用户名: 密码: 验证码:
桥本甲状腺炎患者Th17细胞变化及相关调控因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     通过研究桥本甲状腺炎(HT)患者外周血中Th17细胞及相关因子表达水平,分析Th17细胞与自身抗体变化的关系,了解Th17细胞及相关因子在HT发病中的作用;研究Th17细胞和Treg细胞在外周血中的比例及其特异性转录因子的表达水平,分析Th17/Treg细胞比率与自身抗体水平的关系,探讨HT患者Th17/Treg细胞免疫偏移与HT发生的相关性;研究HT患者外周血糖皮质激素诱导的肿瘤坏死因子受体相关配体(GITRL)表达水平,及其与Th17细胞和Treg细胞的相关性,探讨GITR/GITRL系统在Th17细胞和Treg细胞平衡中的作用;通过研究调控白介素-23受体(IL-23R)表达的的miRNAs,探讨了miR-125a-3p对HT患者外周血单个核细胞(PBMC)IL-23R的调控作用,为HT的诊治提供新思路。
     方法:
     1、采用流式细胞术(FCM)检测HT患者与健康对照PBMC中CD3+CD8-IL-17+T细胞(即Th17)比例,ELISA检测HT患者与健康对照外周血血浆中IL-6、IL-23的水平,并进行比较。通过实时荧光定量PCR(qRT-PCR)检测HT患者与健康对照组PBMC中RORyt mRNA表达水平,逆转录PCR(RT-PCR)检测患者甲状腺组织中RORyt和IL-17mRNA的表达情况。
     2、应用化学发光免疫分析法(CIA)检测HT患者抗甲状腺球蛋白抗体(TG-Ab)和抗甲状腺过氧化物酶抗体(TPO-Ab)的水平,分析患者PBMC中Th17细胞比例与自身抗体水平的相关性。
     3、采用流式细胞术检测HT患者与健康对照PBMC中CD4+CD25+CD127lowT细胞(即Treg)比例,通过qRT-PCR检测HT患者与健康对照PBMC中Foxp3mRNA表达水平。
     4、分析HT患者及健康对照PBMC中Th17/Treg细胞比率,并与TG-Ab水平进行相关性分析。
     5、采用ELISA检测HT患者和健康对照血浆中GITRL的水平,qRT-PCR检测HT患者甲状腺组织中GITRL mRNA的表达情况。分析血浆中GITRL水平与Th17和Treg细胞比例的相关性。
     6、免疫磁珠分选小鼠初始型CD4+T细胞,在Th17细胞诱导条件下进行体外培养,观察GITRL对促进小鼠Th17细胞分化的影响。
     7、采用qRT-PCR检测HT组与健康对照组PBMC中IL-23R mRNA的表达情况。以IL-23R为目的基因,利用targetscan/miRanda/Pictar数据库软件,预测可能调控IL-23R的miRNAs。
     8、通过qRT-PCR检测预测miRNAs在HT患者以及健康对照PBMC中的表达情况,筛选出符合预期的miRNA。
     9、利用荧光素酶报告基因检测实验验证miR-125a-3p与IL-23R的靶向作用,明确miR-125a-3p与IL-23R3'UTR结合位点的作用强度。将表达IL-23R的健康体检者PBMC作为靶细胞,转染miR-125a-3p mimics和NC,流式细胞术检测PBMCIL-23R表达变化。
     10、采用qRT-PCR方法检测HT患者和健康对照外周血PBMC miR-125a-3p的表达情况,并与IL-23R mRNA水平进行相关性分析。同时对HT患者PBMC中miR-125a-3p的表达水平与其自身抗体水平进行相关性分析。
     结果:
     1、与健康对照组相比,HT患者PBMC中的Th17细胞比例明显增高[(0.75+0.79)%vs(0.28+0.23)%,P<0.05]。HT组PBMC中Thl7细胞特异性转录因子RORγt的相对表达量显著高于健康对照组(0.30±0.38vs0.04±0.02,P<0.05)。HT患者血浆中IL-6、IL-23的表达量显著高于健康对照组(3.66±4.70vs0.47±1.11pg/ml, P<0.05)(154.7±75.81vs80.65±61.41pg/ml, P<0.05)。与单纯性甲状腺肿组相比,HT组患者甲状腺组织中表达RORyt和IL-17基因。
     2、桥本甲状腺炎患者PBMC中的Thl7细胞比例与其血清TG-Ab水平存在较强的正相关(r=0.8484,P=0.0077),与其血清TPO-Ab水平可能存在一定的正相关(r=0.6224,P=0.0994)。
     3、HT患者PBMC中Treg细胞比例明显降低(P<0.01)。Treg细胞特异性转录因子Foxp3mRNA的相对表达量也显著低于健康对照组(P<0.05)。
     4、HT患者外周血PBMCs中Th17/Treg细胞比率明显增高(P<0.01),并与TG-Ab呈现明显正相关(r=0.5243,P=0.0176)。
     5、HT患者外周血中GITRL的水平明显上调(P<0.05),相关分析显示,GITRL与Th17细胞比例呈明显正相关(r=0.5282,P=0.0167)。在Th17细胞诱导条件下,mGITRL可明显促进Th17细胞的诱导分化。
     6、与单纯性甲状腺肿组相比,HT组甲状腺组织中RORγt mRNA、IL-17mRNA和GITRL mRNA相对表达量明显增高(P均<0.05)。
     7、HT患者PBMC中IL-23R mRNA的表达水平显著上调(P<0.05)。以IL-23R为目的基因,经过软件分析,取预测结果的交集,结合文献查询结果,筛选出可能调控IL-23R的miRNAs:miR-155、miR-125a-3p。miR-125a-3p的表达显著下调(P<0.05),与上调的IL-23R mRNA表达水平趋势相反。
     8、荧光素酶报告基因检测实验证实,miR-125a-3p能够结合IL-23R的种子区,抑制下游IL-23R基因表达,降低荧光强度,结果表明,miR-125a-3p与IL-23R基因存在直接靶向关系。流式细胞术检测发现,与转染NC组相比,转染miR-125a-3p的PBMC表达IL-23R的细胞比例明显减少,提示miR-125a-3p可以抑制IL-23R的表达。
     9、qRT-PCR检测表明HT患者PBMC中miR-125a-3p相对表达量下调(P<0.05),相关性分析显示,miR-125a-3p表达水平与IL-23R mRNA表达水平呈负相关(r=-0.5195,P=0.0226)。miR-125a-3p表达水平与TG-Ab水平呈显著负相关(r=-0.4811,P=0.0371)。
     结论:
     1、HT患者体内Th17细胞及相关因子表达升高,Thl7细胞与自身抗体(TG-Ab)水平呈正相关,提示Th17细胞及相关细胞因子在HT的发生发展中起重要作用。
     2、HT患者外周血Th17细胞比例增加、Treg细胞比例减少,其特异性转录因子RORγt和Foxp3变化趋势与细胞比例相同,Th17/Treg细胞比率与TG-Ab水平呈显著相关,提示HT患者存在Th17/Treg失衡,为阐明HT的发病机制提供了新的思路。
     3、GITRL能够促进Th17细胞的产生,HT患者外周血血浆中GITRL高表达,与Th17细胞呈明显正相关。HT患者甲状腺组织中GITRL、RORγt、IL-17mRNA水平均高表达。结果表明,GITRL可能参与Th17/Treg细胞平衡的调节。
     4、miR-125a-3p可以直接调控IL-23R的表达。HT患者外周血PBMC中miR-125a-3p的表达显著下调,与IL-23R mRNA表达水平呈负相关,且与体内自身抗体水平呈负相关。提示miR-125a-3p与HT的发生及疾病严重程度有关。
Objective:
     To investigate the variations of CD4+T-helper17(Th17) cells and the level of Thl7cells related cytokines in patients with Hashimoto's Thyroiditis (HT), analyze the relations between Th17cells and autoantibodies, evaluate the role of Th17cells and related cytokines in the pathogenesis of patients with HT. To investigate the proportion of Th17and regulatory T cells (Treg) and the expression of specific transcription factors, analyze the relations between the ratio of Th17/Treg and autoantibodies, explore the role of immune deviation of Th17/Treg in HT patients.To investigate the level of Glucocorticoid-induced TNF receptor-related protein ligand (GITRL) in peripheral blood of patients with HT and its correlation with Th17cells or Treg cells, explore the role of GITR/GITRL in the balance of Th17/Treg. To study miRNAs of regulating interleukin-23receptor (IL-23R) expression, explore the regulation role of miR-125a-3p on IL-23R in peripheral blood mononuclear cells (PBMC) of patients with HT.
     Methods:
     1. The frequency of CD3+CD8-IL-17+T (Thl7) cells in PBMC of patients with HT and healthy controls was analyzed by flow cytometry (FCM), the concentration of plasma IL-6、IL-23were measured by enzyme-linked immunosorbent assay (ELISA). QRT-PCR was used to measure the expression of RORyt mRNA in PBMC, the expression of RORyt and IL-17mRNA in thyroid tissue was measured by RT-PCR.
     2. The levels of anti-thyroglobulin antibody (TG-Ab) and anti-thyroperoxidase antibody (TPO-Ab) in patients with HT were detected by chemiluminescence immunoassay(CIA), correlation between Th17and the levels of autoantibodies was analyzed.
     3. The frequeney of CD4+CD25+CD127lowT (Treg) cells in PBMC of patients with HT and healthy controls was analyzed by FCM, qRT-PCR was used to measure the expression of Foxp3mRNA in PBMC.
     4. The ratio of Th17/Treg and correlation with the levels of TG-Ab was analyzed.
     5. The concentration of plasma GITRL in HT patients and healthy controls were measured by ELISA. QRT-PCR was used to measure the expression of GITRL mRNA in thyroid tissue of patients with HT and healthy controls. Correlation between the levels of plasma GITRL and ratio of T17/Treg was analyzed.
     6. Naive CD4+T cells were purified by immune magnetic beads from normal murine, and incubated under the Th17-differentiation condition. The role of GITRL on the differentiation of Th17cells was observed.
     7. QRT-PCR was used to measure the expression of IL-23R mRNA in PBMC of patients with HT and healthy controls. Targing IL-23R gene, through miRanda and PicTar software analysis, we listed the miRNAs probably target to IL-23R.
     8. The expression of the predicted miRNAs in HT patients and healthy controls were detected by qRT-PCR. The miRNA in line with expectations was chosen for further research.
     9. The targeting role of miR-125a-3p on IL-23R was validated by luciferase reporter assay, to clear the binding site strength of miR-125a-3p and IL-23R3'UTR. MiR-125a-3p mimics and control transfection was done in PBMC expressing IL-23R from the people conducted health examination as target cells. The expression of IL-23R in PBMC was measured by FCM.
     10. QRT-PCR was used to measure the expression of miR-125a-3p in PBMCs of HT patients and healthy controls. Correlation between the levels of miR-125a-3p in PBMCs and the levels of autoantibodies was analyzed.
     Results:
     1. The proportion of Th17cells were significantly increased in HT patients compared with healthy controls[(0.75±0.79)%versus (0.28±0.23)%, P<0.05]. The level of RORγt mRNA in PBMC was significantly higher in HT patients compared with that from healthy controls (0.30±0.38versus0.04±0.02, P<0.05). The concentrations of plasma IL-6、IL-23were increased in HT patients compared with healthy controls (3.66±4.70versus0.47±1.11pg/ml, P<0.05)(154.7±75.81versus80.65±61.41pg/ml, P<0.05). Compared with the simple goiter group, the expression of RORyt and IL-17mRNA in thyroid tissue was measured in HT patients.
     2. A strong positive correlation between the proportion of Th17cells in PBMC and levels of TG-Ab (r=0.8484, P=0.0077) and a borderline correlation that with the levels of TPO-Ab (r=0.6224, P=0.0994) were found in HT patients.
     3. The proportion of Treg cells was significantly decreased in HT patients(P<0.01). The expression of Foxp3mRNA was significantly decreased in HT patients compared with healthy controls (P<0.05).
     4. The ratio of Thl7/Treg was significantly increased in HT patients (P<0.01) and had significant correlation with the levels of TG-Ab (r=0.5243, P=0.0176)
     5. The concentration of plasma GITRL was significantly increased in HT patients (P<0.05). The levels of GITRL had significantly positive correlation with proportion of Th17cells (r=0.5282, P=0.0167). mGITRL can significantly promote the differentiation of Thl7cells under the Th17-differentiation condition.
     6. The expression of RORγt、IL-17mRNA and GITRL mRNA in thyroid tissues was significantly increased in HT patients compared with the simple goiter group (P<0.05).
     7. The level of IL-23R mRNA in PBMCs was significantly increased in HT patients (P<0.05). Through software analysis, we listed two miRNAs probably target to IL-23R:miR-155and miR-125a-3p. The expression level of miR-125a-3p was significantly decreased in HT patient (P<0.05), in contrast with the upregulation of IL-23R mRNA level.
     8. The luciferase reporter assay confirmed that miR-125a-3p can target to the seed region of IL-23R and can inhibit the expression of downstream IL-23R gene, fluorescence intensity was decreased. The results show that miR-125a-3p had direct targeted relationship with IL-23R gene.The percentage of IL-23R+cells was decreased after miR-125a-3p transfection in PBMC, indicated miR-125a-3p can inhibit the expression of IL-23R.
     9. The expression levels of miR-125a-3p measured by qRT-PCR were significantly decreased in PBMC of HT (P<0.05). A negative correlation was found between the levels of miR-125a-3p and the levels of IL-23R mRNA in HT (r=-0.5195, P=0.0226). The expression levels of miR-125a-3p had a significantly negative correlation with the levels of TG-Ab(r=-0.4811, P=0.0371).
     Conclusions:
     1. The increased proportion of Th17cells and related cytokine were observed in patients with HT. The proportion of Th17cells was positively correlated with the levels of autoantibodies. The results show that Th17cells and related cytokines may play an important role in development of HT.
     2. The elevated of Th17cells were accompanied with the decreased Treg cells as same as changes of transcription factors RORγt and Foxp3with the significant correlation between the ratio of Th17/Treg and TG-Ab, suggesting that Th17/Treg imbalance may be involved in HT patients. It provided a new insight in elucidating the pathogenesis of HT.
     3. GITRL could promote the development of Th17cells in vitro. The increased expression levels of GITRL in HT patients were positively correlated with Th17cells. HT patients had significantly increased levels of GITRL、RORγt、 IL-17mRNA in thyroid tissues. The results show that GITRL may be involved in the regulation the balance of Thl7/Treg cells.
     4. MiR-125a-3p can derectly regulate the expression of IL-23R. The decreased expression levels of miR-125a-3p in PBMCs of HT patients were negatively correlated with increased expression levels of IL-23R mRNA. Moreover, the expression levels of miR-125a-3p had negative correlation with the levels of autoantibodies. It is indicated the possible involvement of miR-125a-3p in the pathogenesis of HT, and also in the severity of desease.
引文
[1]Bindra A, Braunstein G D. Thyroiditis[J]. Am Fam Physician,2006,73(10): 1769-1776.
    [2]Staii A, Mirocha S, Todorova-Koteva K, et al. Hashimoto thyroiditis is more frequent than expected when diagnosed by cytology which uncovers a pre-clinical state[J]. Thyroid Res,2010,3(1):11.
    [3]Michels A W, Eisenbarth G S. Immunologic endocrine disorders[J]. J Allergy Clin Immunol,2010,125(2 Suppl 2):S226-237.
    [4]Pearce E N, Farwell A P, Braverman L E. Thyroiditis[J]. N Engl J Med,2003, 348(26):2646-2655.
    [5]Weetman A P, McGregor A M. Autoimmune thyroid disease:further developments in our understanding [J]. Endocr Rev,1994,15(6):788-830.
    [6]Yu S, Sharp G C, Braley-Mullen H. Thyrocytes responding to IFN-gamma are essential for development of lymphocytic spontaneous autoimmune thyroiditis and inhibition of thyrocyte hyperplasia[J]. J Immunol,2006,176(2):1259-1265.
    [7]Horie I, Abiru N, Sakamoto H, et al. Induction of autoimmune thyroiditis by depletion of CD4+CD25+ regulatory T cells in thyroiditis-resistant IL-17, but not interferon-gamma receptor, knockout nonobese diabetic-H2h4 mice[J]. Endocrinology, 2011,152(11):4448-4454.
    [8]Drugarin D, Negru S, Koreck A, et al. The pattern of a T(H)1 cytokine in autoimmune thyroiditis[J]. Immunol Lett,2000,71(2):13-11.
    [9]Phenekos C, Vryonidou A, Gritzapis A D, et al. Th1 and Th2 serum cytokine profiles characterize patients with Hashimoto's thyroiditis (Th1) and Graves' disease (Th2)[J]. Neuroimmunomodulation,2004,11(4):209-213.
    [10]Nanba T, Watanabe M, Inoue N, et al. Increases of the Thl/Th2 cell ratio in severe Hashimoto's disease and in the proportion of Th17 cells in intractable Graves' disease[J]. Thyroid,2009,19(5):495-501.
    [11]Glick A B, Wodzinski A, Fu P, et al. Impairment of regulatory T-cell function in autoimmune thyroid disease[J]. Thyroid,2013,23(7):871-878.
    [12]Kolls J K. Th17 cells in mucosal immunity and tissue inflammation[J]. Semin Immunopathol,2010,32(1):1-2.
    [13]Sakaguchi S, Ono M, Setoguchi R, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease[J]. Immunol Rev,2006, 212:8-27.
    [14]Homey B. [After TH1/TH2 now comes Treg/TH17:significance of T helper cells in immune response organization][J]. Hautarzt,2006,57(8):730-732.
    [15]Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage[J]. Nat Med,2007,13(2):139-145.
    [16]Krakowski M, Owens T. Interferon-gamma confers resistance to experimental allergic encephalomyelitis[J]. Eur J Immunol,1996,26(7):1641-1646.
    [17]Bettelli E, Sullivan B, Szabo S J, et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis[J]. J Exp Med,2004, 200(1):79-87.
    [18]Das M P, Nicholson L B, Greer J M, et al. Autopathogenic T helper cell type 1 (Th1) and protective Th2 clones differ in their recognition of the autoantigenic peptide of myelin proteolipid protein[J]. J Exp Med,1997,186(6):867-876.
    [19]Ramirez F, Mason D. Induction of resistance to active experimental allergic encephalomyelitis by myelin basic protein-specific Th2 cell lines generated in the presence of glucocorticoids and IL-4[J]. Eur J Immunol,2000,30(3):747-758.
    [20]Kastelein R A, Hunter C A, Cua D J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation [J]. Annu Rev Immunol, 2007,25:221-242.
    [21]Cua D J, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature,2003, 421(6924):744-748.
    [22]Murphy C A, Langrish C L, Chen Y, et al. Divergent pro-and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation[J]. J Exp Med,2003, 198(12):1951-1957.
    [23]Langrish C L, Chen Y, Blumenschein W M, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. J Exp Med,2005,201(2): 233-240.
    [24]Chen Y, Langrish C L, McKenzie B, et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis[J]. J Clin Invest,2006,116(5):1317-1326.
    [25]Komiyama Y, Nakae S, Matsuki T, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis[J]. J Immunol,2006, 177(1):566-573.
    [26]Harrington L E, Hatton R D, Mangan P R, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol,2005,6(11):1123-1132.
    [27]Teunissen M B, Koomen C W, de Waal Malefyt R, et al. Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes[J]. J Invest Dermatol,1998,111(4):645-649.
    [28]Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis[J]. J Clin Invest, 1999,103(9):1345-1352.
    [29]Harrington L E, Mangan P R, Weaver C T. Expanding the effector CD4 T-cell repertoire:the Th17 lineage[J]. Curr Opin Immunol,2006,18(3):349-356.
    [30]Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells[J]. J Exp Med,2007,204(8):1849-1861.
    [31]Sallusto F, Zielinski C E, Lanzavecchia A. Human Th17 subsets[J]. Eur J Immunol,2012,42(9):2215-2220.
    [32]Gaffen S L, Kramer J M, Yu J J, et al. The IL-17 cytokine family[J]. Vitam Horm, 2006,74:255-282.
    [33]Qian Y, Liu C, Hartupee J, et al. The adaptor Actl is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease [J]. Nat Immunol,2007,8(3):247-256.
    [34]Veldhoen M, Hocking R J, Atkins C J, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells[J]. Immunity,2006,24(2):179-189.
    [35]范艳莹,吴长有IL-4、IL-10和抗IL-12受体β1mAb抑制IL-23诱导正常人记忆T细胞IFN-γ产生[J].免疫性杂志,2006,22(4):353-357.
    [36]滕素玲,郑世民.Th17细胞及其分化调控机制研究进展[J].动物医学进展,2010,31(9):89-92.
    [37]Ivanov, II, McKenzie B S, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+T helper cells[J]. Cell,2006,126(6):1121-1133.
    [38]Zhang F, Meng G, Strober W. Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells[J]. Nat Immunol,2008,9(11):1297-1306.
    [39]Martin B, Hirota K, Cua D J, et al. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals[J]. Immunity,2009,31(2):321-330.
    [40]Monteleone G, Pallone F, MacDonald T T. Interleukin-21:a critical regulator of the balance between effector and regulatory T-cell responses[J]. Trends Immunol, 2008,29(6):290-294.
    [41]Ghoreschi K, Thomas P, Breit S, et al. Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease[J]. Nat Med,2003,9(1): 40-46.
    [42]Stumhofer J S, Laurence A, Wilson E H, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system [J]. Nat Immunol,2006,7(9):937-945.
    [43]Chen Z, Laurence A, Kanno Y, et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells[J]. Proc Natl Acad Sci U S A,2006,103(21): 8137-8142.
    [44]Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis[J]. Nat Immunol,2009, 10(12):1252-1259.
    [45]Yao R, Ma Y L, Liang W, et al. MicroRNA-155 modulates Treg and Thl7 cells differentiation and Th17 cell function by targeting SOCS1[J]. PLoS One,2012,7(10): e46082.
    [46]Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction[J]. J Exp Med, 2006,203(12):2673-2682.
    [47]Honorati M C, Neri S, Cattini L, et al. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts[J]. Osteoarthritis Cartilage,2006,14(4): 345-352.
    [48]Cho M L, Yoon C H, Hwang S Y, et al. Effector function of type II collagen-stimulated T cells from rheumatoid arthritis patients:cross-talk between T cells and synovial fibroblasts[J]. Arthritis Rheum,2004,50(3):776-784.
    [49]Kirkham B W, Lassere M N, Edmonds J P, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis:a two-year prospective study (the DAMAGE study cohort)[J]. Arthritis Rheum,2006, 54(4):1122-1131.
    [50]Rohn T A, Jennings G T, Hernandez M, et al. Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis[J]. Eur J Immunol,2006, 36(11):2857-2867.
    [51]Haak S, Croxford A L, Kreymborg K, et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice[J]. J Clin Invest,2009,119(1): 61-69.
    [52]Codarri L, Gyulveszi G, Tosevski V, et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation[J]. Nat Immunol,2011,12(6):560-567.
    [53]Vaknin-Dembinsky A, Balashov K, Weiner H L. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production[J]. J Immunol,2006,176(12):7768-7774.
    [54]Hsu H C, Yang P, Wang J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice[J]. Nat Immunol,2008,9(2):166-175.
    [55]Wong C K, Lit L C, Tam L S, et al. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus:implications for Th17-mediated inflammation in auto-immunity[J]. Clin Immunol,2008,127(3):385-393.
    [56]Patakas A, Benson R A, Withers D R, et al. Th17 effector cells support B cell responses outside of germinal centres[J]. PLoS One,2012,7(11):e49715.
    [57]Gershon R K, Kondo K. Cell interactions in the induction of tolerance:the role of thymic lymphocytes[J]. Immunology,1970,18(5):723-737.
    [58]Gershon R K. A disquisition on suppressor T cells[J]. Transplant Rev,1975,26: 170-185.
    [59]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164.
    [60]Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self[J]. Nat Immunol,2005,6(4):345-352.
    [61]Jonuleit H, Schmitt E. The regulatory T cell family:distinct subsets and their interrelations [J]. J Immunol,2003,171(12):6323-6327.
    [62]Loser K, Beissert S. Regulatory T cells:banned cells for decades[J]. J Invest Dermatol,2012,132(3 Pt2):864-871.
    [63]Shevach E M. Regulatory/suppressor T cells in health and disease[J]. Arthritis Rheum,2004,50(9):2721-2724.
    [64]Wu K, Bi Y, Sun K, et al. IL-10-producing type 1 regulatory T cells and allergy[J]. Cell Mol Immunol,2007,4(4):269-275.
    [65]Yadav M, Louvet C, Davini D, et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo[J]. J Exp Med, 2012,209(10):1713-1722, S1711-1719.
    [66]Thornton A M, Korty P E, Tran D Q, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells[J]. J Immunol,2010,184(7):3433-3441.
    [67]Lin X, Chen M, Liu Y, et al. Advances in distinguishing natural from induced Foxp3(+) regulatory T cells[J]. Int J Clin Exp Pathol,2013,6(2):116-123.
    [68]Serre K, Benezech C, Desanti G, et al. Helios is associated with CD4 T cells differentiating to T helper 2 and follicular helper T cells in vivo independently of Foxp3 expression[J]. PLoS One,2011,6(6):e20731.
    [69]Lu L F, Rudensky A. Molecular orchestration of differentiation and function of regulatory T cells[J]. Genes Dev,2009,23(11):1270-1282.
    [70]Campbell D J, Koch M A. Phenotypical and functional specialization of FOXP3+ regulatory T cells [J]. Nat Rev Immunol,2011,11(2):119-130.
    [71]Chen X, Oppenheim J J. Resolving the identity myth:key markers of functional CD4+FoxP3+ regulatory T cells[J]. Int Immunopharmacol,2011,11(10):1489-1496.
    [72]Liu W, Putnam A L, Xu-Yu Z, et al. CD 127 expression inversely correlates with FoxP3 and suppressive function of human CD4+T reg cells[J]. J Exp Med,2006, 203(7):1701-1711.
    [73]Gavin M A, Rasmussen J P, Fontenot J D, et al. Foxp3-dependent programme of regulatory T-cell differentiation [J]. Nature,2007,445(7129):771-775.
    [74]Fontenot J D, Gavin M A, Rudensky A Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J]. Nat Immunol,2003,4(4):330-336.
    [75]Buckner J H, Ziegler S F. Functional analysis of FOXP3[J]. Ann N Y Acad Sci, 2008,1143:151-169.
    [76]Williams L M, Rudensky A Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3[J]. Nat Immunol,2007,8(3):277-284.
    [77]Horwitz D A, Zheng S G, Gray J D. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other[J]. Trends Immunol,2008,29(9):429-435.
    [78]Sakaguchi S, Yamaguchi T, Nomura T, et al. Regulatory T cells and immune tolerance[J]. Cell,2008,133(5):775-787.
    [79]Lan Q, Fan H, Quesniaux V, et al. Induced Foxp3(+) regulatory T cells:a potential new weapon to treat autoimmune and inflammatory diseases?[J]. J Mol Cell Biol,2012,4(1):22-28.
    [80]Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation[J]. J Exp Med,2000,192(2):295-302.
    [81]Paust S, Lu L, McCarty N, et al. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease[J]. Proc Natl Acad Sci U S A,2004, 101(28):10398-10403.
    [82]Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance[J]. Nat Immunol,2002,3(2):135-142.
    [83]Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta[J]. J Exp Med,2001,194(5):629-644.
    [84]Wing K, Fehervari Z, Sakaguchi S. Emerging possibilities in the development and function of regulatory T cells[J]. Int Immunol,2006,18(7):991-1000.
    [85]Collison L W, Chaturvedi V, Henderson A L, et al. IL-35-mediated induction of a potent regulatory T cell population[J]. Nat Immunol,2010,11(12):1093-1101.
    [86]Shah N, Kammermeier J, Elawad M, et al. Interleukin-10 and interleukin-10-receptor defects in inflammatory bowel disease[J]. Curr Allergy Asthma Rep,2012,12(5):373-379.
    [87]Gondek D C, Devries V, Nowak E C, et al. Transplantation survival is maintained by granzyme B+regulatory cells and adaptive regulatory T cells[J]. J Immunol,2008, 181(7):4752-4760.
    [88]Cao X, Cai S F, Fehniger T A, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J]. Immunity,2007.27(4): 635-646.
    [89]Park H, Li Z, Yang X O, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol,2005,6(11):1133-1141.
    [90]Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature,2006, 441(7090):235-238.
    [91]Ichiyama K, Yoshida H, Wakabayashi Y, et al. Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat[J]. J Biol Chem,2008,283(25):17003-17008.
    [92]Zhou L, Lopes J E, Chong M M, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function[J]. Nature,2008,453(7192): 236-240.
    [93]Aukrust P, Muller F, Ueland T, et al. Decreased vitamin A levels in common variable immunodeficiency:vitamin A supplementation in vivo enhances immunoglobulin production and downregulates inflammatory responses[J]. Eur J Clin Invest,2000,30(3):252-259.
    [94]Kinoshita K, Yoo B S, Nozaki Y, et al. Retinoic acid reduces autoimmune renal injury and increases survival in NZB/W F1 mice[J]. J Immunol,2003,170(11): 5793-5798.
    [95]Bai A, Lu N, Guo Y, et al. All-trans retinoic acid down-regulates inflammatory responses by shifting the Treg/Th17 profile in human ulcerative and murine colitis[J]. J Leukoc Biol,2009,86(4):959-969.
    [96]Klemann C, Raveney B J, Klemann A K, et al. Synthetic retinoid AM80 inhibits Thl7 cells and ameliorates experimental autoimmune encephalomyelitis[J]. Am J Pathol,2009,174(6):2234-2245.
    [97]Xiao S, Jin H, Korn T, et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression[J]. J Immunol,2008, 181(4):2277-2284.
    [98]Elias K M, Laurence A, Davidson T S, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway [J]. Blood,2008,111(3):1013-1020.
    [99]Chen H, Qin J, Wei P, et al. Effects of leukotriene B4 and prostaglandin E2 on the differentiation of murine Foxp3+ T regulatory cells and Th17 cells[J]. Prostaglandins Leukot Essent Fatty Acids,2009,80(4):195-200.
    [100]Mirshafiey A, Jadidi-Niaragh F. Immunopharmacological role of the leukotriene receptor antagonists and inhibitors of leukotrienes generating enzymes in multiple sclerosis[J]. Immunopharmacol Immunotoxicol,2010,32(2):219-227.
    [101]Mirshafiey A, Jadidi-Niaragh F. Prostaglandins in pathogenesis and treatment of multiple sclerosis[J]. Immunopharmacol Immunotoxicol,2010,32(4):543-554.
    [102]Li Q, Wang Y, Chen K, et al. The role of oxidized low-density lipoprotein in breaking peripheral Th17/Treg balance in patients with acute coronary syndrome [J]. Biochem Biophys Res Commun,2010,394(3):836-842.
    [103]Quintana F J, Basso A S, Iglesias A H, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor[J]. Nature,2008,453(7191): 65-71.
    [104]Veldhoen M, Hirota K, Westendorf A M, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins[J]. Nature,2008, 453(7191):106-109.
    [105]Quintana F J, Murugaiyan G, Farez M F, et al. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis[J]. Proc Natl Acad Sci U S A,2010, 107(48):20768-20773.
    [106]Gandhi R, Kumar D, Burns E J, et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells[J]. Nat Immunol,2010,11(9):846-853.
    [107]Reynolds A D, Stone D K, Hutter J A, et al. Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson's disease[J]. J Immunol,2010,184(5):2261-2271.
    [108]Fletcher J M, Lonergan R, Costelloe L, et al. CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis[J]. J Immunol,2009,183(11):7602-7610.
    [109]Niu Q, Huang Z C, Cai B, et al. [Study on ratio imbalance of peripheral blood Th17/Treg cells in patients with rheumatoid arthritis][J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2010,26(3):267-269,272.
    [110]Wang W, Shao S, Jiao Z, et al. The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis[J]. Rheumatol Int,2012,32(4):887-893.
    [111]Samson M, Audia S, Janikashvili N, et al. Brief report:inhibition of interleukin-6 function corrects Thl7/Treg cell imbalance in patients with rheumatoid arthritis[J]. Arthritis Rheum,2012,64(8):2499-2503.
    [112]Olivito B, Simonini G, Ciullini S, et al. Th17 transcription factor RORC2 is inversely correlated with FOXP3 expression in the joints of children with juvenile idiopathic arthritis[J]. J Rheumatol,2009,36(9):2017-2024.
    [113]Ephrem A, Chamat S, Miquel C, et al. Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin:a critical factor in controlling experimental autoimmune encephalomyelitis[J]. Blood,2008,111(2):715-722.
    [114]Bjerg L, Brosbol-Ravnborg A, Torring C, et al. Altered frequency of T regulatory cells is associated with disability status in relapsing-remitting multiple sclerosis patients[J]. J Neuroimmunol,2012,249(1-2):76-82.
    [115]Zhang R, Tian A, Zhang H, et al. Amelioration of experimental autoimmune encephalomyelitis by beta-elemene treatment is associated with Th17 and Treg cell balance[J]. J Mol Neurosci,2011,44(1):31-40.
    [116]Valencia X, Yarboro C, Illei G, et al. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus[J]. J Immunol,2007, 178(4):2579-2588.
    [117]Miyara M, Amoura Z, Parizot C, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus[J]. J Immunol,2005,175(12): 8392-8400.
    [118]Lee H Y, Hong Y K, Yun H J, et al. Altered frequency and migration capacity of CD4+CD25+ regulatory T cells in systemic lupus erythematosus[J]. Rheumatology (Oxford),2008,47(6):789-794.
    [119]Yang J, Chu Y, Yang X, et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus[J]. Arthritis Rheum,2009,60(5):1472-1483.
    [120]Ma J, Yu J, Tao X, et al. The imbalance between regulatory and IL-17-secreting CD4+ T cells in lupus patients[J]. Clin Rheumatol,2010,29(11): 1251-1258.
    [121]Nocentini G, Giunchi L, Ronchetti S, et al. A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis[J]. Proc Natl Acad Sci U S A,1997,94(12):6216-6221.
    [122]Gurney A L, Marsters S A, Huang R M, et al. Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR[J]. Curr Biol,1999,9(4):215-218.
    [123]Kwon B, Yu K Y, Ni J, et al. Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand[J]. J Biol Chem,1999,274(10):6056-6061.
    [124]Baltz K M, Krusch M, Bringmann A, et al. Cancer immunoediting by GITR (glucocorticoid-induced TNF-related protein) ligand in humans:NK cell/tumor cell interactions[J]. FASEB J,2007,21(10):2442-2454.
    [125]Kim W J, Bae E M, Kang Y J, et al. Glucocorticoid-induced tumour necrosis factor receptor family related protein (GITR) mediates inflammatory activation of macrophages that can destabilize atherosclerotic plaques[J]. Immunology,2006, 119(3):421-429.
    [126]Bae E, Kim W J, Kang Y M, et al. Glucocorticoid-induced tumour necrosis factor receptor-related protein-mediated macrophage stimulation may induce cellular adhesion and cytokine expression in rheumatoid arthritis[J]. Clin Exp Immunol,2007, 148(3):410-418.
    [127]Nocentini G, Bartoli A, Ronchetti S, et al. Gene structure and chromosomal assignment of mouse GITR, a member of the tumor necrosis factor/nerve growth factor receptor family[J]. DNA Cell Biol,2000,19(4):205-217.
    [128]Nocentini G, Ronchetti S, Bartoli A, et al. Identification of three novel mRNA splice variants of GITR[J]. Cell Death Differ,2000,7(4):408-410.
    [129]Kanamaru F, Youngnak P, Hashiguchi M, et al. Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells[J]. J Immunol,2004,172(12):7306-7314.
    [130]Kim J D, Choi B K, Bae J S, et al. Cloning and characterization of GITR ligand[J]. Genes Immun,2003,4(8):564-569.
    [131]Shin H H, Kim S J, Lee D S, et al. Soluble glucocorticoid-induced tumor necrosis factor receptor (sGITR) stimulates osteoclast differentiation in response to receptor activator of NF-kappaB ligand (RANKL) in osteoclast cells[J]. Bone,2005, 36(5):832-839.
    [132]Tone M, Tone Y, Adams E, et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells[J]. Proc Natl Acad Sci U S A,2003,100(25):15059-15064.
    [133]Nardelli B, Zaritskaya L, McAuliffe W, et al. Osteostat/tumor necrosis factor superfamily 18 inhibits osteoclastogenesis and is selectively expressed by vascular endothelial cells[J]. Endocrinology,2006,147(1):70-78.
    [134]Ronchetti S, Zollo O, Bruscoli S, et al. GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations[J]. Eur J Immunol,2004,34(3):613-622.
    [135]Nocentini G, Riccardi C. GITR:a modulator of immune response and inflammation[J]. Adv Exp Med Biol,2009,647:156-173.
    [136]Igarashi H, Cao Y, Iwai H, et al. GITR ligand-costimulation activates effector and regulatory functions of CD4+ T cells[J]. Biochem Biophys Res Commun,2008, 369(4):1134-1138.
    [137]Cohen A D, Schaer D A, Liu C, et al. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation[J]. PLoS One,2010,5(5):e10436.
    [138]Shevach E M, Stephens G L. The GITR-GITRL interaction:co-stimulation or contrasuppression of regulatory activity? [J]. Nat Rev Immunol,2006,6(8):613-618.
    [139]van Olffen R W, Koning N, van Gisbergen K P, et al. GITR triggering induces expansion of both effector and regulatory CD4+ T cells in vivo[J]. J Immunol, 2009,182(12):7490-7500.
    [140]Morris G P, Kong Y C. Interference with CD4+CD25+ T-cell-mediated tolerance to experimental autoimmune thyroiditis by glucocorticoid-induced tumor necrosis factor receptor monoclonal antibody[J]. J Autoimmun,2006,26(1):24-31.
    [141]Kohm A P, Williams J S, Miller S D. Cutting edge:ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis[J]. J Immunol,2004,172(8): 4686-4690.
    [142]Cuzzocrea S, Ayroldi E, Di Paola R, et al. Role of glucocorticoid-induced TNF receptor family gene (GITR) in collagen-induced arthritis[J]. FASEB J,2005, 19(10):1253-1265.
    [143]Liu Y Y, Chang L L, Li Z G. [GITR/GITRL expression in peripheral blood of rheumatoid arthritis][J]. Beijing Da Xue Xue Bao,2007,39(2):163-166.
    [144]Gu L, Xu L, Zhang X, et al. Correlation of circulating glucocorticoid-induced TNFR-related protein ligand levels with disease activity in patients with systemic lupus erythematosus[J]. Clin Dev Immunol,2012,2012:265868.
    [145]Gan X, Feng X, Gu L, et al. Correlation of increased blood levels of GITR and GITRL with disease severity in patients with primary Sjogren's syndrome[J]. Clin Dev Immunol,2013,2013:340751.
    [146]Bushati N, Cohen S M. microRNA functions[J]. Annu Rev Cell Dev Biol, 2007,23:175-205.
    [147]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5): 843-854.
    [148]Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403(6772): 901-906.
    [149]Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA[J]. Nature,2000, 408(6808):86-89.
    [150]Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005,120(1):15-20.
    [151]Baumjohann D, Ansel K M. MicroRNA-mediated regulation of T helper cell differentiation and plasticity[J]. Nat Rev Immunol,2013,13(9):666-678.
    [152]Fontana L, Pelosi E, Greco P, et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation[J]. Nat Cell Biol,2007,9(7):775-787.
    [153]Pulikkan J A, Dengler V, Peramangalam P S, et al. Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia[J]. Blood,2010,115(9):1768-1778.
    [154]Johnnidis J B, Harris M H, Wheeler R T, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223[J]. Nature,2008,451(7182): 1125-1129.
    [155]Xiao C, Calado D P, Galler G, et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb[J]. Cell,2007,131(1):146-159.
    [156]Xiao C, Srinivasan L, Calado D P, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes [J]. Nat Immunol,2008,9(4):405-414.
    [157]Weaver C T, Elson C O, Fouser L A, et al. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin[J]. Annu Rev Pathol,2013,8: 477-512.
    [158]O'Connell R M, Kahn D, Gibson W S, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development[J]. Immunity,2010,33(4):607-619.
    [159]Tang Y, Luo X, Cui H, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins[J]. Arthritis Rheum,2009,60(4):1065-1075.
    [160]Luo X, Zhang L, Li M, et al. The role of miR-125b in T lymphocytes in the pathogenesis of systemic lupus erythematosus[J]. Clin Exp Rheumatol,2013,31(2): 263-271.
    [161]Li Y, Sun L D, Lu W S, et al. Expression analysis of ETS1 gene in peripheral blood mononuclear cells with systemic lupus erythematosus by real-time reverse transcription PCR[J]. Chin Med J (Engl),2010,123(16):2287-2288.
    [162]Zhao X, Tang Y, Qu B, et al. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus[J]. Arthritis Rheum,2010,62(11):3425-3435.
    [163]Carlsen A L, Schetter A J, Nielsen C T, et al. Circulating microRNA expression profiles associated with systemic lupus erythematosus[J]. Arthritis Rheum, 2013,65(5):1324-1334.
    [164]Wang H, Peng W, Ouyang X, et al. Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus[J]. Transl Res,2012,160(3): 198-206.
    [165]Guan H, Fan D, Mrelashvili D, et al. MicroRNA let-7e is associated with the pathogenesis of experimental autoimmune encephalomyelitis[J]. Eur J Immunol,2013, 43(1):104-114.
    [166]Hanieh H, Alzahrani A. MicroRNA-132 suppresses autoimmune encephalomyelitis by inducing cholinergic anti-inflammation:a new Ahr-based exploration[J]. Eur J Immunol,2013,43(10):2771-2782.
    [167]Pauley K M, Satoh M, Chan A L, et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients[J]. Arthritis Res Ther,2008,10(4):R101.
    [168]Li J, Wan Y, Guo Q, et al. Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis[J]. Arthritis Res Ther,2010,12(3):R81.
    [169]Kurowska-Stolarska M, Alivernini S, Ballantine L E, et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis[J]. Proc Natl Acad Sci U S A,2011,108(27):11193-11198.
    [170]Long L, Yu P, Liu Y, et al. Upregulated microRNA-155 expression in peripheral blood mononuclear cells and fibroblast-like synoviocytes in rheumatoid arthritis[J]. Clin Dev Immunol,2013,2013:296139.
    [171]Liu R, Ma X, Xu L, et al. Differential microRNA expression in peripheral blood mononuclear cells from Graves' disease patients[J]. J Clin Endocrinol Metab, 2012,97(6):E968-972.
    [172]Bernecker C, Lenz L, Ostapczuk M S, et al. MicroRNAs miR-146a1, miR-155_2, and miR-200al are regulated in autoimmune thyroid diseases[J]. Thyroid, 2012,22(12):1294-1295.
    [173]Fujita-Sato S, Ito S, Isobe T, et al. Structural basis of digoxin that antagonizes RORgamma t receptor activity and suppresses Th17 cell differentiation and interleukin (IL)-17 production[J]. J Biol Chem,2011,286(36):31409-31417.
    [174]Nishihara M, Ogura H, Ueda N, et al. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state[J]. Int Immunol,2007,19(6):695-702.
    [175]Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12[J]. Immunity,2000,13(5):715-725.
    [176]Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbetal and a novel cytokine receptor subunit, IL-23R[J]. J Immunol,2002,168(11):5699-5708.
    [177]Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation[J]. J Clin Invest,2006,116(5):1218-1222.
    [178]McHugh R S, Whitters M J, Piccirillo C A, et al. CD4(+)CD25(+) immunoregulatory T cells:gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor[J]. Immunity,2002,16(2):311-323.
    [179]Seddiki N, Santner-Nanan B, Martinson J, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells[J]. J Exp Med,2006,203(7):1693-1700.
    [180]Bishu S, Su E W, Wilkerson E R, et al. Rheumatoid arthritis patients exhibit impaired Candida albicans-specific Thl7 responses [J]. Arthritis Res Ther,2014,16(1): R50.
    [181]Tang X, Tian X, Zhang Y, et al. Correlation between the frequency of Th17 cell and the expression of microRNA-206 in patients with dermatomyositis[J]. Clin Dev Immunol,2013,2013:345347.
    [182]Ponomarev E D, Veremeyko T, Barteneva N, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway[J]. Nat Med,2011,17(1):64-70.
    [183]Shyu A B, Wilkinson M F, van Hoof A. Messenger RNA regulation:to translate or to degrade [J]. EMBO J,2008,27(3):471-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700