-439
    [66]赵余庆,于明,陈立君.冬虫夏草属真菌化学研究概况[J].中草药,1999, 30(12):950-953
    [67]许周善,周晓燕.冬虫夏草多糖的研究进展[J].工业微生物,2000, 30(1):56-57
    [68] Miyazaki T., Oikawa N., Yamada H. Studies on fungal polysaccharides XX. Galactomannan of Cordyceps sinesis [J].Chem Pham Bull., 1977, 25(12): 3324-3328
    [69] Kiho T., Tabata H., Ukai S. Polysaccharides in fungi.XVIII.A minor, protein containing galactomannan from a sodium carbonate extract of Cordyceps sinensis [J].Carbohydrate Research, 1986, 156:189-197
    [70] Yamada H., Kawaguchi N., Ohmori T., et al. Structure and antitumor activity of ana1kali-soluble polysaccharide from Cordyceps sinensis [J].Carbohydrate Research, 1984,125(1):107-115
    [71] Kiho T, Qokuho K, Usui S, et al. Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis [J].Biol Pharm Bull,1999, 22(9):966-970
    [72]龚敏,朱勤,王彤,等.冬虫夏草多糖的分子结构与免疫活性[J].生物化学杂志,1990, 6 (6):486-492
    [73] Koh J.H., Kim J.M., Chang U.I., et al. Hypocholesterolemic effect of hot-water extract from Mycelia of Cordyceps sinensis [J].Biol Pharm Bu11, 2003, 26(1):84-87
    [74]黄志江,季晖,李萍.人工虫草多糖降血糖作用及其机制研究[J].中国药科大学学报, 2002, 33(1):51-54
    [75]李晓明,戴如琴,朱勤,等.冬虫夏草菌发酵滤液多糖的组分分析[J].中国中药杂志, 1989, 14(2):31-33
    [76] Kiho T., Hui J., Yamane A.,et al.Polysaccharides in fungi.XXXI Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis [J].Biological & Pharmaceutic Bulletin, 1993, 16(12):1291-1293
    [77]范卫强,尹鸿萍,周长林.虫草多糖的分离、纯化和初步药效活性研究[J].生物加工过程, 2008, 6(1): 69-73
    [78] Wu Y.L., Sun C.R., Pan Y.J. Structural analysis of a neutral (1→3), (1→4)-β-D-glucan from the mycelia of Cordyceps sinensis [J]. J. Nat. Prod., 2005, 68:812-814
    [79] Wu Y.L., Sun C.R., Pan Y.J. Studies on isolation and structural features of a polysaccharide from the mycelium of a Chinese edible fungus (Cordyceps sinensis) [J].Carbohydrate Polymers, 2006, 63:251-256
    [80] Wu Y.L., Hu N., Pan Y.J., et al. Isolation and characterization of a mannoglucan from edible Cordyceps sinensis mycelium [J]. Carbohydrate Research, 2007, 342: 870-875
    [81] Leung P.H., Zhang Q.X., Wu J.Y. Mycelium cultivation, chemical composition and antitumor activity of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis [J]. Journal of Applied Microbiology, 2006, 101:275-283
    [82]姚桂卿,周建树.冬虫夏草培养及菌丝多糖的提取纯化研究初报[J].微生物学杂志, 1994, 14(2):47-47, 46
    [83]李汴生,安家彦,马军香.人工虫草菌菌丝体的破壁溶菌研究[J].中国食用菌,2001, 20(5):32-33
    [84]余晓斌,罗长才,缪静.冬虫夏草多糖提取工艺的优化[J].中草药, 2002, 33(12):1086- 1087
    [85]袁建国,程显好,候永勤.冬虫夏草多糖的研究开发[J].精细与专用化学品, 2002, (7): 15-17
    [86] Dong C.H., Xie X.Q., Wang X.L., et al. Application of Box-Behnken design in optimization for polysaccharides extraction from cultured mycelium of Cordyceps sinensis [J]. Food and Bioproducts Processing, 2009, 87: 139-144
    [87]沈晓云,李兆兰,田军.冬虫夏草与虫草菌丝体有效成分分析比较[J].山西大学学报(自然科学版),1998, 21(1):80-85
    [88] Cunningham K.G., Manson W., Spring F.S., et al. Cordycepin, ametabolic product isolated from cultures of cordyceps militaris (Linn.)link [J].Nature, 1950, 166(4231):949
    [89]袁建国,程显好,候永勤.功能因子冬虫夏草多糖的研究开发[J].中国食品添加剂, 1999, (2):18-22
    [90]李绍平,朱荃.天然和人工冬虫夏草多糖组分的HPLC分析[J].药物分析杂志,2003, 23(1): 20-23
    [91]武忠伟,刘明久,窦艳萍.虫草多糖醇沉和DEAE-32纤维素柱层析特性研究[J].食品科学,2008, 29(2):86-90
    [92]李晓明,戴如琴,朱勤.冬虫夏草菌发酵滤液多糖的组分分析[J].中国中药杂志,1989, 14(2): 31-33
    [93]蔡林涛,李萍.原子力显微镜观察虫草多糖分子的结构形貌[J].电子显微学报,1999, 18(1):103-105
    [94]臧其中.虫草多糖的药理作用[J].中草药,1985,16(7):18-23
    [95]常胜军,梁宗琦,刘爱英.虫草-一个值得深入研究的新药宝库[J].贵州农学院丛刊, 1995, (4):51-56
    [96]靖大道,邱徳凯,肖树东.虫草多糖对人外周血IL-2、IR-2R及IFR调节作用的研究[J].上海免疫学杂志,1995, 15(6):321-323
    [97]李金铎.抑癌多糖-LAK细胞活性增强剂[J].中国肿瘤临床,1996, 23(6):433-436
    [98] Chen Y.J., Shiao M.S., Lee S.Y., et al. Effect of cordyceps sinensis on the proliferation and differentiation of human leukemic U937 cells [J].Life Science, 1997,60(5): 2349-2359
    [99] Li S.P., Zhao K.J., Ji Z.N., et al. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury [J]. Life Sciences, 2003.73:2503-2513
    [100] Leung P.H., Zhao S.N., Ho K.P., et al. Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1 [J]. FoodChemistry, 2009, 114:1251-1256
    [101]颜吉丽,李华,范钰.虫草多糖对大鼠肝星状细胞核因子-kB活性和肿瘤坏死因子-α表达的影响[J].复旦大学(医学版), 2003, 30(1):27
    [102] Hellerbrand C., Jobin C., Iimuro Y.,et al. Inhibition of NF kappa B in activated rat hepatic stellate cells by proteasome inhibitors and I kappa B upper-repressor [J]. Hepatology, 1998, 27(5):1285-1295
    [103]王根维,李鲜红,田峰.冬虫夏草水提取液对小鼠抗红细胞抗体产生的影响[J].山西药科大学学报,1999, 30(4):301-302
    [104]王根维,唐仕川,陈向伟.冬虫夏草水提取物对巨噬细胞吞噬功能的实验研究[J].山西医科大学学报, 2000, 31(1):20-23
    [105]焦彦朝,梁宗琦,刘爱英.虫草生物活性物质研究概况[J].贵州农业科学,1990, (3):53-58
    [106]陈红霞,贾晓斌.冬虫夏草多糖的药理学研究进展[J].江苏大学学报, 2005, 15(1): 74-78
    [107]王菊凤,杨道德,李皓鸣.虫草多糖洋酒进展[J].中草药, 2006,37(5):6-8
    [108]杨荣玲,陈卫东,吴晓玉.巴西虫草胞外多糖提取工艺的优化[J].食品科学, 2007, 28(7):91-96
    [109] Henika R.G. Use of response surface methodology in sensory evaluation [J]. Food Technol., 1982, 36:96-101
    [110]张维杰.糖复合生化研究技术[M].杭州:浙江大学出版社,1994:13-16
    [111] Dubois M., Gilles K.A., Hamilton J.K., et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28:350-356
    [112] Bitter T., Muir H.M. A modified uronic acid carbazole reaction [J]. Analytical Biochemistry, 1962, 4:330-334
    [113] Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical biochemistry, 1976, 72:248-254
    [114]国家药典委员会.中华人民共和国药典[M].北京:化学工业出版社,2005
    [115] Haaland P.D. Experimental design in biotechnology [M]. New York and Basel: Marcel Dekker, Inc., 1989:243
    [116] Bendadou A., Dufresne A., Kaddami H., et al. Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L [J]. Carbohydrate Polymers, 2007, 68:601-608
    [117]王兆梅.李琳.郭祀远.多糖构效关系评述[J].现代化工, 2002, 22(8):18-21
    [118] Ros J.M., Laencina J., Hellín P., et al. Characterization of juice in fruits of different Chaenomeles species [J]. Lebensmittel-Wissenschaft und-Technologie, 2004, 37:301-307
    [119] Cai W., Gu X., Tang J. Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta [J]. Carbohydrate Polymers, 2008, 71:403-410.
    [120]吴东儒.糖类的生物化学[M].上海:高等教育出版社, 1987:307
    [121] Wettasinghe M., Shahidi F. Antioxidant and free radical-scavenging properties of ethanolic extracts of defatted borage (Borago officinalis L.) seeds [J]. Food Chemistry, 1999, 67:399-411
    [122] Gao L., Mazza G. Extraction of anthocyanin pigments from purple sunflower hulls [J]. J.Food Sci., 1996, 61:600-603
    [123] Pujari V., Chandra T.S. Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii [J]. Process Biochemistry, 2000, 36(1-2):31-37
    [124] Liu J.Z., Weng L.P., Zhang Q.L Opitimization of glucose oxidase production by Aspergillus niger in a benchtop bioreactor using response surface methodology [J]. World J. Microbiol. Biotechnol., 2003, 19:317-323
    [125] Muralidhar R.V., Chirumamila R.R., Marchant R., et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources [J]. Biochemical Engineering Journal, 2001, 9(1):17-23
    [126] Marx J.L. Oxygen free radicals linked to many diseases [J]. Science, 1987, 235: 529-531
    [127] Oyanagui Y. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity [J]. Analytical Biochemistry, 1984, 142:290–296
    [128] Schlesier K., Harwat M., B?hm V., et al. Assessment of antioxidant activity by using different in vitro methods [J]. Free Radical Research, 2002, 36:177–187
    [129] Park S.W., Kim S.H., Park K.H., et al. Preventive effect of antioxidants in MPTP-induced mouse model of Parkinson’s disease [J]. Neuroscience Letters, 2004, 363:243-246
    [130] Willcox J.K., Ash S.L., & Catignani G.L. Antioxidants and prevention of chronic disease [J]. Critical Reviews in Food Science and Nutrition, 2004, 44:275-295
    [131] Yang J., Zhang W., Shi P., et al. Effects of exopolysaccharide fraction (EPSF) from acultured Cordyceps sinensis fungus on c-Myc, c-Fos, and VEGF expression in B16 melanoma-bearing mice [J]. Pathol. Res. Pract., 2005, 201:745-750
    [132] Li S.P., Dong T.T.X., Tsim K.W.K. Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia [J]. Phytomedicine, 2001, 8(3):207–212
    [133] Yamaguchi Y., Kagota S., Nakamura K., et al. Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis [J].Phytotherapy Research, 2000, 14:647–649
    [134]张俐娜,陈和生.黑木耳酸性杂多糖溶液性质研究[J].高等学校化学学报, 1993, 14(9):1320-1325
    [135]吴敏春,陈琼华.毛木耳多糖的分离、分析及免疫药理活性研究[J].中国药科大学学报, 1991, 22(2):97-101
    [136] Staub A.M. Removal of protein-Sevag method [J].Methods in Carbohydrate Chemistry, 1965, 5:5-6
    [137]郭亚贞,王慥,曲鹏鹏.香菇多糖的纯化和结构分析[J].上海水产大学学报, 2000, 9(1):35-39
    [138] Rice-Evans C. A., Miller N. J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids [J]. Free Radical Biology and Medicine, 1996, 20:933-956
    [139]陈伟.林新华.黄丽英.芦荟多糖中游离蛋白去除的分光光度法[J].光谱实验室, 2005, 22(1):113-115
    [140]刘成梅.万茵.涂宗财.百合多糖脱蛋白方法的研究[J].食品科学, 2002, 23(1):89-90
    [141]闫巧娟,韩鲁佳,江正强.酶法脱除黄芪多糖中的蛋白质[J].食品科技, 2004, 29(6):23-26
    [142]徐建祥,晏志云,赵谋明,等.酶法脱蛋白技术用于螺旋藻多糖提取工艺的研究[J].食品与发酵工业, 1998, 24(3):24-28
    [143]杨娟,吴谋成,张声华.香菇子实体蛋白多糖的分离纯化及组成结构分析[J].植物资源与环境学报, 2001, 10(2):4-6
    [144]向东,王国政,赖凤英,等.活性炭对南瓜粗多糖液的脱色研究[J].河南科学, 2004, 22(6): 780-782
    [145]谢红旗.香菇多糖提取、纯化、结构表征及生物活性的研究[D].长沙:中南大学, 2007
    [146] Yu R.M., Wang L., Zhang H., et al. Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris [J].Fitoterapia, 2004, 75:662-666
    [147] Yu R.M., Yang W., Song L.Y., et al. Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris [J]. CarbohydratePolymers, 2007, 70:430-436
    [148] Yu R.M., Yin Y., Yang W., et al. Structural elucidation and biological activity of a novel polysaccharide by alkaline extraction from cultured Cordyceps militaris [J]. Carbohydrate Polymers, 2009, 75:166-171
    [149] Nandita S., Rajini P.S. Free radical scavenging activity of an aqueous extract of potato peel [J].Food Chemistry, 2004, 8:611-616
    [150] Banerjee A., Dasgupta N., De B. In vitro study of antioxidant activity of Syzygium cumini fruit [J].Food Chemistry, 2005, 90:727-733
    [151] Sun C., Wang J.W., Fang L., et al. Free radical scavenging and antioxidant activities of EPS2, an exopolysacharide produced by a marine filamentous fungus Keissleriella sp. YS4108 [J]. Life Sciences, 2004, 75:1063-1073
    [152] Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs [J]. Physiological Reviews, 1979, 59:527–605
    [153] Ueda J., Saito N., Shimazu Y., et al. A comparison of scavenging abilities of antioxidants against hydroxyl radicals [J].Arch.Biochem.Biophys, 1996, 333: 377 -384
    [154] Yu H.M., Wang B.S., Huang S.C., et al. Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage [J]. Journal of Agricultural and Food Chemistry, 2006, 54: 3132-3138
    [155] Halliwell B., Gutteridge J.M.C. Role of free radicals and catalytic metal ions in human disease: an overview [J]. Methods in Enzymology, 1990, 186:1-85
    [156] Gerber M., Boutron-Ruault M.C., Hercberg S. Food and cancer: state of the art about the protective effect of fruits and vegetables [J]. Bulletin du Cancer, 2002, 89: 293-312
    [157] Di Matteo V., Esposito E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis [J]. Current Drug Target CNS Neurological Disorders, 2003, 2: 95-107
    [158] Simic M.G., Jovanovic S.V., Niki E. In lipid Oxidation in Food [M]. St. Angelo A.J., Ed., ACS Symposium Series 500, American Chemistry Society: Washington, DC, 1992:14-32
    [159] Jovanovic S.V., Jancovic I., Josimovic L. Electron-transfer reactions of alkyperoxy radicals [J]. J. Am. Chem. Soc., 1992, 114:9018-9021
    [160] Avila D.V., Ingold K.U., Luszytyk J., et al. Dramatic solvent effects on the absolute rate constants for abstraction of the hydroxylic hydrogen atom from tert-butyl hydroperoxide and phenol by the cumyloxyl radical. The role of hydrogen bonding [J]. J. Am. Chem. Soc., 1995, 117:2929-2930
    [161] Kishy Y.F.M., Al-Sayed H.M.A. Free-radical scavenging and antioxidative activities of some polysaccharides in emulsions [J]. Lebensm.–Wiss.Technol., 2007, 40:270-277
    [162] Tsiapali E., Whaley S., Kalbfleisch J., et al. Glucans exhit weak antioxidant activity, but stimulate macrophage free radical activity [J]. Free Radical Biol. Med., 2001, 30:393-402
    [163] Xie W., Xu P., Liu Q. Antioxidant activity of water-soluble chitosan derivatives [J]. Bioorg. Med. Chem. Lett., 2001, 11: 1699-1701
    [164]郭忠武,王来曦.糖化学研究进展[J].化学进展,1995, 7(1):10-29
    [165]鞠海,张建民,魏锋,等.天然多糖的分离、纯化和结构鉴定[J].国外医药-植物药分册, 2000, 15(3):107-113
    [166]陈和生,孙振亚,李汉东,等.罗田板栗多糖的分离纯化及成分分析[J].中国药学杂志, 2002, 37(1):63-64
    [167] Alsop R.M., Vlachogiannis G.J. Determination of the molecular weight of clinical dextran by gel chromatography on TSK PW type columns [J]. J Chromatogr., 1982, 246: 227-240
    [168]魏远安,方积年.高效凝胶渗透色谱法测定多糖纯度及分子量[J].药学学报, 1989, 24(7):532-536
    [169] Ge Y., Duan Y.F., Fang G.Z., et al. Polysaccharides from fruit calyx of Physalis alkekengi var. francheti: isolation, purification, structural features and antioxidant activities [J]. Carbohydrate Polymers, 2009, 77:188-193
    [170]李建武.生物化学实验原理和方法[M].北京:北京大学出版社,1994
    [171]周科衍.有机化学实验[M].北京:高等教育出版社,1978:272
    [172]王顺春.何巍.方积年.徐长卿中一种新葡聚糖化学结构的研究[J].生物化学与生物物理学报, 2000, 32(4):369-372
    [173]李环.韦萍.欧阳平凯.嗜盐隐杆藻胞外多糖的分离、纯化及理化特性[J].天然产物研究与开发, 2000, 12(2):52-55
    [174] Lei L.S. Effect of ganoderma polysaccharides on the cell subpopulations and production of interleukin 2 in mixed lymphocyte reponses [J]. Acta Pharmaceutica, 1992, 27(5):331-335
    [175] Ciucanu I., Kerek F. A simple and rapid method for the permethylation of carbohydrates [J]. Carbohydrate Research, 1984, 131:209-217
    [176] Needs P.W., Selvendran R.R. Avoiding oxidative degradation during sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide [J]. Carbohydrate Research, 1993, 245:1-10
    [177] Bjorndal H., Lindberg B., Svenndon S. Mass spectrometry of partially methylated alditol acetates [J]. Carbohydrate Research, 1967, 5:433-441
    [178]聂凌远.淮山活性多糖的分离纯化、结构与生物活性的研究[D].广州:华南理工大学, 2004
    [179] Aspinall G.O., Ferrier R.J. A spectrophotometric method for the determination of periodate consumed during the oxidation of carbohydrates [J]. Chemical Industry (London), 1957, 7:1216-1221
    [180] Miyazaki T., Toshi S., Oikannm N.N. Studies on fungi polysaccharide XII water-soluble polysaccharide of Criford umbellate (Fr) pilat [J]. Chem. Pharm. Bull., 1973, 21:2545-2548
    [181] Chaplin M.F., Kennedy J.F. Carbohydrate analysis: A practical approach, 2nd Ed [M].Oxford: Oxford University Press, 1994:76-82
    [182] Nagayama K., Kumar A., Wüthrich K., et al. Experimental techniques of two- -dimensional correlated spectroscopy [J]. Journal of Magnetic Resonance, 1980, 40:321-334
    [183] Wagner G., Wüthrich K. Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra: Basic pancreatic trypsin inhibitor [J]. Journal of Molecular Biology, 1982, 155:347-466
    [184] Kay L.E., Keifer P., Saarinen T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity [J]. J. Am. Chem. Soc., 1992, 114: 10663-10665
    [185] Bax A., Summers M.F. Proton and carbon-13 assignments from sensitivity- -enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR [J]. J. Am. Chem. Soc., 1986, 108:2093-2094
    [186]任金山,吴梧桐.花粉多糖的分离纯化及其组成单糖分析[J].中国药科大学学报, 1990, 21(3):173-175
    [187] Mathlouthi M., Koenig J.L. Vibrational spectra of carbohydrates [J]. Advances in Carbohydrate Chemistry and Biochemistry, 1986, 44:7-89
    [188] Santhiya D., Subramanian S., Natarajan K.A. Surface chemical studies on sphalerite and galena using extracellular polysaccharide isolated from Bacillus polymyxa [J]. Journal of Colloid and Interface Science, 2002, 256:237-248
    [189] Barker S.A., Bourne E.J., Stacey M., et al. Infra-red spectra of carbohydrates. Part I. Some derivatives of D-glucopyranose [J]. Journal of the Chemical Society, 1954:171-176
    [190] KacurákováM., Capek P., SasinkováV., et al. FT-IR study of plant cell wall modelcompounds: pectic polysaccharides and hemicelluloses [J]. Carbohydrate Polymers, 2000, 43:195-203
    [191] Shingel K.I. Determination of structural peculiarities of dextran, pullulan andγ-irradiated pullulan by Fourier-transform IR spectroscopy [J]. Carbohydrate Research, 2002, 337: 1445-1451
    [192] Park F.S. Application of IR Spectroscopy in Biochemistry, Biology, and Medicine [M]. Plenum: New York, 1971: 100-140
    [193]陶乐平,丁在富,张部昌.气相色谱在多糖结构测定中的应用[J].色谱, 1994, 12(5): 351-354
    [194]李润秋.复合多糖生化研究技术[M].上海:上海科学技术出版社,1987:164-165
    [195] Hanfland P., Egge H., Dabrowski U., et al. Isolation and characterization of an I-active ceramide decasaccharide from rabbit erythrocyte membranes [J]. Biochemistry, 1981, 20:5310-5319
    [196] Bubb, W.A. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity [J]. Concepts in Magnetic Resonance Part A, 2003, 19A (1):1-19
    [197] Seymour F.R. Correlation of the structure of dextran to their 1H NMR spectra [J]. Carbohydrate Research, 1979b, 74:77-92
    [198] Agrawal P.K. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides [J]. Phytochemistry, 1992, 31:3307-3330
    [199] Chauveau C., Talaga P., Wieruszeski J.M., et al. A water-solubleβ-D-glucan from Boletus erythropus [J]. Phytochemistry, 1996, 43:413-415
    [200] Purama R.K., Goswami P., Khan A.T., et al. Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640 [J]. Carbohydrate Polymers, 2009, 76:30-35
    [201] Gorin P.A.J. Carbon-13 nuclear magnetic response spectroscopy of polysaccharides [J].Advanced in Carbohydrate Chemistry and Biochemistry, 1981, 38:13-104
    [202] Leeuwen S.S., Leeflang B.R., Gerwig G.J., et al. Development of a 1H NMR structural-reporter-group concept for the primary structural characterization ofα-D-glucans [J]. Carbohydrate Research, 2008, 343:1442-1449
    [203] Brant D.A., Burton B.A. Solution properties of polysaccharides [M]. American Chemical Society, Washington, D.C., 1981:81-99
    [204] Cui H., Liu Q., Tao Y., et al. Structure and chain conformation of a (1→6)-α-D-glucan from the root of Pueraria lobata (Wild.) ohwi and the antioxidant activity of its sulfatedderivative [J]. Carbohydrate Polymers, 2008, 74:771-778
    [205] Zhao G., Kana J., Li Z., et al. Characterization and immunostimulatory activity of an (1→6)-α-D-glucan from the root of Ipomoea batatas [J]. International Immunopharnacology, 2005, 5: 1436-1445
    [206] Ogawa K., Watanabe T., Tsurugi J., et al. Conformational behavior of a gel-forming (1→3)-β-D-glucan in alkaline solutions [J].Carbohydrate Research, 1972, 23:399-405
    [207] Koening M.K., Mclean R.J.C. Influence of metal ions and temperature on conformation of Escherichia coli K1 capsular polysaccharide [J]. Bio. Metals., 1999, 12:47-52
    [208] Hara C., Kiho T., Ukai S. Anti-inflammatory (1→3)β-D-Glucan [J]. Carbohydrate Research, 1983, 117:201-213
    [209] Harada T., Misaki A., Saito H. Curdlan: A bacterial gel-formingβ-1, 3-glucan [J]. Arch. Biochem. Biophys., 1968,124:292-298
    [210] Hara C., Kiho T., Tanaka Y., et al. Anti-inflammatory activity and conformational behavior of a branched (1→3)-β-D-glucan from an alkaline extract of dictyophora indusiatafisch [J]. Carbohydrate Research, 1982, 110:77-87
    [211] Ree D.A.张志伟译:多糖形态[M].北京:科学出版社, 1982:47-48, 67
    [212] Giese E.C., Dekker R.F.H., Barbosa A.M., et al. Triple helix conformation of botryosphaeran, a (1→3, 1→6)-β-D-glucan produced by Botryosphaeria rhodina MAMB-05[J].Carbohydrate Polymers, 2008, 74:953-956
    [213] Yamaki T., Kojima T., Norisuye T. Triple helix of scleroglucan in dilute aqueous sodium hydroxide [J]. Polymer Journal, 1981, 13:1135-1143
    [214]于宪潮,王德润,刘毅,等.核盘菌多糖的构象及其构象变化的研究[J].高分子学报, 1996, 3:296-203
    [215] Liang Z.Y., Zhang Y.S., Miao C.Y., et al. Studies on conformation behavior of glucan CF2a from Ganoderma applanatum in solution [J]. Acta Biochchimica et Biophysica Sinica, 1994, 26:411-416
    [216]梁忠岩,张翼伸.斜顶菌水溶性多糖的构象研究[J].生物化学杂志, 1985, 1(5,6): 142-147
    [217] Goh K.K.T., Hemar Y., Singh H. Viscometric and static light scattering studies on an exopolysaccharide produced by Lactobacillus delbrueckii subspecies bulgaricus NCFB 2483 [J]. Biopolymers, 2005, 77:98-106
    [218] Zhang L.N., Yang L.Q., Chen J.H. Conformational change of theβ-D-glucan of Auricularia auricular-judae in water-dimethyl sulfoxide mixtures [J]. Carbohydrate Research,1995, 276:442-447
    [219]梁忠岩,张翼伸.斜顶菌(Clitopilus caespitosus pk.)多糖构象的比较研究[J].东北师范大学自然科学版,1988, 4:115-122
    [220] Kajiwara K., Burchard W. Rotational isomeric state calculations of the dynamic structure factor and related properties of some linear chains. 1. Theρ= [    [221]汪海波.燕麦中β-葡聚糖的化学结构、溶液行为及降血糖作用的机制研究[D].武汉:华中农业大学,2004
    [222]陈海霞.高活性茶多糖的一级结构表征、空间构象及生物活性的研究[D].武汉:华中农业大学,2002
    [223]张翼伸.多糖的构象研究[J].东北师大学报自然科学版,1998, 2:55-60
    [224]鲁子贤.圆二色性和旋光色散在分子生物学中的应用[M].北京:科学出版社, 1987: 74-128
    [225] Johnson W.C.Jr. The circular dichroism of carbohydrates [J]. Advances in Carbohydrate Chemistry and Biochemistry, 1987, 45:85-91
    [226]倪德江.乌龙茶多糖的形成特征、结构、降血糖作用及其机理研究[D].武汉:华中农业大学, 2003
    [227] Sathyanarayana B.K., Stevens E.S., Texter J. Random-phase calculation of the low-energy circular dichroism in glucans [J]. Biopolymers, 1985, 24:1365-1383
    [228] Stipanoric A.J., Stevens E.S. Vacuum ultraviolet circular dichroism of (1→6)-β-D-glucan [J]. International Journal of Biological Macromolecules, 1980, 2: 209-213
    [229]廖平,贺峰,金声.罂粟花粉中阿拉伯半乳聚糖的结构及圆二色性的研究[J].高等学校化学学报, 1994, 15(3):379-382
    [230] Yamakawa H. Helical Wormlike Chains in Polymer solutions [M]. Springer: Berlin, 1997
    [231] Konishi T., Yoshizaki T., Yamakawa H. On the“Universal Constants”ρandΦ. of flexible polymers [J]. Macromolecules, 1991, 24(20): 5614-5622
    [232] Haache L.S., Washington G.E., Brant D.A. Light-scattering investigation of the temperature-driven conformation change in xanthan [J]. Macromolecules, 1987, 20(7): 2179-2187
    [233] Berry G.C. Thermodynamic and conformational properties of polystyrene. 1. Light-scattering studies on dilute solutions of linear polystyrenes [J]. J.Chem.Phys., 1966,44:4550-4564
    [234] Berne B., Pecora R. Dynamic Light Scattering [M]. Plenum Press: New York, 1976
    [235] Chu B. Laser Light Scattering [M]. Academic Press: New York, 1991
    [236] Badiger M.V., Gupta N.R., Eckelt J., et al. Intrinsic viscosity of aqueous solutions of carboxymethyl guar in the presence and in the absence of salt [J]. Macromolecular Chemistry and Physics, 2008, 209:2087-2093
    [237]张丽娜,薛奇,莫志深,等.高分子物理近代研究方法[M].武汉:武汉大学出版社,2003
    [238] Kirkwood J.G., Riseman J. The intrinsic viscosities and diffusion constants of flexible macromolecules in solution [J]. Journal of Chemical Physics, 1948, 16: 565-573
    [239] Wang J.C., Xu X.J., Zheng H., et al. Structural characterization, chain conformation, and morphology of aβ-(1→3)-D-glucan isolated from the fruiting body of Dictyophora indusiata [J]. Journal of Agricultural and Food Chemistry, 2009, 57: 5918-5924
    [240] Rees D.A., Scott W.E. Polysaccharide conformation. Part VI. Computer model-building for linear and branched pyranoglycans. Correlations with biological function. Preliminary assessment of inter-residue forces in aqueous solution. Further interpretation of optical rotation in terms of chain conformation [J]. J. Chem. Soc., Sect. B, 1971:469-479
    [241] Nordmeier E. Static and dynamic light scattering solution behavior of pullulan and dextran in comparison [J]. J. Phys. Chem., 1993, 97:5770-5785
    [242] Burchard W., Kajiwara K., Nerger D. Photocrosslinking and photografting of vinyl polymers using poly (styrene-co-p-vinylbenzophenone-p’-tert-butyl perbenzoate) as a comonomer [J]. J. Polym. Sci. Polym. Phys. Ed., 1982, 20:147-157
    [243] Ando T., Kodera N., Takai E., et al. A high-speed atomic force microscope for studying biological macromolecules [J]. Biophysics, 2001, 98:12468-12472
    [244]鲍幸峰,方积年.原子力显微镜在生物大分子结构研究中的应用进展[J].分析化学, 2000, 28:1300-1307
    [245] Foschiatti M., Hearshaw M., Cescutti P., et al. Conformational studies of the capsular polysaccharide produced by Neisseria meningitides group A [J]. Carbohydrate Research, 2009, 344:940-943

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700