用户名: 密码: 验证码:
三峡流域径流特性分析及预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水文系统是一个复杂的高度非线性系统,其中,径流的变化对整个系统的演化起主导作用,并会对资源环境和区域经济产生重大影响。由于受气象、自然地理、流域特性等多因素的综合影响,三峡流域径流的变化具有多种不确定性,表现出非线性、多时间尺度性和混沌等特性,而受流域水文过程观测资料的限制以及对水文过程认识程度的局限,目前还难以完全用数学和物理方法来准确地描述和刻画其完整的演化过程。以前主要用传统研究方法和手段或基于单个水文站来对流域径流的演化规律进行分析和预测,从线性角度或近似为线性问题去研究本质上是非线性的水文时空变化问题,这必将引发许多无法妥善解决的困难。为了摆脱这种困境,需要不断将新的理论和方法引入到水科学研究中,通过各种方法的有机结合,从流域可变时空尺度的角度来对系统进行分析和研究。
     在总结吸收前人研究成果的基础上,本文运用小波、混沌、支持向量机等现代分析及预测理论,并结合传统的理论分析方法,对三峡流域径流的周期、趋势、相关性和混沌性等演化特性进行了深入研究,在此基础上建立了基于小波分析和支持向量回归的径流多尺度耦合预测模型,构建了一种中长期径流区间预测的混沌时间序列方法。研究成果已成功应用到三峡梯调工程实践,为今后长江上游水资源管理的政策制定者、研究人员以及公众提供了未来径流变化的背景。概括起来,研究工作取得了以下主要成果:
     通过小波分析,揭示三峡流域径流系统的周期演化规律和趋势变化特征,发现三峡流域年平均径流在长期的变化中主要存在30年左右的长周期变化,12~18年左右的年代周期变化和3~8年的年际周期变化特点,且总体呈现越来越明显的减少趋势。它们主导着年平均径流长期变化的特性。另外,时间尺度不同,径流处的丰枯阶段不同,从各个站年平均径流变化的主周期来看,2006年后寸滩站处于丰水期,万县站和宜昌站分别在在2003年和2004年后处于枯水期。
     考虑到噪声对径流分析的影响以及传统消噪技术在对径流消噪处理中存在的不足,本文引入小波理论对三峡流域径流进行了消噪处理。通过对消噪前后三峡流域各站的年径流变化过程进行相关性分析,研究其时间序列自身的相关性随时间的推移而变化的特征。结果表明,三峡流域各站年径流时间序列自相关性在长期的变化过程中均不明显,但消噪后都凸显出一定的自相关性,并且随着时移的增加呈波动减弱。
     针对三峡流域径流系统的变化存在多时间尺度结构和局部化的特点,本文利用小波方法对各站径流时间序列进行了分解,运用互相关分析方法揭示了在不同的尺度下各站径流时间序列之间的相互关系,并对其相关性进行了检验。结果显示,在不同时间尺度下,三峡流域任意两个站点年径流时间序列的互相关性表现差别较大,主要是随着时移改变表现出明显的正或负的互相关性。就总体而言,序列之间互相关性随时间尺度的增大而增强,随时移的扩大而减弱或出现较大负相关。
     通过重建三峡流域径流动力系统相空间并进行系统混沌特性辨识,发现各站的最大Lyapunov指数均大于零,表明三峡流域的径流序列具有混沌特性。该结论经饱和关联维数法和Cao方法得到了进一步证实。此外,还发现各站径流时间序列的状态空间维数沿程逐渐增大,对应的饱和关联维数也沿程呈增大趋势。这说明受区间来水和水库调节的影响,三峡流域沿程径流组合的特性越来越复杂。
     将不确定性和确定性的分析方法有机的结合起来,扬长避短,是目前建立水文分析与预测模型发展的一种趋势。本文将多尺度分析理论中的Daubechies小波和Mallat算法与支持向量回归建模方法相结合,建立了径流序列的多尺度耦合预测模型,并通过实验证明,与传统的单一统计建模方法相比,耦合模型预测精度高,能较好的反映径流时间序列变化的规律,且概念清晰,结构严谨,具有一定的可操作性,为研究水文水资源时间序列的演变规律提供了一条新的途径。
     根据径流变化的混沌特性,同时为了避免混沌预测方法中存在的延迟时间、嵌入维数以及相似数据提取方法等多种不确定因素带来的误差,从区间预测的角度提出了一种中长期径流区间预测的混沌时间序列方法。为此,首先对径流时间序列进行相空间重构,并在相空间中通过聚类算法寻找当前时刻相点的相似状态,根据其预测结果来确定未来径流的取值区间,最后通过实验研究,验证了该方法的有效性和可行性。
Water resources system and hydro-environment is a nonlinear energy-system with vast, complicated, dynamic characteristics, in which the variance of runoff is taken as its main factor, for its changes dominants the whole system's changing trend , and may greatly affect the resources, environment and regional economy. Due to the impacts caused by many factors such as climate, geography, characteristic of the basins, the changing trend of flow in Three Gorges Region takes on a great deal of uncertainty featuring nonlinear, multi-timescale and chaos. In addition, there still exist many limits that the hydrology process is not clear and the datum which affect the hydrology process are inadequate. Therefore, mathematics physics method has difficulty in clearly describing each hydrology process till now. In the past, researchers mainly studied the evolvement characteristic of the runoff using the traditional method or based on a single hydrology station and then make analysis and forecast, however, they're hard to obtain satisfactory results and also facing many difficulties. To get rid of this problem, new theories and methods are needed to be continuously introduced to the researches on water resource, besides, various methods can be properly combined to research on the whole basin systematically.
     We sum up the advantages the preceding results, on this basis, modern new theories, such as wavelet transformation, chaos and support vector machine, and their combination with traditional methods are introduced to make a profound study on the long-term variant characteristic of runoff of Three Gorges, such as period, trend, relativity and chaos etc. Based on the analysis above, a new mufti-time-scale hybrid model for runoff series prediction is proposed with the support vector machine and wavelet, and then the runoff interval forecast models and its solving methods are studied by using clustering algorithm and chaotic time series method. The results provide the future annual runoff process for the water resources policy makers, researchers and the public. Generally speaking, we conclude the following primary findings:
     Through wavelet transform, we made an analysis on the characteristic of period and its changing trend using the natural annual runoff time series in the Three Gorges basin in mufti-time scales. The results demonstrated that the annual runoff time series has a period of about 30 years' in long term variety, a middle-term period of 12~18 years and a short term period of 3~8 years, and has a more and more obvious decreasing tendency on the whole. In addition, the flood and dry periods of annual runoff differ with different scales. Seen from the first main period of each station, it's found that Cuntan station enters flood season after 2006, Wanxian station, Yichang Station enter dry season after 2003 and 2004, respectively.
     Considering the influence of noise and the disadvantages of traditional noise eliminating technologies erenow, the wavelet theory is applied, which not only de-noises well, but also retains the effective composition in the original signal. Based on the correlation analysis of the natural annual runoff time series and the processed series in the Three Gorges basin, the characteristic of self correlation which change with time are probed. In the long-term change, natural runoff time serial itself have no self correlation in the Three Gorges basin; but after wavelet de-noising, runoff time serial of there have certain characteristic of self correlation, which turns smaller as the time increases.
     Considering that the variety of the hydropower and water resource system in time domain has a multi-layer structure and characteristic of locality, we make time series decomposition using velvet transforming method in different time scales and analyses their mutual correlation with mutual correlation analysis method and verifies its correctness. The result demonstrated that the mutual correlations of annual runoff time serials in any two stations between Cuntan station, Wanxian station and Yichang station were totally different in different time scales, which manifested a correlation, or negative, or independent, with positive as its main trend with the changing of the dimension. With the increase of the dimension, the mutual correlation strengthens continuously, but weakens or it appears a great negative correlation as the time increases.
     Based on the reconstruction of the phase space of runoff for the Three Gorges basin, it is found that the maximum Lyapunov exponent of each station's runoff serial are larger than zero, which means that the runoff of each station has chaos characteristic, and it has been further verified by saturated correlation dimension method and Cao method. In addition, it is also found that the saturation correlation dimension turns larger from upper stream to downstream, which is caused because of the joining of branches, the section raining along the river and the regulation of reservoir.
     In building a hybrid water resources model, there is a trend to combine certain and uncertain analysis methods probably in recent times. We proposed a new hybrid time serial wavelet prediction model ,which combines the Daubechies's wavelet in the multi time scales theory, and the Mallat's algorithm with support vector machine with the traditional support vector machine(SVM) modeling method. Compared to the traditional methods based on support vector machine and chaos model, the hybrid model has a higher prediction precision and can better reflect the changing characteristic of runoff, as well as having advantages of clear concept, integrated structure, easy operated, thus make it a effective approach to study the evolving principle of the runoff time series. The results have shown that the new model is meaningful and feasible.
     In order to avoid the error caused by several uncertain factors such as embedding dimension, time delay and similar states extracted method, we proposed a chaotic time series method for long-term runoff interval forecasting based on the chaotic characteristic of runoff. First, the phase space of runoff time series is reconstructed and similar states of current phase point are searched by the clustering algorithm, based on which the interval values of the future are determined. Finally, we verified its feasibility and effectiveness by applying it to monthly runoff forecasting.
引文
[1] 许全喜,石国钰,陈泽力.长江上游近期水沙变化特点及其趋势分析.水科学进展,2004,15(4):421-426.
    [2] 府仁寿,虞志英,金缪,等.长江水沙变化发展趋势.水利学报,2003,(11):21-29.
    [3] 袁晶,张小峰.宜昌站洪水过程BP网络预测模型研究.人民长江,2003,34(2):10-11.
    [4] 王文圣,丁晶.水文序列周期成分和突变特征识别的小波分析法.工程勘察,2003,(1):31-35.
    [5] 张信宝,文安邦.长江上游干流和支流河流泥沙近期变化及其原因.水利学报,2002,(4):56-59.
    [6] 朱勇华,张军,郭海晋.嘉陵江北碚站含沙量变化趋势的神经网络模型分析.武汉水利电力大学学报,1999,32(6):37-40.
    [7] 景元书,缪启龙,杨文刚.气候变化对长江干流区径流量的影响.长江流域资源与环境,1998,7(4):338-340.
    [8] 王德瀚.长江宜昌站枯季径流长期变化的分析.科技通报,1994,10(3):153-155.
    [9] 丁晶,黄伟军,邓育人.水文水资源人工神经网络模型的研究.水资源研究,1996,17(1):22-25.
    [10] Mallat S. A Wavelet Tour of Signal Processing (Second Edition). New York:Academic Press, 1999.
    [11] 王文圣,丁晶,李跃清.水文小波分析.北京:化学工业出版社,2005.
    [12] 彭玉华.小波变换与工程应用.北京:科学出版社,2002.
    [13] 王文圣,丁晶,向红莲.小波分析在水文中的应用研究与展望.水科学进展,2002,13(4):515-520.
    [14] 张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998.
    [15] Morlet J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory and complex waves. Geophysics, 1982, 47(2): 222-236.
    [16] Daubechies I. Orthonormal bases of compactly supported wavelets.Communications on pure and applied mathematics, 1988, 41(7): 909-996.
    [17] Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE transactions on information theory, 1990, 36(5): 961-1005.
    [18] Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE transactions on pattern analysis and machine, 1989, 11(7):674-693.
    [19] Mallat S. Multifrequency channel decompositions of images and wavelet models.IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(12):2091-2110.
    [20] 林振山,邓自旺.子波气候诊断技术的研究.北京:气象出版社,1999.
    [21] Wang W S, Ding J. Wavelet network model and its application to the prediction of hydrology. Nature and Science, 2003, 1(1):66-70.
    [22] 杨福生.小波变换的工程分析与应用.北京:科学出版社,2003.
    [23] Coulibaly P, Burn D H. Wavelet analysis of variability in annual Canadian streamflows. Water Resources Research, 2004, 40:1-14.
    [24] Labat D, Ababou R, Mangin A. Rainfall-runoff relations for karstic springs. Part Ⅱ:continuous wavelet and discrete orthogonal multiresolution analyses. Journal of Hydrology, 2000, 238: 149-178.
    [25] Kumar P, Foufoula-Georgiou E. A Multicomponent Decomposition of Spatial Rainfall Fields 1. Segregation of Large- and Small-Scale Features Using Wavelet Transforms. Water Resources Research. 1993, 29(8): 2515-2532.
    [26] Venugopal V, Foufoula-Georgiou E. Energy decomposition of rainfall in the time-frequency-scale domain using wavelet packets. Journal of Hydrology, 1996, (187): 3-27.
    [27] 郑昱,张闻胜.基于小波变换的水文序列的近似周期检测法.水文,1999,(6): 22-25.
    [28] 薛小杰,蒋晓辉,黄强,等.小波分析在水文序列趋势分析中的应用.应用科学学报,2002,20(4):426-428.
    [29] 丁晶,王文圣,衡彤.降水量时间序列变化的小波特征.长江流域资源与环境,2002,11(5):466-470.
    [30] 王文圣,熊华康,丁晶.日流量预测的小波网络模型初探.水科学进展,2004,15(3):382-386.
    [31] Lorenz E N. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences,1963, 20: 130-141.
    [32] Packard N H, Crutchfield J, Farmer J D, et al. Geometry from a time series.Physical Review Letter, 1980, 45: 712-716.
    [33] Takens F. Detecting strange attractors in turbulence. Lecture Notes in Mathematics,1980, 898: 366-381.
    [34] Grassberger P, Pocaccia I. Measuring the strangeness of strange attractors. Physica D, 1983, 9: 189-208.
    [35] Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series. Physica D, 1985, 16: 285-317.
    [36] Hense A. On the possible existence of a strange attractor for the southern oscillation. Beitr(a|¨)ge zur Physik der Atmosph(a|¨)re, 1987, 60(1): 34-47.
    [37] Wilcox B P, Seyfried M S, Matison T H. Searching for chaotic dynamics in snowmelt runoff. Water Resources Research, 1991, 27(6): 1005-1010.
    [38]丁晶,邓育仁,傅军.探索水文现象变化的新途径--混沌分析.水利学报,1997(增刊):242-246.
    [39] 丁晶.洪水混沌分析.水资源研究,1992,13(3):14-18.
    [40] 王文均,叶敏,陈显维.长江径流时间序列混沌特性的定量分析.水科学进展,1994,5(2):87-94.
    [41] 傅军,丁晶,邓育仁.洪水混沌特性初步研究.水科学进展,1996,7(3):226-230.
    [42] 权先璋,温权.混沌预测技术在径流预报中的应用.华中理工大学学报,1999,27(12):41-43.
    [43] 李眉眉,丁晶,王文圣.基于混沌理论的径流降尺度分析.四川大学学报(工程科学版),2004,36(3):14-19.
    [44] Mitchell T M.曾华军,张银奎等译.机器学习.北京:机械工业出版社,2003.
    [45] Vapnik V N. The Nature of Statistical Learning Theory (First Edition). New York:Springer-Verlag, 1995.
    [46] Vapnik V N. Statistical Learning Theory. New York: Wiley-Interscience, 1998.
    [47] 邓乃扬,田英杰.数据挖掘中的新方法--支持向量机.北京:科学出版社,2004.
    [48] Vapnik V N, Chervonenkis A Y. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 1971, 16(2): 264-280.
    [49] Vapnik V N. Estimation of Dependences Based on Empirical Data. New York:Springer-Verlag, 1982.
    [50] Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers. Fifth Annual Workshop on Computational Learning Theory. Pittsburgh:ACM Press, 1992: 144-152.
    [51] Cortes C, Vapnik V N. The Soft Margin Classifier. Technical memorandum 11359-931209-18TM. AT&T Bell Labs, 1993.
    [52] Smola A, Sch(o|¨)lkopf B, M(u|¨)ller K R. General Cost Functions for Support Vector Regression. Proceedings of the 8th International Conference on Artificial Neural Networks, 1998: 79-83.
    [53] Weston J. Leave-One-Out Support Vector Machines. International Joint Conference on Artificial Intelligence, 1999:727-731.
    [54] Anthony M, Bartlett P. Neural Network Learning: Theoretical Foundations.Cambridge: Cambridge University Press, 1999.
    [55] Shawe-Taylor J, Cristianini N. Margin Distribution and Soft Margin. Advances in Large Margin Classifiers. Cambridge: MIT Press, 2000: 349-358.
    [56] Joachims T. Making Large Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning. Cambridge: MIT Press, 1999: 201-210.
    [57] Chang C C, Hsu C W, Lin C J. The analysis of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 2000, 11: 1003-1008.
    [58] Platt J C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods - Support Vector Learning. Cambridge: MIT Press, 1999: 185-208.
    [59] Keerthi S S, Shevade S K, Bhattacharyya C, et al. Improvements to Platt's SMO Algorithm for SVM Classifier Design. Neural Computation, 2001, 13(3): 637-649.
    [60] Suykens J A K, Vandewalle J. Least squares support vector machines. Neural Processing Letters, 1999, 9(3): 293-300.
    [61] Mangasarian O L. Generalized support vector machines. Advances in Large Margin Classifiers. Cambridge: MIT Press, 2000: 135-146.
    [62] Hsu C W, Lin C J. A Simple Decomposition Method for Support Vector Machines. Machine Learning, 2002, 46: 291-314.
    [63] Scholkopf B, Mika S, Burges C J C, et al. Input Space Versus Feature Space in Kernel-Based Methods. IEEE transactions on neural networks, 1999, 10(5):1000-1017.
    [64] Muller K R, Mika S, Ratsch G, et al. An Introduction to Kernel-Based Learning Algorithms. IEEE transactions on neural networks, 2001, 12(2): 181-201.
    [65] Kwok J T Y. Moderating the Outputs of Support Vector Machine Classifiers. IEEE transactions on neural networks, 1999, 10(5): 1018-1031.
    [66] Kwok J T Y. The Evidence Framework Applied to Support Vector Machines. IEEE transactions on neural networks, 1999, 10(5): 1162-1173.
    [67] Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995, 20: 273-297.
    [68] Vapnik V N, Golowich S, Smola A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 1997: 281-287.
    [69] Sch(o|¨)lkopf B, Smola A, Williamson R C, et al. New Support vector algorithms.Neural Computation, 2000, 12(5): 1207-1245.
    [70] Chang C C, Lin C J. Training v-support vector classifiers: theory and algorithms.Neural Computation, 2001, 13(9): 2119-2147.
    [71] Smola A, Sch(o|¨)lkopf B. On a kernel-based method for pattern recognition,regression, approximation, and operator inversion. Algorithmica, 1998, 22:211-231
    [72] 刘昌明,陈昌明,陈志凯.中国水资源现状评价和供需发展趋势分析.北京:水利水电出版社,2001.
    [73] 钱正英,张光斗.中国可持续发展水资源战略研究综合报告及专题报告.北京:水利水电出版社,2001.
    [74] 胡昌华,张军波,夏军,张伟.基于MATLAB的系统分析与设计--小波分析.西安:西安电子科技大学出版社,2000.
    [75] 丁晶,袁鹏,杨荣富,等.中国主要河流干旱特性的统计分析.地理学报,1997,52(4):374-381.
    [76] 朱廷举,胡和平.基于随机模拟和模糊聚类的水文干旱特性分析.清华大学学报:自然科学版,2001,41(8):103-106.
    [77] 张学成,丁晶.多元平稳随机过程游程计算方法的探讨及其应用.水科学进展,1996,7(3):231-238.
    [78] 赵永龙,丁晶,邓育人.相空间网络模型及其在水文中长期预测中的应用.水科学进展,1998,9(3):252-257.
    [79] 李贤彬,丁晶,等.水文时间序列分析的子波分析法.水科学进展,1999,10(2):144-149.
    [80] 李柞泳.水文水资源及水环境分析的若干进展.四川大学学报(工程科学版),2002,34(2):1-4.
    [81] 王红瑞,叶乐天,刘昌明,等.水文序列小波周期分析中存在的问题及改进方式.自然科学进展,2006,16(8):1002-1008.
    [82] 蒋晓辉,刘昌明,黄强.黄河上中游天然径流多时间尺度变化及动因分析.自然资源学报,2003,18(2):142-147.
    [83] 王文圣,丁晶,衡彤.长江宜昌年最大洪峰周期分析和长期预报研究.四川大学学报(工程科学版),2003,35(1):20-23.
    [84] 衡彤,王文圣,丁晶.降水时间序列的小波特征.长江流域资源与环境,2001,19(6):466-470.
    [85] Daubechies I. Ten Lectures on Wavelets. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1992.
    [86] 孙延奎.小波分析及其应用.北京:机械工业出版社,2005.
    [87] Percival D B, Andrew T W. Wavelet methods for time series analysis. Cambridge:Press of the University of Cambridge, 2000.
    [88] 冯象初,甘小冰,宋国乡.数值泛函与小波理论.西安电子科技大学出版社,2003.
    [89] Charles K C, Montefusco L, Puccio L. Wavelets: theory, algorithms, and applications. San Diego: Academic Press, 1994.
    [90] 刘素一,权先璋,张勇传.不同小波函数对径流分析结果的影响.水电能源科学,2003,21(1):29-31.
    [91] Bradshaw G A, Mcintosh B A. Detecting climate-induced patterns using wavelet analysis. Environmental Pollution, 1994, 83:135-142.
    [92] 李金平.应用数里统计.郑州:河南大学出版社,1992.
    [93] 陈湛匀.新编统计学--描述与推断.上海:上海科学技术文献出版社,1994.
    [94] 王惠文.偏最小二乘回归方法及其应用.北京:国防工业出版社,1999.
    [95] 刘光祖.概率论与应用数理统计.北京:高等教育出版社,2002.
    [96] Sivakumar B. Chaos theory in hydrology: important issues and interpretations.Journal of Hydrology, 2000, 227(4): 1-20.
    [97] Chui C K. An introduction to Wavelets. London: Academic Press Limited, 1991.
    [98] 项静怡,史久恩,杜金观,等.动态和静态数据处理.北京:气象出版社,1991.
    [99] 丁晶,刘权授.随机水文学.北京:水利水电出版社,1997.
    [100] 丁晶,邓育仁.随机水文学.成都:成都科技大学,1988.
    [101] Fisher R A. Statistical Methods for Research Workers. Olver and Bovd, 1954.
    [102] Brito N S P, Souza B A, Pires F A C. Daubechies wavelets in quality of electrical power[C]// The International Conference on Harmonies and Quality of Power.Piscataway: IEEE, 1998: 511-515.
    [103] 吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002.
    [104] 盛昭瀚,马军海.非线性动力系统分析引论.北京:科学出版社,2001.
    [105] 陈士华,陆君安.混沌动力学初步.武汉:武汉水利电力大学社,1998.
    [106] Takens F. Determining strange attractors in turbulence, Lecture notes in Math, 1981,898: 361-381.
    [107] 林嘉宇,王跃科,黄芝平.语音信号相空间重构中的时间延迟的选择--复自相关法.信号处理,1999,15(3):220-225.
    [108] 刘延柱,陈立群.非线性动力学.上海:上海交通大学出版社,2000.
    [109] Abarbanel H D I, Kennel M B. Local false nearest neighbors and dynamical dimensions from observed chaotic data. Physical Review E, 1993, 47: 3057-3068.
    [110] 王海燕,盛昭瀚.混沌时间序列相空间重构参数的选取方法.东南大学学报(自然科学版),2000,30(5):113-117.
    [111] Cao L. Practical method for determining the minimum embedding Dimension of a scalar time series. Physica D, 1997, 110: 43-50.
    [112] Rosenstein M T, Collins J J and Luca C J De. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 1993, 65:117-134.
    [113] 丁晶,王文圣,赵永龙.长江日流量混沌变化特性研究Ⅰ--相空间嵌入滞时的确定.水科学进展,2003,14(4):407-412.
    [114] 丁晶,王文圣,赵永龙.长江日流量混沌变化特性研究Ⅱ--相空间嵌入维数的确定.水科学进展,2003,14(4):412-417.
    [115] 周伟达,张莉,焦李成.一种改进的推广能力衡量准则.计算机学报,2003,26(5):598-604
    [116] Vapnik V N. An Overview of Statistical Learning Theory. IEEE trans. Neural Networks, 1999, 10(5): 988-999.
    [117] 边肇祺,张学工,等.模式识别(第2版).北京:清华大学出版社,2000.
    [118] Vapnik V N. The Nature of Statistical Learning Theory (Second Edition). New York: Springer-Verlag, 2000.
    [119] 张学工.关于统计学习理论和支持向量机.自动化学报,2000,26(1):32-34.
    [120] 高隽.人工神经网络原理及仿真实例(第1版).北京:机械工业出版社,2003.
    [121] Smola A J, Sch(o|¨)lkopf B. A tutorial on support vector regression. Statistics and Computing, 2004, 14:199-222.
    [122] Tay F E H, Cao L J. Application of Support Vector Machines in Financial Time Series Forecasting. Omega, 2001, 29:309-317.
    [123] 占勇,丁屹峰,程浩忠,等.电力系统谐波分析的稳健支持向量机方法研究.中国电机工程学报,2004,24(12):43-47.
    [124] Mangasarian O L, Musicant, D R. Lagrangian support vector machine. Journal of Machine Learning Research, 2001, 1(1): 161-177.
    [125] 张芬,陶亮.一种改进的SVM回归估计算法.计算机技术与发展,2008,18(9):57-59,63.
    [126] 周志华.神经网络的学习方法,清华大学出版社,2000.
    [127] Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report international Computer Science Institute, Berkley, 1995.
    [128] Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over Continuous Spaces. Journal of Global optimization, 1997, 11(4):341-359.
    [129] Onwubolu G C, Babu B V. New Optimization Techniques in Engineering. Berlin,Germany: Springer-Verlag, 2004.
    [130] 杨启文,蒋静坪,曲朝霞,等.应用逻辑操作改善遗传算法性能.控制与决策,2000,15(4):510-512.
    [131] Lopez Cruz I L, Van Willigenburg L G, Van Straten G. Efficient differential evolution algorithm for multimodal optimal control problem. Application Soft Computing Journal, 2003, 3(2): 97-122.
    [132] Abbasss H A. The self-adaptive pareto differential evolution algorithmiC]//Proceedings of the IEEE 2002 Congress on Evolutionary Computation. Honolulu.Hawaii: IEEE Press. 2002:831-836.
    [133] Kenneth P, Rainer M, Jouni AL. Differential evolution:A practical approach to global optimization (Natural Computing Series). Berlin: Springer, 2004.
    [134] Wang W J, Xu Z B, Lu W Z. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing, 2003, 55(6):643-663.
    [135] Kwok J T, Tsang I W. Linear dependency between and the input noise in support vector regression. IEEE Transaction on Neural Networks, 2003, 14(3): 544-553.
    [136] Lall U, Sangoyomi T, Abarbanel H D I. Nonlinear dynamics of the Great Salt Lake:nonparametric short-term forecasting. Water Resources Research, 1996, 32(4):975-985.
    [137] Sivakumar B, Jayawardena A W, Fernando T. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology, 2002, (265): 225-245.
    [138] Islam M N, Sivakumar B. Characterization and prediction of runoff dynamics: a nonlinear dynamical view. Advances in water resources, 2002, (25): 179-190.
    [139] Jayawardena A W, Li W K, Xu P. Neighbourhood selection for local modelling and prediction of hydrological time series. Journal of Hydrology, 2002, (258): 40-57.
    [140] 叶中行,龙如军.混沌时间序列的区间预测.上海交通大学学报,1997,31(2):7-12.
    [141] 丁涛,周惠成,黄健辉.混沌水文时间序列区间预测研究.水利学报,2004,(12):15-20.
    [142] 韩敏.混沌时间序列预测理论与方法.北京:中国水利水电出版社,2007.
    [143] 毛国君,段立娟,王实,等.数据挖掘原理与算法.北京:清华大学出版社,2005.
    [144] 蒋传文,袁智强,侯志俭,等.高嵌入维混沌负荷序列预测方法研究.电网技术,2004,28(3):25-28.
    [145] Wang W N, Zhang Y J. On fuzzy cluster validity indices. Fuzzy Sets and Systems,2007, 158(19): 2095-2117.
    [146] Kim D W, Lee K H, Lee D. On cluster validity index for estimation of the optimal number of fuzzy clusters. Pattern Recognition, 2004, 37(10): 2009-2025.
    [147] Wu K L, Yang M S. A cluster validity index for fuzzy clustering. Pattern Recognition Letters, 2005, 26(9): 1275-1291.
    [148] Pakhira M K, Bandyopadhyay S, Maulik U. Validity index for crisp and fuzzy clusters. Pattern Recognition, 2004, 37(3): 487-501.
    [149] Pakhira M K, Bandyopadhyay S, Maulik U. A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification. Fuzzy Sets and Systems, 2005, 155(2): 191-214.
    [150] Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model. IEEE Transaction on Fuzzy Systems, 1995, 3(3): 370-379.
    [151] Chiu S L. Fuzzy Model Identification Based on Cluster Estimation. Journal of Intelligent and Fuzzy Systems, 1994, 2(3): 267-278.
    [152] 宋清昆,郝敏.一种改进的模糊C均值聚类算法.哈尔滨理工大学学报,2007,12(4):8-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700