用户名: 密码: 验证码:
基于光学读出的微悬臂梁生化传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微悬臂梁生化传感技术是近年发展起来的新兴技术。当有生化反应在微悬臂梁的单侧表面发生时,其表面应力的改变会导致微悬臂梁产生弯曲变形,通过光学或电学读出方法可以测量变形值。由于其具有大比表面积,表面效应强,容易实现阵列集成等优点,为生化传感器的研究提供了新的思路,成为研究的热点。
     本文以微悬臂梁生化传感技术发展的两大核心——提高检测灵敏度和高通量检测为出发点,对基于光杠杆原理的单悬臂梁检测系统进行改进,利用改进后的实验系统研究了大分子在界面的自组装过程以及在不同的抗体修饰方法下,抗原抗体的特异性结合,并提出了两种微悬臂梁阵列检测的方案。
     通过使用聚焦处半径较小的激光器,稳定激光器的输出强度,使实验系统的可重复性得到提高。通过实验和理论分析,在反射光路中加入凸透镜以及优化微悬臂梁尺寸,可以使系统检测灵敏度分别提高4倍和20倍。通过使用高精度的恒温器(温控精度±0.01K),消除了微悬臂梁的热变形影响,同时使本底噪音保持在合理的范围,而且确保样品温度和容器池的温差不会对系统检测造成影响,提高了系统的信噪比。通过对传统光路参数的理论分析,得到在特定的光路参数下,可以完全消除溶液折射率改变对系统检测的影响,而且不改变系统的检测灵敏度。理论分析得到实验结果的验证。利用溶液折射率变化对系统检测的影响,提出了一种通过检测液体折射率来检测液体浓度的方案。
     研究了不同分子量的巯基化的聚N-异丙基丙烯酰胺(HS-PNIPAM)在金表面自组装的动力学过程。实验结果表明HS-PNIPAM在自组装过程中存在三个阶段,分别对应不同的分子构象。第一阶段为物理吸附阶段,第二、三阶段为伴随着分子构象变化的化学吸附阶段。化学吸附曲线符合Langmuir等温吸附。分析结果还显示HS-PNIPAM的表面吸附速率κ远小于小分子的吸附速率,并与分子量成负指数关系;HS-PNIPAM的自组装时间远大于小分子的自组装时间,并与分子量成正比;底物表面应力的改变与分子量成正线性关系。
     研究了在三种抗体修饰方法下,抗原抗体的特异性结合。将抗体修饰在微悬臂梁的金面,检测不同浓度的标准样品下微悬臂梁的弯曲变形,包括抗体巯基化修饰方法检测瘦肉精、SPA修饰抗体的方法检测瘦肉精和氯霉素以及二抗修饰抗体的方法检测青蒿素和马兜铃酸。抗体的活性以及在微悬臂梁上进行抗原抗体结合的可行性得到了ELISA实验的验证。实验结果表明:抗原抗体的结合具有很强的选择性。结合产生了压应力,且与浓度成正比。二抗修饰方法是三种方法中效果最差的,检测极限比标准曲线对应的IC_(20)低于两个数量级。SPA修饰方法与巯基化修饰方法的检测效果大体一致,检测极限都要优于1ng/ml,与标准曲线对应的IC_(20)相当。分析认为,检测极限与抗体活性和抗原抗体结合位置到微悬臂梁表面的距离有直接的关系。
     提出了两种检测微悬臂梁阵列变形的光路方案。第一,在UC Berkeley的光路基础之上进行改进,将偏振光引入检测系统,通过对光束偏振态的控制,降低了测量信号的背景噪声,提高了系统信噪比;通过对微悬臂梁的优化设计(初始转角和反光板),提高光学检测灵敏度。第二,将光学滤波方法引入到生化检测当中。
In recent years,as a new technology,microcantilever biochemical sensing technique(MCS) is developing quickly.When specific bio-molecular interactions occur on one surface of microcantilever,a differential stress between the top and bottom surfaces of the cantilever will cause the microcantilever bending.The deflection can be measured by both optical and electrical readout methods.It has brought some new ideas for biochemical sensing technique and becomes a hotspot of research because of its advantages,such as large surface-area-to-volume ratio,very sensitive to surface effect,easy to realize array compact.
     In this paper,two core of development of MCS- improving detecting sensitivity and high-throughput detection were taken as the starting point.First,a single cantilever detection system based on optical lever technique was improved. Second,the improved experimental system was used to study self-assembly of macromolecules on gold surface and the specificity of antigen-antibody binding in the different antibody-modified methods.Finally,two readout methods based on microcantilever array were proposed.
     The detecting reproducibility of system can be improved by way of using the laser with the smaller focus radius and steady output intensity.Through experiments and theoretical analysis,by adding convex lens in the path of reflected light and optimizing the dimension parameters of microcantilever,the detecting sensitivity of system can be improved 4 and 20 times,separately.Through the use of high-precision thermostat,the thermal deformation of microcantilever can be eliminated,while the background noise is kept within reasonable scope,and the temperature difference between the sample and the cell will not impact on the system detection.The theoretical analysis showed that by conditioning the experimental parameter,the influence of refractive index change on the detection signal can be effectively eliminated without reducing the detecting sensitivity of the system.The theoretical results were validated by the experiments.Based on this,a method of detecting liquid concentration by detecting the refractive index of liquid was proposed.
     The self-assembly of different molecular weight of Poly(N-isopropylacrylamide) (HS-PNIPAM) on gold surface was investigated.The results showed that the kinetic curves can be divided into three stages corresponding to different conformations, respectively.The first stage responded to physical adsorption of HS-PNIPAM to gold-coated side.The second and third stages were responsible for chemical adsorption to gold-coated side with conformation transition.The kinetic curves fits Langmuir adsorption isotherm well.The results also show that the reaction rateκof HS-PNIPAM is far less than that of small molecules and decreases exponentially with the molecular weight;while the time of HS-PNIPAM's self-assembly is far more than that of small molecules and proportional to the molecular weight.The change of the surface stress is linear to the molecular weight of HS-PNIPAM.
     The specificity of antigen-antibody binding in three different antibody-modified methods was investigated.Antibody was immobilized on the gold-coated side of the microcantilever and the deflections of the microcantilever corresponding to the process of injecting different concentration of antigen were real-time monitored, including the clenbuterol was detected in the modified method of thiolated antibody, the clenbuterol and chloramphenicol were detected in the modified method of Staphylococcus aureus protein A(SPA),the artemisinin and aristolochic acid were detected in the modified method of second antibody(goat anti-mouse IgG).The activity of antibody and antigen-antibody binding on the gold-coated side of the microcantilever were confirmed by an Enzyme-Linked Immunosorbent Assay (ELISA).The results showed that antigen-antibody binding on microcantilever generates a compressive surface stress and the surface stress is linear to logarithm of concentration.The detecting sensitivity in the modified method of second antibody is the worst in three methods and the detecting limit is two orders of magnitude lower than IC_(20).The detecting sensitivity in the modified method of SPA and thiolated antibody is the same.The detecting sensitivity in both modified methods can reach at least 1ng/ml and are equivalent with IC_(20).By analysis,the detecting sensitivity is directly related to the activity of antibody and the distance from the position where antigen-antibody binding to gold-coated side.
     Two readout methods based on microcantilever array were proposed.First,the optical path of UC Berkeley was improved.The signal-to-noise ratio of system was increased by controlling polarization of the laser.The optical detection sensitivity can be increased by optimal design of microcantilever.Second,optical filter readout technique was introduced to MCS.
引文
[1]何道清,张禾和谌海云,传感器与传感技术,.北京:科学出版社,2008.
    [2]徐科军,马修水和李晓林,传感器与检测技术,北京:电子工业出版社,2008.
    [3]周继明和江世明,传感技术与应用,长沙:中南大学出版社,2005.
    [4]左伯莉,化学传感器原理与应用,北京:清华大学出版社,2007
    [5]Lubbers,D.W.,Optical Sensors for Clinical Monitoring.Acta Anaesthesiologica Scandinavica.1995,39:37-54.
    [6]Brecht,A.,and Gauglitz,G.,Recent developments in optical transducers for chemical or biochemical applications.Sensors and Actuators B-Chemical,1997,38(1-3):1-7.
    [7]De Carvalho,R.M.,Rath,S.,and Kubota,L.T.,SPR - New tool for biosensors.Quimica Nova,2003,26(1):97-104.
    [8]Ali,Z.,Acoustic wave mass sensors.Journal of Thermal Analysis and Calorimetry,1999,55(2):397-412.
    [9]赵声衡,石英晶体振荡器,长沙:湖南大学出版社,1997.
    [10]Wu,D.H.,and Chen,H.H.,Application of Taguchi robust design method to SAW mass sensing device.IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2005,52(12):2403-2410.
    [11]Appel,R.D.,and Bairoch,A.,The application of bioinformatics to mass spectrometry. Proteomics,2002,2(10):1363-1364.
    [12]Ma,S.G.,Chowdhury,S.K.,and Alton,K.B.,Application of mass spectrometry for metabolite identification.Current Drug Metabolism,2006,7(5):503-523.
    [13]董永贵,传感技术与系统,北京:清华大学出版社,2006.
    [14]Ziegler,C.,and Gopel,W.,Biosensor development.Current Opinion in Chemical Biology,1998,2(5):585-591.
    [15]Lee,J.W.,Sim,S.J.,Cho,S.M,and Lee,J.,Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody.Biosensors and Bioelectronics,2005,20(7):1422-1427.
    [16]李晨,石岩,倪旭翔和陆祖康,生物芯片荧光检测光学系统综述,光学仪器,2005,27(3):89-94.
    [17]夏敏,王欣欣,杨文学,李虎,郝荣辉和谷学新,酶联免疫技术快速测定蔬菜和水果中的农残,现代科学仪器,2006,(1):104-105.
    [18]蔡新霞,李华清,饶能高,王利和崔大付,电化学生物传感器,微纳电子技术,2003,Z1:359-361.
    [19]张威,张大成和王阳元,MEMS概况及发展趋势,微纳电子技术,2002,1:22-27.
    [20]刘长春和崔大付,电化学传感器及其在芯片实验室中的应用,传感器技术,2003,22(7):1-6.
    [21]田斌和胡明,MEMS封装技术研究进展与趋势,传感器技术,2003,22(5):58-60.
    [22]崔大付,刘长春和陈翔萌,发展中的生化传感器,传感器世界,2004,3:6-11.
    [23]Binnig,G,and Rohrer,H.,Scanning tunneling microscopy,Surface Science.1985,152-153:17-26.
    [24]Binning,G,Quate,C.F.,Gerber,C,.Atomic Force Microscopy.Phys Rev lett,1986,56:930-934.
    [25]韩立.陈皓明.王秀凤.扫描探针显微术在GaAs等半导体研究中的应用.功能材料,1999,30(2):143-146.
    [26]Binning,G,Gerber,C.,Stoll,E.,Albrecht,R.T.,and Quate,C.F.,Atomic resolution with atomic force microscope.Europhys Letters,1987,188(190):1-6.
    [27]Evans,D.R.,and Craig,V S.J.,Sensing cantilever beam bending by the optical lever technique and its application to surface stress.Journal of Physical Chemistry B,2006,110(11):5450-5461.
    [28]Manalis,S.R.,Minne,S.C.,Atalar,A.,and Quate,C.F.,Interdigital cantilevers for atomic force microscopy.Applied Physics Letters,1996,69(25):3944-3946.
    [29]Arntz,Y.,Seelig,J.D.,Lang,H.P.,Zhang,I,Hunziker,P.,Ramseyer,J.P.,Meyer,E.,Hegner,M.,and Gerber,C,Label-free protein assay based on a nanomechanical cantilever array.Nanotechnology,2003,14(1):86-90.
    [30]Stoney,G.G,The tension of metallic films deposited by electrolysis,Prooc.Roy.Soc.London A Mater.1909,82:172-175.
    [31]Shaver,P.J.,Bimetal strip hydrogen gas sensor.Review of scientific instruments,1969,40:901-905.
    [32]Taylor,R.W.,Flexural wave studies on the basis of single-sensor recordings.Journal of glaciology,1979,22(86):171-175.
    [33]Itoh,T.,and Suga,T.,Force Sensing Microcantilever Using Sputtered Zinc-Oxide Thin-Film.Applied Physics Letters,1994,64(1):37-39.
    [34]Cleveland,J.P.,Schaffer,T.E.,and Hansma,P.K.,Probing Oscillatory Hydration Potentials Using Thermal-Mechanical Noise in an Atomic-Force Microscope.Physical Review B,1995,52(12):R8692-R8695.
    [35]Thundat,T.,Warmack,R.I,Chen,G.Y.,and Allison,D.P.,Thermal and Ambient-Induced Deflections of Scanning Force Microscope Cantilevers.Applied Physics Letters,1994,64(21):2894-2896.
    [36]Thundat,T.,Chen,G.Y.,Warmack,R.J.,Allison,D.P.,and Wachter,E.A.,Vapor Detection Using Resonating Microcantilevers.Analytical Chemistry,1995,67(3):519-521.
    [37]Jung,M.Y.,Kim,D.W.,Choi,S.S.,Kang,C.J.,and Kuk,Y.,Characterization of bimetallic cantilever for chemical sensor application.Japanese Journal of Applied Physics Part 1-ReguIar Papers Short Notes & Review Papers,1999,38(11):6555-6557.
    [38]Bailer,M.K.,Lang,H.P.,Fritz,J.,Gerber,C,Gimzewski,J.K.,Drechsler,U.,Rothuizen,H.,Despont,M.,Vettiger,P.,Battiston,F.M.,Ramseyer,J.P.,Fornaro,P.,Meyer,E.,and Guntherodt,H.J.,A cantilever array-based artificial nose.Ultramicroscopy,2000,82(1-4):1-9.
    [39]Fritz,J.,Bailer,M.K.,Lang,H.P.,Rothuizen,H.,Vettiger,P.,Meyer,E.,Guntherodt,H.J.,Gerber,C,and Gimzewski,J.K.Translating biomolecular recognition into nanomechanics.Science,2000,288(5464):316~318.
    [40]Wu,G.H,Datar,R.H.,Hansen,K.M.,Thundat,T.,Cote,R.J.,and Majumdar,A.,Bioassay of prostate-specific antigen(PSA)using microcantilevers.Nature Biotechnology,2001,19(9):856-860.
    [41]Carrascosa,L.G.,Moreno,M.,Alvarez,M.,and Lechuga,L.M.,Nanomechanical biosensors:a new sensing tool.Trac-Trends in Analytical Chemistry,2006,25(3):196-206.
    [42]Lavrik,N.V.,Sepaniak,M.J.,and Datskos,P.G.,Cantilever transducers as a platform for chemical and biological sensors.Review of Scientific Instruments,2004,75(7):2229-2253.
    [43]Reed,J.,Schmit,J.,Han,S.,Wilkinson,P.,and Gimzewski,J.K.,Interferometric profiling of microcantilevers in liquid.Optics and Lasers in Engineering,2009,47(2):217-222.
    [44]Moulin,A.M.,O'Shea,S.J.,and Welland,M.E.,Microcantilever-based biosensors.Ultramicroscopy,2000,82(1-4):23-31.
    [45]Lee,S.S.,and White,R.M.,Self-excited piezoelectric cantilever oscillators.Sensors and Actuators a-Physical,1996,52(1-3):41-45.
    [46]Campbell,G.A.,and Mutharasan,R.,Detection of pathogen Escherichia coli 0157:H7 using self-excited PZT-glass microcantilevers.Biosensors & Bioelectronics,2005,21(3):462-473.
    [47]Nam,H.J.,Kim,Y.S.,Lee,C.S.,Jin,W.H.,Jang,S.S? Cho,I.!.,Bu,J.U.,Choi,W.B.,and Choi,S.W.,Silicon nitride cantilever array integrated with silicon heaters and piezoelectric detectors for probe-based data storage.Sensors and Actuators a-Physical,2007,134(2):329-333.
    [48]Britton,C.L.,Jones,R.L.,Oden,P.I.,Hu,Z.,Warmack,R.J.,Smith,S.F.,Bryan,W.L.,and Rochelle,J.M.,Multiple-input microcantilever sensors.Ultramicroscopy,2000,82(1-4):17-21.
    [49]Kenny,T.W.,Kaiser,W.J.,Podosek,J.A.,Rockstad,H.K.,Reynolds,J.K.,and Vote,E C,Micromachined Tunneling Displacement Transducers for Physical Sensors.Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1993,11(4):797-802.
    [50]Lang,H.P.,Berger,R.,Andreoli,C,Brugger,J.,Despont,M.,Vettiger,P.,Gerber,C.,Gimzewski,J.K.,Ramseyer,J.P.,Meyer,E.,and Guntherodt,H.J.,Sequential position readout from arrays of micromechanical cantilever sensors.Applied Physics Letters,1998,72(3):383-385.
    [51]Lang,H.P.,Bailer,M.K.,Berger,R.,Gerber,C,Gimzewski,J.K.,Battiston,F.M.,Fornaro,P.,Ramseyer,J.P.,Meyer,E.,and Guntherodt,H.J.,An artificial nose based on a micromechanical cantilever array.Analytica Chimica Acta,1999,393(1-3):59-65.
    [52]Yue,M.,Lin,H.,Dedrick,D.E.,Satyanarayana,S.,Majumdar,A.,Bedekar,A S.,Jenkins,J.W.,and Sundaram,S.,A 2-D microcantilever array for multiplexed biomolecular analysis.Journal of Microelectromechanical Systems,2004,13(2):290-299.
    [53]Raiteri,R.,Grattarola,M.,Butt,H.J.,and Skladal,P.,Micromechanical cantilever-based biosensors.Sensors and Actuators B-Chemical,2001,79(2-3):115-126.
    [54]Thaysen,J.,Yalcinkaya,A.D,Vettiger,P.,and Menon,A.,Polymer-based stress sensor with integrated readout.Journal of Physics D-Applied Physics,2002,35(21):2698-2703.
    [55]Joshi,M.,Kale,N.,Lai,R.,Rao,V.R.,and Mukherji,S.,A novel dry method for surface modification of SU-8 for immobilization of biomolecules in Bio-MEMS.Biosensors & Bioelectronics,2007,22(11):2429-2435.
    [56]Nordstrom,M.,Keller,S.,Lillemose,M.,Johansson,A.,Dohn,S.,Haefliger,D.,Blagoi,G.,Havsteen-Jakobsen,M.,and Boisen,A.,SU-8 cantilevers for bio/chemical sensing;Fabrication,characterisation and development of novel read-out methods.Sensors,2008,8(3):1595-1612.
    [57]Berger,R.,Delamarche,E.,Lang,H.P.,Gerber,C,Gimzewski,J.K.,Meyer,E.,and Guntherodt,H.J.,Surface stress in the self-assembly of alkanethiols on gold.Science,1997,276:2021-2024.
    [58]Boiadjiev,V.I.,Brown,G.M,Pinnaduwage,L.A.,Goretzki,G.,Bonnesen,P.V.,and Thundat,T.,Photochemical hydrosilylation of 11-undecenyltriethylammonium bromide with hydrogen-terminated Si surfaces for the development of robust microcantilever sensors for Cr(VI).Langmuir,2005,21(4):1139-1142.
    [59]Desikan,R.,Lee,I.,and Thundat,T.,Effect of nanometer surface morphology on surface stress and adsorption kinetics of alkanethiol self-assembled monolayers.Ultramicroscopy,2006,106(8-9):795-799.
    [60]Kohale,S.,Molina,S.M.,Weeks,B.L.,Khare,R.,and Hope-Weeks,L.J.,Monitoring the formation of self-assembled monolayers of alkanedithiols using a micromechanical cantilever sensor.Langmuir,2007,23(3):1258-1263.
    [61]Calleja,M.,Nordstrom,M.,Alvarez,M.,Tamayo,J.,Lechuga,L.M.,and Boisen,A.,Highly sensitive polymer-based cantilever-sensors for DNA detection.Ultramicroscopy,2005,105(1-4):215-222.
    [62]Lechuga,L.M.,Tamayo,J.,Alvarez,M.,Carrascosa,L.G.,Yufera,A.,Doldan,R.,Peralias,E.,Rueda,A.,Plaza,J.A.,Zinoviev,K.,Dominguez,C,Zaballos,A.,Moreno,M.,Martinez,C,Wenn,D.,Harris,N.,Bringer,C,Bardinal,V.,Camps,T.,Vergnenegre,C,Fontaine,C,Diaz,V.,and Bernad,A.,A highly sensitive microsystem based on nanomechanical biosensors for genomics applications.Sensors and Actuators B-Chemical,2006,118(1-2):2-10.
    [63]Alvarez,M.,Carrascosa,L.G.,Moreno,M.,Calle,A.,Zaballos,A.,Lechuga,L.M.,Martinez-A,C,and Tamayo,J,Nanomechanics of the formation of DNA self-assembled monolayers and hybridization on microcantilevers.Langmuir,2004,20:9663-9668.
    [64]Stachowiak,J.C,Yue,M.,Castelino,K.,Chakraborty,A.,and Majumdar,A,Chemo- mechanics of surface stresses induced by DNA hybridization.Langmuir,2006,22(1):263-268.
    [65]Biswal,S.L.,Raorane,D.,Chaiken,A.,Birecki,H.,and Majumdar,A.,Nanomechanical detection of DNA melting on microcantilever surfaces.Analytical Chemistry,2006,78:7104-7109.
    [66]Huber,F.,Hegner,M,Gerber,C,Guntherodt,H.J.,and Lang,H.P.,Label free analysis of transcription factors using microcantilever arrays.Biosensors & Bioelectronics,2006,21(8):1599-1605.
    [67]Zhang,J.,Lang,H.P.,Huber,F.,Bietsch,A.,Grange,W.,Certa,U.,McKendry,R.,Guntgerodt,H.J.,Hegner,M.,and Gerber,C,Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA.Nature Nanotechnology,2006,1(3):214-220.
    [68]Hwang,K.S.,Lee,J.H.,Park,J.,Yoon,D.S.,Park,J.H.,and Kim,T.S.,In-situ quantitative analysis of a prostate-specific antigen(PSA)using a nanomechanical PZT cantilever.Lab on a Chip,2004,4:547-552.
    [69]Lee,J.H.,Hwang,K.S.,Park,J.,Yoon,K.H.,Yoon,D.S.,and Kim,T.S.,Immunoassay of prostate-specific antigen(PSA)using resonant frequency shift of piezoelectric nanomechanical microcantilever.Biosensors & Bioelectronics,2005,20(10):2157-2162.
    [70]Lee,J.H.,Yoon,K.H.,Hwang,K.S.,Park,J.,Ahn,S.,and Kim,T.S.,Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein.Biosensors & Bioelectronics,2004,20(2):269-275.
    [71]Wee,K.W.,Kang,G.Y.,Park,J.,Kang,J.Y.,Yoon,D.S.,Park,J.H.,and Kim,T.S.,Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers.Biosensors & Bioelectronics,2005,20(10):1932-1938.
    [72]Backmann,N.,Zahnd,C,Huber,F.,Bietsch,A.,Pluckthun,A.,Lang,H.P.,Guntherodt,H.J.,Hegner,M.,and Gerber,C,A label-free immunosensor array using single-chain antibody fragments.Proceedings of the National Academy of Sciences of the United States of America,2005,102(41):14587-14592.
    [73]Campbell,G.A.,and Mutharasan,R.,Detection and quantification of proteins using selfexcited PZT-glass millimeter-sized cantilever.Biosensors & Bioelectronics,2005,21(4):597-607.
    [74]Hosaka,S.,Chiyoma,T.,Ikeuchi,A.,Okano,H.,Sone,H.,and Izumi,T.,Possibility of a femtogram mass biosensor using a self-sensing cantilever.Current Applied Physics,2006,6(3):384-388.
    [75]Hwang,K.S.,Eom,K.,Lee,J.H.,Chun,D.W.,Cha,B.H.,Yoon,D.S.,Kim,T.S.,and Park,J.H.,Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers.Applied Physics Letters,2006,89(17):173905.
    [76]Kang,G.Y.,Hart,G.Y.,Kang,J.Y.,Cho,I.H.,Park,H.H.,Pack,S.H.,and Kim,T.S.,Label-free protein assay with site-directly immobilized antibody using self-actuating PZT cantilever.Sensors and Actuators B-Chemical,2006,117(2):332-338.
    [77]Dauksaite,V.,Lorentzen,M.,Besenbacher,F.,and Kjems,J.,Antibody-based protein detection using piezoresistive cantilever arrays.Nanotechnology,2007,18(12):125503.
    [78]李凯,刘红,张青川,候毅,张广照和伍小平.利用微悬臂梁表面应力研究聚N-异丙基丙烯酰胺分子的构象转变.物理学报,2006,55(8):4111-4116.
    [79]Zhou,F.,Shu,W,M,Welland,M E,and Huck,W.T.S,Highly reversible and multi-stage cantilever actuation driven by polyelectrolyte brushes.Journal of the American Chemical Society,2006,128(16):5326-5327.
    [80]Abu-Lail,N.I.,Kaholek,M.,LaMattina,B.,Clark,R.L.,and Zauscher,S.,Micro-cantilevers with end-grafted stimulus-responsive polymer brushes for actuation and sensing.Sensors and Actuators B-Chemical,2006,114(I):371-378.
    [81]Kaholek,M.,Lee,W.K.,Feng,J.X.,LaMattina,B.,Dyer,D.J.,and Zauscher,S.,Weak polyelectrolyte brush arrays fabricated by combining electron-beam lithography with surface-initiated photopolymerization.Chemistry of Materials,2006,18(16):3660-3664.
    [82]Watari,M.,Galbraith,J.,Lang,H.P.,Sousa,M.,Hegner,M.,Gerber,C.,Horton,M.A.,and McKendry,R.A.,Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays.Journal of the American Chemical Society,2007,129(3):601-609.
    [83]Mao,J.S.,Kondu,S.,Ji,H.F.,and McShane,M.J.,Study of the near-neutral pH-sensitivity of chitosan/gelatin hydrogels by turbidimetry and microcantilever deflection.Biotechnology and Bioengineering,2006,95(3):333-341.
    [84]Liu,K.,and Ji,H.F.,Detection of Pb2+ using a hydrogel swelling microcantilever sensor.Analytical Sciences,2004,20(1):9-11.
    [85]Yan,X.D.,Hill,K.,Gao,H.Y.,and Ji,H.F.,Surface stress changes induced by the conformational change of proteins.Langmuir,2006,22(26):11241-11244.
    [86]Xu,X.H.,Thundat,T.G.,Brown,G.M.,and Ji,H.F.,Detection of Hg~(2+) using microcantilever sensors.Analytical Chemistry,2002,74(15):3611-3615.
    [87]Ji,H.F.,Zhang,Y.F.,Purushotham,V.V.,Kondu,S,Ramachandran,B.,Thundat,T.,and Haynie,D.T.,1,6-Hexanedithiol monolayer.as a receptor for specific recognition of alkylmercury,Analyst,2005,130(12):1577-1579.
    [88]Cherian,S.,Gupta,R.K.,Mullin,B.C,and Thundat,T.,Detection of heavy metal ions using protein-functionalized microcantilever sensors.Biosensors & Bioelectronics,2003,19(5):411-416.
    [89]Ji,H.F.,and Thundat,T.,In situ detection of calcium ions with chemically modified microcantilevers.Biosensors & Bioelectronics,2002,17(4):337-343.
    [90]Cherian,S.,Mehta,A.,and Thundat,T.,Investigating the mechanical effects of adsorption of Ca~(2+)ions on a silicon nitride microcantilever surface.Langmuir,2002,18(18):6935-6939.
    [91]Liu,K.,and Ji,H.F.,Detection of Pb~(2+)using a hydrogel swelling microcantilever sensor.Analytical Sciences,20(1):9-11.
    [92]Velanki,S.,Kelly,S.,Thundat,T.,A.Blake,D.,and Ji,H.F.,Detection of Cd(Ⅱ)using antibody-modified microcantilever sensors.Ultramicroscopy,2007,107(12):1123-1128.
    [93]Dutta,P.,Chapman,P.J.,Datskos,P.G.,and Sepaniak,M.J.,Characterization of ligandfunctionalized microcantilevers for metal ion sensing.Analytical Chemistry,2005,77(20):6601-6608.
    [94]Ji,H.F.,Thundat,T.,Dabestani,R.,Brown,G.M.,Britt,P.F.,and Bonnesen,P.V.,Ultrasensitive detection of Cr04~(2-)using a microcantilever sensor.Analytical Chemistry,2001,73(7):1572-1576.
    [95]Austin,M.J.,and Sadana,A.,A fractal analysis of analyte-receptor binding and dissociation kinetics in microcantilever biosensors.Sensors and Actuators B-Chemical,2002,82(2-3):186-199.
    [96]Adams,J.D.,Rogers,B.,Manning,L.,Hu,Z.,Thundat,T.,Cavazos,H.,and Minne,S.C,Piezoelectric self-sensing of adsorption-induced microcantilever bending.Sensors and Actuators a-Physical,2005,121(2):457-461.
    [97]Chandra,D.,Frazier,J.R.,Ringo,J.,and Aramayo,C.E.,The initial rate of vapor-solid interaction and its application in the detection of vapor at ultra low concentrations.Journal of Applied Physics,2005,97(12):123517.
    [98]Kadam,A.R.,Nordin,G.P.,and George,M.A.,Use of thermally induced higher order modes of a microcantilever for mercury vapor detection.Journal of Applied Physics,2006,99(9):094905.
    [99]Wright,Y.J.,Kar,A.K.,Kim,Y.W.,Scholz,C,and George,M.A.,Study of microcapillary pipette-assisted method to prepare polyethylene glycol-coated microcantilever sensors.Sensors and Actuators B-Chemical,2005,107(1):242-251.
    [100]Cheney,C.P.,Wig,A.,Hedden,D.L.,Gehl,A.,Lereu,A.L.,Farahi,R.H.,Hunter,S.R., and Ferrell,T.L.,Ethanol vapor detection in saline solution using piezoresistive microcantilevers.Review of Scientific Instruments,2006,77(9):095101.
    [101]Cheney,C.P.,Wig,A.,Farahi,R.H.,Gehl,A.,Hedden,D.L.,and Ferrell,T.L.,In vivo real-time ethanol vapor detection in the interstitial fluid of a Wistar rat using piezoresistive microcantilevers.Applied Physics Letters,2007,90(1):013901.
    [102]Kooser,A.,Gunter,R.L.,Delinger,W.D.,Porter,T.L.,and Eastman,M.P.,Gas sensing using embedded piezoresistive microcantilever sensors.Sensors and Actuators B-Chemical,2004,99(2-3):474-479.
    [103]Pinnaduwage,L.A.,Thundat,T.,Gehl,A.,Wilson,S.D.,Hedden,D.L.,and Lareau,R.T.,Desorption characteristics,of uncoated silicon microcantilever surfaces for explosive and common nonexplosive vapors.Ultramicroscopy,2004,100(3-4):211-216.
    [104]Pinnaduwage,L.A.,Wig,A.,Hedden,D.L.,Gehl,A.,Yi,D.,Thundat,T.,and Lareau,R.T.,Detection of trinitrotoluene via deflagration on a microcantilever.Journal of Applied Physics,2004,95(10):5871-5875.
    [105]Pinnaduwage,L.A.,Yi,D.,Tian,F.,Thundat,T.,and Lareau,R.T.,Adsorption of trinitrotoluene on uncoated silicon microcantilever surfaces.Langmuir,2004,20(7):2690-2694.
    [106]Li,P.,Li,X.X.,Zuo,G.M.,Liu,J.,Wang,Y.L,Liu,M.,and Jin,D.Z.,Silicon dioxide microcantilever with piezoresistive element integrated for portable ultraresoluble gaseous detection.Applied Physics Letters,2006,89(7):074104.
    [107]李凯,博士毕业论文,合肥:中国科学技术大学,2006.
    [1]李凯,刘红,张青川,候毅,张广照和伍小平.利用微悬臂梁表面应力研究聚N-异丙基丙烯酰胺分子的构象转变.物理学报,2006,55(8):4111-4116.
    [2]Li,K.,Liu,H.,Zhang,Q.C.,Xue,C.G.,and Wu,X.P.,Conformational transition of poly (acrylic acid) detected by microcantilever sensing.Chinese Physics Letters,2007,24:1502-1504.
    [3]李凯,张青川和刘红,微梁传感研究大分子构象转变.实验力学,2007,22(3-4):395-400.
    [4]薛长国,李凯,朱娟娟,张青川,刘红,伍小平和刘兢,微梁传感研究谷胱甘肽转硫酶抗原抗体特异结合.实验力学,2007,22(3-4):407-412.
    [5]李凯,博士毕业论文,合肥:中国科学技术大学,2006.
    [6]郭书立和李立军.一维、二维PSD的检测原理及测量电路.佳木斯大学学报(自然科学版),2000,18(3):291-295.
    [7]隋金雪,付宏伟,杨光华,吴立锋和衡世权,PSD在三维坐标测量中的应用.传感器世界,2004,10(11):25-28.
    [8]Barnes,J.R.,Stephenson,R.J.,Woodburn,C.N.,Oshea,S.J.,Welland,M.E.,Rayment,T.,Gimzewski,J.K.,and Gerber,C.,A Femtojoule Calorimeter Using Micromechanical Sensors.Review of Scientific Instruments,1994,65(12):3793-3798.
    [9]Godin,M.,Tabard-Cossa,V.,Grutter,P.,and Williams,P.,Quantitative surface stress measurements using a microcantilever.Applied Physics Letters,2001,79(4):551-553.
    [10]Moulin,A.M.,O'Shea,S.J.,Badley,R.A.,Doyle,P.,and Welland,M.E.,Measuring surface induced conformational changes in proteins,Langmuir,1999,15:8776-8779.
    [11]Bumbu,G.G.,Wolkenhauer,M.,Kircher,G.,Gutmann,J.S.,and Berger,D.,Micromechanical cantilever technique:a tool for investigating the swelling of polymer brushes,Langmuir,2007,23:2203-2207.
    [12]Abu-Lail,N.I.,Kaholek,M.,LaMattina,B.,Clark,R.L.,and Zauscher,S.,Micro-cantilevers with end-grafted stimulus-responsive polymer brushes for actuation and sensing,Sensors and Actuators B:Chemical,2006,114:371-378.
    [13]Yan,X.D.,Hill,K.,Gao,H.Y.,and Ji,H.F.Surface stress changes induced by the conformational change of proteins,Langmuir,2006,22:11241-11244.
    [14]Lang,H.P.,Berger,R.,Andreoli,C.,Brugger,J.,Despont,M.,Vettiger,P.,Gerber,C.,Gimzewski,J.K.,Ramseyer,J.P.,Meyer,E.,and Guntherodt,H.J.,Sequential position read out from arrays of micromechanical cantilever sensors.Applied Physics Letters,1998,72:383-385.
    [15]Gao,H.,Buchapudi,K.R,Harms-Smyth,A.,Schulte,M.K.,Xu,X.H.,and Ji,H.F.,Improved surface modification approach for micromechanical biosensors.Langmuir,2008,24:345-349.
    [16]Kohale,S.,Molina,S.M.,Weeks,B.L.,Khare;R.,and Hope-Weeks,L.J.,Monitoring the formation of self-assembled monolayers of alkanedithiols using a micromechanical cantilever sensor.Langmuir,2007,23:1258-1263.
    [17]Shu,W.M.,Laue,E.D.,and Seshia,A.A.,Investigation of biotin-streptavidin binding interactions using microcantilever sensors.Biosensors & Bioelectronics,2007,22:2003-2009
    [18]黄渊,陈雁云,刘红,李凯,张青川和伍小平,微悬臂梁生化传感系统的性能分析.实验力学,2008,23(4):289-297.
    [19]丁宁,旋光液体浓度测量方法的研究.大学物理实验,2007,20(2):33-34.
    [20]孙旭辉,孙墨杰和张晶,一种以分光光度法水相测定水或废水中微量汞的方法.发明专利:200710055478.4.
    [21]周少玲,高波,田光松,杨萍,姜雨泽,王璋和侯亚琴,分光光度法测定磷酸盐中氯化钠含量的方法.发明专利:200710016118.3.
    [22]王寅观和周耀中,用于在线检测的超声波液体浓度计.应用声学,1990,9(1):12-17.
    [23]金清理和柯见洪,用掠入射法测量液体折射率和浓度.实验室研究与探索,2002,21(3):52-54
    [1]Yoo,K.A.,Na,K.H.,Joung,S.R.,Nahm,B.H.,Kang,C.J.,and Kim,Y.S.,Microcantilever based biosensor for detection of various biomolecules.Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers,2006,45(1B),15-518.
    [2]Evans,S.D.,Urankar,E.,Ulman,A.,and Ferris,N.,Self-Assembled Monolayers of Alkanethiols Containing a Polar Aromatic Group - Effects of the Dipole Position on Molecular Packing,Orientation,and Surface Wetting Properties.Journal of the American Chemical Society,1991,113(11):4121-4131.
    [3]Whitesides,G.M.,and Laibinis,P.E.,Wet Chemical Approaches to the Characterization of Organic-Surfaces-Self-Assembled Monolayers,Wetting,and the Physical Organic-Chemistry of the Solid Liquid Interface.Langmuir,1990,6(1):87-96.
    [4]Nuzzo,R.G.,Dubois,L.H.,and Allara,D.L.,Fundamental-Studies of Microscopic Wetting on Organic-Surfaces.1.Formation and Structural Characterization of a Self-Consistent Series of Polyfunctional Organic Monolayers.Journal of the American Chemical Society,1990,112(2):558-569.
    [5]夏阿根,杨波,金进生,张亦文,汤帆和叶高翔,液体基底表面金薄膜中的有序结构和自组装现象.2005,物理学报,54(1):302-306.
    [6]Mandler,D.,and Turyan,I.,Applications of self-assembled monolayers in electroanalytical chemistry.Electroanalysis,1996,8(3):207-213.
    [7]Ghindilis,A.L.,Atanasov,P.,Wilkins,M.,and Wilkins,E.,Immunosensors:Electrochemical sensing and other engineering approaches.Biosensors & Bioelectronics,1998,13(1):113-131.
    [8]Kidoaki,S.,and Matsuda,T.,Adhesion forces of the blood plasma proteins on selfassembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope.Langmuir,1999,15(22):7639-7646.
    [9]Lu,J.,Eng,L.,Bennewitz,R:,Meyer,E.,Guntherodt,H.J.,Delamarche,E.,and Scandella,L.Surface potential studies of self-assembling monolayers using Kelvin probe force microscopy.Surface and Interface Analysis,1999,27(5-6):368-373.
    [10]Darmenberger,O.,Buck,M.,and Grunze,M.,Self-assembly of n-alkanethiols:A kinetic study by second harmonic generation.Journal of Physical Chemistry B,1999,103(12):2202-2213.
    [11]Itakura,A.N.,Berger,R.,Narushima,T.,and Kitajima,M.,Low-energy ion-induced tensile stress of self-assembled alkanethiol monolayers.Applied Physics Letters,2002,80(20):3712-3714.
    [12]Kukta,R.V.,Kouris,D.,and Sieradzki,K.,Adatoms and their relation to surface stress.Journal of the Mechanics and Physics of Solids,2003,51(7):1243-1266.
    [13]Ligoure,C.,Polymers at Interfaces - from a Quasi Self-Similar Adsorbed Layer to a Quasi Brush First-Order Phase-Transition.Journal De Physique Ii,1993,3(11):1607-1617.
    [14]Baekmark,T.R.,Elender,G.,Lasic,D.D.,and Sackmann,E.,Conformational Transitions of Mixed Monolayers of Phospholipids and Poly(Ethylene Oxide) Lipopolymers and Interaction Forces with Solid-Surfaces.Langmuir,1995,11(10):3975-3987.
    [15]Szleifer,I.,Pancake to Brush Transition in Block Copolymer.Europhysics Letters,1998,44(6):721-727.
    [16]Gragson,D.E.,Jensen,J.M.and Baker,S.M.,Characterization of predominantly hydrophobic poly(styrene)-poly(ethylene oxide) copolymers at air/water and cyclohexane/water interfaces.Langmuir,1999,15(19):6127-6131.
    [17]Tsukanova,V.,and Salesse,C.,On the nature of conformational transition in poly(ethylene glycol) chains grafted onto phospholipid monolayers.Journal of Physical Chemistry B,2004,108(30):10754-10764.
    [18]Liu,G.M.,Cheng,H.,Yan,L.F.,Zhang,G.Z.,Study of the kinetics of the pancake-to-brush transition of poly(N-isopropylacrylamide) chains.Journal of Physical Chemistry B,2005,109(47):22603-22607.
    [19]Berger,R.,Delamarche,E.,Lang,H.P.,Gerber,C.,Gimzewski,J.K.,Meyer,E.,and Guntherodt,H.J.,Surface stress in the self-assembly of alkanethiols on gold probed by a force microscopy technique.Applied Physics a-Materials Science & Processing,1998,66:S55-S59.
    [20]Berger,R.,Delamarche,E.,Lang,H.P.,Gerber,C.,Gimzewski,J.K.,Meyer,E.,and Guntherodt,H.J.,Surface stress in the self-assembly of alkanethiols on gold.Science,1997,276:2021-2024.
    [21]Ibach,H.,The role of surface stress in reconstruction,epitaxial growth and stabilization of mesoscopic structures.Surface Science Reports,1997,29(5-6):195-263.
    [22]Penn,L.S.,Huang,H.,Sindkhedkar,M.D.,Rankin,S.E.,Chittenden,K.,Quirk,R.P.,Mathers,R.T.,and Lee,Y.,Formation of tethered nanolayers:Three regimes of kinetics,Macromolecules,2002,35:7054-7066.
    [23]Adams M.D.,Cclniker S.E.,Holt R.A.,Evans C.A.,and Gocayne,J.D.,The genome sequence of Drosophila melanogaster.Science,2000,287:2185-2195.
    [24]李顺,纪淑娟和李东华,酶抑制法快速检测蔬菜中有机磷农药残留的最佳条件研究.食品科技,2007,32(1):171-173.
    [25]陈锡龙,黄瑾和钱莘莘,应用酶联免疫吸附法测定饲料中三聚氰胺的研究.贵州畜牧兽医,2008,32(6):5-6.
    [26]彭大鹏,胡思顺,华艳,肖运才,李自力和毕丁仁,胶体金免疫层析试纸条法与血凝抑制试验、琼脂扩散法检测禽流感病毒抗体的比较.中国兽医学报,2007,27(4):445-447.
    [27]朱伟,孙红柳,靳刚,齐财和赵子彦,光学蛋白质芯片法定量检测C-反应蛋白的研究.国际检验医学杂志,2007,28(7):577-579.
    [28]Yue,M.,Stachowiak,J.C.,Lin,H.,Datar,R.,Cote,R.,and Majumdar,A.,Label-free protein recognition two-dimensional array using nanomechanical sensors.Nano Letters,2008,8:520-524.
    [29]Wu,G.H.,Datar,R.H.,Hansen,K.M.,Thundat,T.,Cote,R.J.,and Majumdar,A.,Bioassay of prostate-specific antigen(PSA) using microcantilevers.Nature Biotechnology,2001,19:856-860.
    [30]Weeks,B.L.,Camarero,J.,Noy,A.,Miller,A.E.,Stanker,and L.,De Yoreo,J.J.,A microcantilever -based pathogen detector.Scanning,2003,25:297-299.
    [31]Velanki,S.,and Ji,H.F.,Detection of feline coronavirus using microcantilever sensors.Measurement Science & Technology,2006,17:2964-2968.
    [32]薛长国,李凯,朱娟娟,张青川,刘红,伍小平和刘兢,微梁传感研究谷胱甘肽转硫酶抗原抗体特异结合.实验力学,2007,22(3-4):407-412.
    [33]Dutta,P.,Tipple,C.A.,Lavrik,N.V.,Datskos,P.G.,Hofstetter,H.,Hofstetter,O.,and Sepaniak,M.J.,Enantioselective sensors based on antibody-mediated nanomechanics.Analytical Chemistry,2003,75:2342-2348.
    [34]Arntz,Y.,Seelig,J.D.,Lang,H.P.,Zhang,J.,Hunziker,P.,Ramseyer,J.P.,Meyer,E.,Hegner,M.,and Gerber,C.,Label-free protein assay based on a nanomechanical cantilever array.Nanotechnology,2003,14:86-90.
    [35]Grogan,C.,Raiteri,R.,O'Connor,G.M.,Glynn,T.J.,Cunningham,V.,Kane,M.,Charlton,M.,and Leech,D.,Characterisation of an antibody coated microcantilever as a potential immuno-based biosensor.Biosensors & Bioelectronics,2001,17:201-207.
    [36]Suri,C.R.,Kaur,J.,Gandhi,S.,and Shekhawat G.S.,Label-free ultra-sensitive detection of atrazine based on nanomechanics.Nanotechnology,2008,19:1-6.
    [37]Lee,J.H.,Hwang,K.S.,Park,J.,Yoon,K.H.,Yoon,D.S.,and Kim,T.S.,Immunoassay of prostate-specific antigen(PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever,Biosensors & Bioelectronics,2008,20:2157-2162.
    [38]谭伟明,博士毕业论文,北京:中国农业大学,2008.
    [39]Van Oss,C.J.,Hydrophobic,hydrophilic and other interactions in epitope-paratope binding.Molecular Immunology,1995,32(3):199-211.
    [40]张犇,邹婷和王剑文,青蒿素检测方法的研究近况.抗感染药学,2008,5(4):201-204.
    [41]蒋贵仲和陈灵,中药中马兜铃酸的毒性研究进展.中国农学通报,2008,24(9):84-87.
    [1]Lang,H.P.,Berger,R.,Andreoli,C.,Brugger,J.,Despont,M.,Vettiger,P.,Gerber,C.,Gimzewski,J.K.,Ramseyer,J.P.,Meyer,E.,and Guntherodt,H.J.,Sequential position readout from arrays of micromechanical cantilever sensors.Applied Physics Letters,1998,72(3):383-385.
    [2]Backmann,N.,Zahnd,C.,Huber,F.,Bietsch,A.,Pluckthun,A.,Lang,H.P.,Guntherodt,H.J.,Hegner,M.,Gerber,C.,A label-free immunosensor array using single-chain antibody fragments.Proceedings of the National Academy of Sciences of the United States of America,2005,102:14587-14592.
    [3]Yue,M.,Lin,H.,Dedrick,D.E.,Satyanarayana,S.,Majumdar,A.,Bedekar,A.S.,Jenkins,J.W.,and Sundaram,S.,A 2-D microcantilever array for multiplexed biomolecular analysis.Journal of Microelectromechanical Systems,2004,13(2):290-299.
    [4]Reed,J.,Schmit,J.,Han,S.,Wilkinson,P.,and Gimzewski,J.K.,Interferometric profiling of microcantilevers in liquid.Optics and Lasers in Engineering,2009,47(2):217-222.
    [5]段志辉,张青川,伍小平,潘亮,不可见光的光学成像方法及光学成像装置,发明专利:ZL03132258.1.
    [6]段志辉,张青川,伍小平,潘亮,红外热像成像仪,发明专利:ZL03132259.X.
    [7]张青川,黄渊,刘红,李凯,陈大鹏,伍小平,监测大分子构象转变和靶分子与探针分子生化反应的方法及装置.发明专利:200810022379.0.
    [8]张青川,伍小平,陈大鹏,一种微悬臂梁阵列生物芯片.发明专利:200610078269.7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700