用户名: 密码: 验证码:
氨基酸与稀碱金属(铷、铯)离子在水溶液中相互作用的热力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水溶液中电解质与氨基酸之间的相互作用的研究对于探索蛋白质在生物体液中的水化、变性、折叠、伸展等行为,尤其是认识其稳定性规律具有重要意义。
     本文首先通过对不同温度下氯化铷、氯化铯在盐酸溶液中的相平衡关系的研究,提出了一种利用氯化氢盐析效应制备高纯氯化铷、氯化铯的方法及相应的工艺流程,并建立了一个以火焰原子吸收法检测纯化产品中碱金属杂质含量的分析体系。
     以制得的高纯氯化铷、氯化铯,探讨了铷、铯离子与氨基酸分子在水溶液中相互作用的热力学性质:
     (1)用微量量热计测定了298.15~313.15K时不同浓度的氯化铷、氯化铯溶液与不同浓度的氨基酸(甘氨酸、丙氨酸、丁氨酸)溶液的混合焓(Δ_(mix)H_m),氯化铷、氯化铯以及氨基酸溶液在纯水中的稀释焓[Δ_(dil)H_m(E)、Δ_(dil)H_m(A)],从而计算获得了氯化铷、氯化铯从纯水到氨基酸水溶液的迁移焓(A_(tr)H_m)。利用以上实验数据,根据McMillian-Mayer理论可以得到电解质(RbCl/CsCl)-氨基酸(甘氨酸、丙氨酸、丁氨酸)在水溶液中的焓相互作用参数h_(EA),并拟合出电解质-丙氨酸-水体系的h_(EA)随温度变化的关系式及偏摩尔热容的表达式。
     (2)设计了一个用两支离子选择性电极构成的无液体接界电池应用于电解质-水二元体系及电解质-氨基酸-水三元体系的电动势的测定。利用电动势数据分别获得了氨基酸和电解质在三元溶液中的活度系数,以及氯化铷、氯化铯与氨基酸分子在水溶液中相互作用的Gibbs自由能参数(g_(ES))和盐效应常数(K_s);并结合已获得的焓相互作用参数(h_(EA))得到熵相互作用参数(Ts_(EA))。
     (3)结果表明水溶液中氯化铷、氯化铯与氨基酸相互作用的焓参数(h_(EA))和盐效应常数(k_s)与氨基酸分子的碳原子数密切相关。对于相同电解质,焓相互作用参数(h_(EA))随碳原子数的增加而负值减小;对于相同的氨基酸,Gibbs自由能参数(g_(ES))、焓相互作用参数(h_(EA))及熵相互作用参数(Ts_(EA))都随电解质阳离子半径的增大呈现出一定的规律。本文运用Savage-Wood基团加合原理及静电相互作用和结构相互作用模型对这些规律进行了分析。
     (4)通过研究发现电解质(RbCl/CsCl)-丙氨酸-水体系的h_(EA)值随温度变
    
    化出现一个极值,而这个值所对应的温度接近人体的基础体温。
Studies on the interaction of Rb+/Cs+ with amino acid in aqueous solution is of importance to explore the folding, denaturation, hydration and stretch, especially the stabilization of protein in body fluid.
    In this paper, the phase equilibrium of RbCl/CsCl-HCl-H2O ternary solution was studied at different temperatures, and based on the results, a method for the preparation of high purity RbCl/CsCl was proposed, as well as the technics procedure. In the mean time, an analysis system for the determination of the alkali metal impurities in products by flame atomic absorption spectrometry was set up so as to monitor the quality of products. .
    Then these high purity Rb/Cs compounds were used to investigate the interaction between Rb+/Cs+ and the a-amino acid in water in this work.
    (1) Calorimetric technique was employed to determine the molar mixing enthalpies(mixHm) of aqueous electrolyte (RbCl/CsCl) solution with aqueous amino acid (glycine, alanine and aminobutyric acid) solution at different concentration from 298.15K to 313.15K, and the molar dilution enthalpies of electrolyte and amino acid in pure water [dilHm(E) and dilHm(A)]. Then the molar transfer enthalpies (trHm) of electrolyte from pure water to aqueous amino acid solutions can be calculated based on these experimental data. The enthalpic interaction parameters (hEA) between electrolyte and amino acid in water are evaluated in term of McMillan-Mayer theory, as well as the expression of dependence of isobaric capacity parameters (CP,EA.) on temperature in RbCl/CsCl-alanine acid-water system.
    (2) A non-liquid-junction electrochemical cell composed by two ion selectivity electrodes was designed to measure the electromotive force of electrolyte-water duality system and electrolyte-amino acid-water ternary system. Both the activity coefficient of electrolyte in amino acid aqueous solutions and those of amino acid in electrolyte aqueous solutions, Gibbs free energy interaction parameters (gES) and salting constant (kS) were obtained, and the entropic interaction parameters (TsEA) were calculated using hEA and gEs.
    (3) The experimental results show that the enthalpic parameters (hEA) and salting constant (ks) of RbCl/CsCl with amino acid in water have close relationship with the numbers of carbon atom in amino acid. As the same electrolyte concerned, the values of hEA become less negative with the numbers of carbon atom increasing, and as the same amino acid concerned, the values of gES ,hEA and TsEA indicate some regulation with the cation radii becoming bigger. These conclusions can be interpreted by Savage-Wood group additivity principle, electrostatic and structural interaction model.
    (4) The enthalpic interaction parameters of RbCl/CsCl-alanine acid-water system
    
    
    
    have an extremum at 298.15K. It is interesting that this temperature point is close to basic body temperature.
引文
[1] 张心宽,白同春,卢雁,李强,DMSO溶液中有机溶质与尿素、酰胺的Gibbs自由能相互作用参数,化学通报,1998,1,42-44.
    [2] 申丽,吕殿祯,邵长伟,杨家振,混合溶剂中氨基酸热力学性质的研究Ⅳ,278.15—318.15K下甘氨酸-乙醇-水体系,化学学报,1992,50,326-329.
    [3] B.G.Rafad, J.M.Leal, Solute-Solvent Interactions in Amide-Water Mixed Solvents, J.Phys.Chem.B, 1997, 101, 7991-7997.
    [4] A.Ben-Naim, Hydrophobic hydrophilic phenomena in biochemical processes, Biophysical Chemistry, 2003, 105, 183-193.
    [5] L.Streefland, M.J.Blandamer, J.B.F.N.Engberts, Pairwise gibbs energy interaction parameters for α-Amino acid-amide interactions in aqueous solution: a kinetic study, J.Am.Chem.Soc., 1996, 118(40), 9539-9544.
    [6] T.H.Lilley, The interplay between solution solution and solute-solute interaction in solutions containing amino acid, peptides and related species, Pure &Appl Chem, 1993, 65, 2551-2560.
    [7] K.L.Zhuo, J.J.Wang, H.Q.Wang, Activity coefficients for NaCl-monosaccharide (D-glucose, D-galactose, D-xylose, D-arabinose)-water systems at 298.15 K, Carbohydrate Research, 2000, 325, 46-55.
    [8] 王镜岩,朱圣庚,徐长法,《生物化学》,高等教育出版社,2002年9月.
    [9] T.H.Lilley, 《Biochemical Thermodynamics》, 2nd Ed., Jones M.N Chapter 1, Elserier, Amsterdam.
    [10] 蒋育澄,中国科学院青海盐湖所2003博士论文《稀碱金属(铷、铯)离子与多糖的模型分子在水溶液中的热力学研究》.
    [11] 秦俊法,铷的生物必需性及人体健康效应,广东微量元素科学,2000,7(8),13-18.
    [12] C.Jolicoeur, B.Reidl, D.Desrochers, et al., Solvation of amino acid residues in water and urea-water mixtures: volumes and heat capacities of 20 amino acids in water and 8 molar urea at 25℃, J.Solution Chem., 1986, 15(2), 109-127.
    [13] T.H.Lilley, 《The chemistry and biochemistry of the amino acid》, G.C.Barrett, Chapman and Hall, London, 1985, Chapter 21.
    [14] T.H.Lilley, R.H.Wood, Freezing temperatures of aqueous solutions containing formamide, acetamide, propionamide and N,N-dimethylformamide. Free energy of interaction between the CONH and CH_2 groups in dilute aqueous solutions,
    
    J.Chem.Soc.Faraday Trans.1., 1980, 76, 901-905.
    [15] B.Y.Okamoto, R.H.Wood, P.T.Thompson, Freezing points of aqueous alcohols. Free energy of interaction of the CHOH, CH_2, CONH and C-C functional groups in dilute aqueous solutions, J.Chem.Sco.Faraday Trans.1., 1978, 74, 1990-2007.
    [16] E.De.Valera, D.Feakins, W.E.Waghorne, Relationship between the enthalpy of transfer of a solute and the thermodynamic mixing functions of mixed solvents, J.Chem.Soc.Faraday Trans.1, 1983, 79, 1061-1071.
    [17] A.Ben-Naim, Y.Marcus, solvation thermodynamics of nonionic solutes, J.Chem.Phys., 1984, 81, 2016-2027.
    [18] A.Ben-Naim, Solvation of large molecules: Some exact results on the dependence on volume and surface area of the solute, Biophysical Chemistry, 1994, 51,203-216.
    [19] H.L.Friedman, C.V.Krishnan, Hydrophobic bonding in aqueous alcohols. Enthalpy measurements and model calculation, J.Solution Chem, 1973, 3(2~3), 119-203.
    [20] J.J.Kozak, W.S.Knight, W.Kauzman, Solute-solute interactions in aqueous solutions, J.Chem Phys, 1968, 48(2), 675-690.
    [21] R.S.Humphrey, G.R.Hedwig, I.D.Watson,et al., The partialmolar enthalpies in aqueous solution of some amino acids with polar and non-polar side chains, J.Chem.Thermody., 1980, 12, 595-560.
    [22] M.A.Gallardo, T.H.Lilley, H.Linisdell, et al., Aqueous solutions containing amino acids and peptides. Part 29. The enthalpies of dilution of some amino acids at 25℃, Thermochim Acta, 1993,223, 41-46.
    [23] D.Brouillette, G. Perron, J.E.Desnoyers, Effect of viscosity and volume on the specific conductivity of lithium salts in solvent mixtures, Electrochimica Acta, 1999, 44(26), 4721-4742.
    [24] R.B.Cassel, R.H.Wood, Interactions of aqueous electrolytes with nonelectrolytes. the enthalpy of dilution of urea and tert-butyl alcohol in salt solutions, J.Phys.Chem., 1974, 78, 2460-2465.
    [25] C.De.Visser, G.Perron, J.E.Desnoyers, Volumes and heat capacities of ternary aqueous systems at 25.degree.C. Mixtures of urea, tert-butyl alcohol, dimethylformamide, and water, J.Am.Chem.Sco.,1977,99(18),5894-5900.
    
    
    [26] G.Perron, L.Couture, D.Lambert, J.E.Desnoyers, Phase diagrams, molar volumes, heat capacities, conductivities and viscosities of some lithium salts in aprotic solvents, J. Electroanalytical Chem, 1993, 355(1-2), 277-296.
    [27] G.Perron, D.Joly, J.E.Desnoyers, L.Avedikian, J.P.Morel, Thermodynamics of the salting effect, free energies, enthalpies, entropies, heat capacities, and volumes of the ternary systems electrolyte-alcohol-water at 25℃, Can.J.Chem., 1978, 56, 5552-5560.
    [28] S.Andini, G.Castronuovo, V.Elia, et al, Hydrophobic interactions in the aqueous solutions of alkan-1,2-diols. Calorimetric and spectroscopic studies at 298.15 K, J.Chem.Soc.Faraday Trans.1, 1990, 86, 3567-3571.
    [29] X.T.Ren, Y.M.Ni, R.S.Lin, Enthalpies of dilution of glycine, 1-serine and 1-valine in mixtures of water and N,N-dimethylformamide at 295.15K, Thermochimica Acta., 2000, 348, 19-24.
    [30] J.E.Desnoyers, G.Perron, S.Leger, B.Y.Okamoto, J.Solution Chem., 1978, 7, 1965.
    [31] J.J.Wang, J.Fan, W.B.Liu, J.S.lu, "International symposium on modern chemistry", Zhengzhou, China, 1999, 202.
    [32] Y.Pointud, J.Juillard, J.P.Morel, L.Avedikian, Solute-solvent interactions in water tert-butylalcohol mixtures-Ⅳ, transfer free enthalpies of alkali metal chlorides from cationic glass electrodes measurements, Electrochim Acts., 1974, 19, 229-234.
    [33] L.Avedikian, G.perron, J.E.Desynoyers, J.Solution Chem., 1975, 4, 331.
    [34] G.Barone, G.Castronuovo, P.Del.Vechio, V.Elia, Interaction between small molecules of biological interest. Excess enthalpies of ternary solution of oligomers of glycine and isomeric pentoses in water at 25℃, J.Solution Chem., 1990, 19(1), 41-50.
    [35] C.Cascella, G.Castronuovo, V.Elia, et al., Hydrophobic interactions of alkanols. A calorimetric study in water at 298.15 K, J.Chem.Soc.Faraday Trans.1, 1990, 86, 85-88.
    [36] S.Andini, G.Castronuovo, V.Elia, et al, Hydrophobic interactions in the aqueous solutions of alkan-1,2-diols. Calorimetric and spectroscopic studies at 298.15K, J.Chem.Soc.Faraday Trans.1, 1990, 86, 3567-3571.
    [37] G.Castronuovo, R.P.Dario, C.D.Volpe, V.Elia, A model for the interaction
    
    between hydrophilic and hydrophobic solutes-aqueous solutions containing biuret or urea and hydroxylated substances, Thremochim. Acta, 1992; 206, 43-54.
    [38] G.castronuovo, R.P.Dario, V.Elia, The hydrophobic effect in aqueous solutions of positional isomers of alkan-n-ols: A calorimetric study at 298.15K, Thermochim Acta, 1991,181,305-313.
    [39] G.Castronuovo, R.P.Dario, C.D.Vople, et al., A model for the interaction between hydrophilic and hydrophobic solutes-aqueous solutions containing biuret or urea and hydroxylated substances, Thermochim Acta, 1992, 206, 43-54.
    [40] G.Barone, C.Giancola, Pure & Appl.Chem., 1990, 62, 57.
    [41] T.H.Lilley, Interaction in solutions. The interplay between solute solvation and solute-solute interaction, Pure & Appl.Chem., 1994, 66, 429-435.
    [42] J.J.Savage, R.H.Wood, Enthalpy of dilution of dilution of aqueous mixtures of amides, sugars, ethylene glycol, and prntaerythritol at 25℃: enthalpy of interaction of the hydrocarbon, amide, and hydroxyl functional group in dilute aqueous solution, J.Solution Chem., 1976, 5,733-750.
    [43] R.W.Gurney, Ionic Processes In Solution, Dover Publication Inc., NewYork, 1962.
    [44] C.De Visser, G.Perron, J.E.Desnoyers, Volumes and Heat Capacities of Ternary Aqueous Systems at 25"C. Mixtures of Urea, tert-Butyl Alcohol, Dimethyl-formamide, and Water, J.Am.Chem.Soc,, 1977, 99, 5894-5900.
    [45] K.G.Davis, T.H.Lilley, Aqueous solutions containing amino acids and peptides: Part 25. The enthalpy of interaction at 298.15K of glycine with potassium halides, Thermochimica Acta, 1986, 107, 267-276.
    [46] Y.Lu, W.Xie, Z.Lu, J.S.Lu, H.H.Wang, The enthalpic interaction parameters of glycine with sodium halides in water at 298.15K, Thermochimica Acta, 1995, 256, 261-270
    [47] Y Lu, T.Ch.Bai, W Xie, J.S.Lu, The enthalpic interaction of α-alanine with alkali metal halides in water at 298.15K, Thermochimica Acta, 1998, 319, 11-15.
    [48] Y.Lu, W.Xie, J.S.Lu, The enthalpic interaction parameters of α-aminobutyric acid and alkali metal halides in water at 298.15K, Thermochimica Acta, 2002,
    
    385, 1-4.
    [49] 卢雁,白同春,谢炜,卢锦梭,氨基酸与氯化碱金属盐的焓相互作用,河南师范大学学报(自然科学版),1999,27(4),1-1.
    [50] B.Palecz, Thermochemical properties of L-α-amino acids in electrolyte-water mixures, Fluid Phase Equilibria, 2000, 167, 253-261.
    [51] B.Plaecz, The enthalpies of interaction of glycine with some amides and ureas in water at 25℃, J.Solution Chem., 1995, 24(6), 537-550.
    [52] J.M.Blackburn, T.H.Lilley, Aqueous solutions containing amino acids and peptides. Part 21. The enthalpic coefficients at 298.15K for the interaction of N-acetyl-L-prolinam ide with some 2-(N-acetylamino)acyl amides, Thermochimica Acta., 1985, 83, 289-297.
    [53] K.Gekko, S.Koga, The stability of protein structure in aqueous propylene glycol: Amino acid solubility and preferential solvation of protein, Biochem. Biophys Acta(protein structure and molecular enzymology), 1984, 786, 151-160.
    [54] A.K.Chattopadhyay, S.C.Lahiri Studies on the solvation of amino acids in ethanol and water mixtures, Electrochimica Acta., 1982, 27, 269-272.
    [55] S.K.Chakravorty, S.K.Sarkar, S.C.Lahiri, The thermodynamics of ionization of α-alanine in methanol + water mixtures and the determination-of single ion thermodynamics, Thermochimica Acta., 1987, 114, 245-256.
    [56] S.K.Chakravarty, S.C.Lahiri, The thermodynamics of ionisation of glycine in methanol + water mixtures and the determination of single ion thermodynamics, Thermochimica Acta., 1986, 99, 243-251.
    [57] G.Castronuovo, V.Elia, C.Postiglione, et al., Interaction of amino acids in concentrated aqueous solutions of urea or ethanol. Implication for the mechanism of protein denaturation, Thermochimica acta, 1999, 339, 11-19.
    [58] 任小玲,林瑞森,胡新根,倪亚明,甘氨酸在DMF/水和乙醇/水混合溶剂中的焓对相互作用,化学学报,1999,57,875-880.
    [59] 任小玲,倪亚明,林瑞森,L-丝氨酸在乙醇-水混合溶剂中的稀释焓,物理化学学报,2000,16(2),166-169.
    [60] 邵爽,胡新根,林瑞森,水溶液中八种氨基酸与尿素的焓相互作用,化学学报,2000,58(10),1240-1246.
    [61] 邵爽,林瑞森,胡新根,方文军,应晓红,水溶液中氨基酸与甲脲的焓相
    
    互作用,物理化学学报,2001,17(7),645-650.
    [62] 邵爽,林瑞森,水溶液中氨基酸与二甲脲的混合焓及焓对相互作用,浙江大学学报(理学版),2001,28(3),269-275.
    [63] R.H.Wood, L.H.Hiltzik, J.Solution Chem., 1980, 9(1), 45.
    [64] M.Bloemendal, G.Somsen, A study of solute-solute interactions of amides dissolved in N-methylformamide by enthalpic interation coefficients. J.Solution Chem.,1988, 17(11), 1067-1079.
    [65] J.N.Spencer, S.K.Berger, C.R.Powell, et al., Amide interactions in aqueous and organic medium, J.Phys.Chem., 1981, 85,1236-1241.
    [66] I.M.Klotz, J.S.Franzen, Hydrogen Bonds between Model Peptide Groups in Solution, J.Am.Chem.Sco., 1962, 84, 3461-3641.
    [67] G.C.Kresheck, I.M.Klotz, The thermodynamics of transfer of amides from an apolar to an aqueous solution, Biochemistry, 1969, 8, 8-8.
    [68] G.carthy, D.Feakins, C.O.Duinn, et al., Enthalpies of transfer of formamide, N-methylformamide, N,N-dimethylformamide and urea from water to some aqueous alcohol solvent systems at 298 K, J.Chem.Soc.Faraday Trans., 1991, 87,2447-2452.
    [69] D.Feakins, P.Hogan, C.O.Duinn, W.E.Waghore, Enthalpies of transfer of formamide, N-methylformamide and N,N-dimethylformamide from water to aqueous acetonitrile mixtures at 298 K, J.Chem.Soc.Faraday Trans., 1992, 88(3), 423-425.
    [70] 韩玉民,丙酰胺与羧酸在水溶液中的焓相互作用,河南师范大学学报(自然科学版),2001,29(3),23-23.
    [71] D.Feakins, Colm.C, C.O.Duinn, W.E.Waghorne, Enthalpies of transfer of N-methylformamide, fornamide, and N,N-dimethylformamide from methanol to methanol+dimethylsulfoxide, J.Solution Chem., 1987, 16(11), 907-915.
    [72] J.Fernandez, M.Nieves, Garcia-Lisbona, T.H.Lilley, et al., Enthalpy of interaction of some amides with ammonium methanoate in water at 25℃, J.Chem.Soc.Faraday Trans., 1997, 93(3), 408-411.
    [73] Y.Lu, et al., The enthalpic interaction parameters of acetamide with sodium halides in water at 298.15K, Thermochim Acta, 1995,253, 85-91
    [74] A.M.Zaichikov, Y.G.Bushuev, G.A.Krestov, Determination of the intermolocular interaction parameters in the water-amide systems based on the data of the
    
    excess thermodynamic functions, J.Thermal.Analysis,1995, 45,687-693.
    [75] Y.G.Bushuev, A.M.Zaichikov, Structural properties of liquid formamide-N,N-dimethylformamide mixtures, Rus.Chem.Bull., 1998, 47(12),2338-2347.
    [76] Y.G.Bushuev, A.M.Zaichikov, Structural properties of liquid formamide, Rus.Chem.Bull., 1998, 47(10), 1857-1863.
    [77] B.P.Kelley, T.H.Killey, Aqueous solutions containing amino acids and peptides. Part 5.Gibbs free energy of interaction of glycine with some alkali metal chlorides at 298.15K, J.Chem.Sco.Faraday Trans Ⅰ., 1978, 74, 2771-2778,
    [78] B.P.Kelley, T.H.Killey, Aqueous solutions containing amino acids and peptides. Part 8 Gibbs free energy of interaction of some α-amino acids with sodium chloride at 298.15K, J.Chem.Sco.Faraday.Trans Ⅰ., 1978, 74, 2779-2785.
    [79] F.Apruzzese, E.Bottari, M.R.Festa Protonation equilibria and solubility of L-cystine, Talanta, 2002, 56(3), 459-469.
    [80] U.N.Dash, Thermodynamics of the dissociations of ortho-, meta-, and para-aminobenzene sulphonic, glutamic and sulphamic acids in formamide at different temperatures, Thermochimica Acta., 1980, 35, 325-332.
    [81] 杨家振,张黎天,门殿元等,混合溶剂中氨基酸热力学性质的研究(Ⅰ)—278.15-318.15K下甘氨酸-1,2-丙二醇-水体系,高等学校化学学报,1990,11(2),180-183.
    [82] J.Z.Yang, J.Wang, H.Li, Thermodynamics of solution amino acid dissociation in mixed solvents. 3: glycine in aqueous glucose solution from 5 to 45℃, J.Solution Chem., 1992, 21(11), 1131-1143.
    [83] 王杰,杨家振,混合溶剂中氨基酸解离热力学(Ⅳ)—278.15-318.15K下甘氨酸-20%Mass-葡萄糖-水体系,物理化学学报,1991,7,716-720.
    [84] 朱元良,周西顺,杨发旺,卢锦梭,盐酸在氨基酸水溶液中热力学性质的研究Ⅰ.甘氨酸+盐酸+水体系,物理化学学报,1992,8(1),132-135.
    [85] 朱元良,赵艳娜,周西顺,杨发旺,卢锦梭,盐酸在氨基酸水溶液中热力学性质的研究Ⅱ.丙氨酸、缬氨酸+盐酸+水体系,河南师范大学学报(自然科学版),1996,24(2),32-34.
    [86] R.G.D.Towndrow, Rubidium and Cesium, Oxford Press: Edinburg, NewYork, 1963, P82.
    [87] 李亚红,宋彭生,高世扬,夏树屏,碱金属氯化物-盐酸-水体系25℃溶解度预测,无机化学学报,1999,15(4),467-474.
    
    
    [88] 陶坤译,《苏联化学手册》,科学出版社,第一册.
    [89] 白同春,张心宽,卢雁,卢锦梭,四元系溶液中溶质问的Gibbs自由能相互作用参数的研究,高等学校化学学报,1995,16(10),1597-1601.
    [90] 汤清虎,白同春,卢雁,赵培真,卢锦梭,糖与非电解质在甲酰胺中相互作用的Gibbs自由能参数,高等学校化学学报,2001,22(2),240-244.
    [91] M.Ji, M.Y.Liu, S.L.Gao, Q.Z.Shi, A new microcalorimeter for measuring thermal effects, Instrumentation Science & Technology., 2001, 29(1), 53-57.
    [92] 卢雁,甄少强,卢锦梭,甘氨酸与氯化碱余属在水中的焓相互作用参数,物理化学学报,1994,10(3),281-284.
    [93] H.Piekarski, M.Tkaczyk, Effect of non-electrolyte properties on the enthalpic interaction coefficients for NaCl/Nal on-electrolyte pairs in water. Dissolution enthalpies of NaCl and NaI in aqueous solutions of butan-2-one and 1,2-dimethoxyethane at 25, J.Chem. Soc.Faraday Trans., 1991, 87, 3661-3666.
    [94] F.Frank, M.Pedley, D.S.Reid, Solute interactions in dilute aqueous solutions. Part 1.microcalorimetric study of the hydrophobic interaction, J.Chem.Soc. Faraday Trans., 1976, 72, 359-367.
    [95] Y.Lu, Sh.Q.Zhen, J.S.Lu, The enthalpic interaction parameters of NaCl, KCl and KI with acetone in water at 298.15K, Thermochimi Acta., 1992, 210, 15-25.
    [96] 卢雁,陈秀菊,白同春,卢锦梭,乙酰胺与氯化碱金属盐在水中的体积性质,河南师范大学学报(自然科学版),1999,27(2),48-49.
    [97] 郝力生,南延青,林瑞森,水溶液中碱金属氯化物.非电解质的焓对作用系数,湖南师范大学自然科学学报,2000,23(4),55-58.
    [98] 郝力生,南延青,林瑞森,碱金属氯化物在水-乙醇混合溶剂中的热力学性质,湖南师范大学自然科学学报,1999,22(2),42-47.
    [99] 卓克垒,王键吉,卢锦梭,水溶液中盐酸-醇相互作用的热力学参数Ⅱ.盐酸-丙三醇-水体系(278.15-318.15),化学学报,1996,54,175-179.
    [100] 邵爽,胡新根,林瑞森,甘氨酸在尿素水溶液中的焓对相互作用,浙江大学学报,2000,27(6),623-627.
    [101] 任小玲,林瑞森,L-丝氨酸在水/DMF混合溶剂中的稀释焓,浙江大学学报,2000,27(5),516-520.
    [102] S.Shao, X.G Hu, R.S.Lin, Enthalpic interactions of L-alanine and L-serine in aqueous urea solutions, Thermochimica Acta., 2000, 360, 93-100.
    [103] K.Cammabb, Working with Ion-Selective Electrodes, Springer, Vrelag, Berlin,
    
    1979.
    [104] W. J. Hamre, Y. C. Wu, J. Phys. Chem. Ref. Data, 1972, 1, 1047.
    [105] M. K. Khoshkbarchi, J. H. Vera, Measurement of Activity Coefficients of AminoAcids inAqueous Electrolyte Solutions: Experimental Data for the Systems H_2O + NaCl + Glycine and H_2O + NaCl + DL-Alanine at 25℃, Ind.Eng.Chem. Reseach., 1996, 35:2735-2742.
    [106] G.Scatchard, The Excess free energy and related properties of solutions containing electrolytes, J.Am.Chem.Soc., 1968, 90, 3124-3127.
    [107] J.P.Morel, C.Lhermet, N.Morel-Desrosiers, CalciuInteractions between cations and sugars. Part 4—Free energy of interaction of the ion with some aldopentoses and aldohexoses in water at 298.15K, J.Chem.Soc.Faraday Trans., 1988, 84, 2567-2571.
    [108] 黄子卿,《电解质溶液理论导论》,科学出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700