用户名: 密码: 验证码:
量子计算机中的数据库处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在量子计算机中,数据库处理过程作为信息传输和信息处理的基本过程,一直是人们关注和研究的焦点。本文主要涉及量子数据库处理的四个方面,即量子线路的解析表示、在量子计算机上实现的数据库处理算法、利用对偶计算进行的数据库处理和非线性光学量子计算方案。
     在量子线路方面,本文提出两种新的理论方案。第一种是任意量子完全受控门的解析分解方案,此方案以通用量子门的形式分别给出了指数复杂度和多项式复杂度的量子线路图和解析分解结果。第二种方案是基于量子逻辑门分解的纠缠Bell态、GHZ态和W态量子分析器方案,为在实验上制备和测量典型纠缠态提供了新的思路和方法。
     在量子数据库处理算法方面,本文提出了五种新的算法,包括仅需一次查询实现的平均叠加态单目标态的量子删除算法、任意叠加态多目标态的广义量子删除算法、大数据库单目标态的近似量子删除算法、量子插入算法和广义确定性量子搜索算法。前四种算法与经典算法相比,可以实现计算的指数加速。后一种算法是对现有的确定性量子搜索算法的推广和改进,具有更广的适应范围和更高的搜索效率。
     在利用对偶计算进行的数据库处理方面,本文提出在量子计算机上模拟对偶计算的模式,包括模拟2路对称对偶计算机的对偶模式和模拟多路非对称对偶计算机的广义对偶模式,进一步给出量子力学所允许的广义对偶门的概念。本文还提出三种在量子计算机上利用对偶模式实现的算法,即平均叠加态单目标态的定点搜索算法、平均叠加态单目标态的定点删除算法和任意叠加态多目标态的定点删除算法。
     在非线性光学量子计算方面,本文提出一种利用Mach-Zehnder干涉仪、旋光器件、非线性正单轴晶体和负单轴晶体实现的量子计算方案。在理想的实验条件下,此方案是确定性或近确定性的。
Quantum database processing is the basic process of information transmissionand information processing in quantum computers. It is an important topic in researchareas and has attracted attention of scientists. In this thesis, we focus on four areasin quantum database processing, i.e., analytic construction of quantum gates, quan-tum database processing, database processing based on duality properties and quantumcomputation with nonlinear optics.
     In the field of quantum circuit, we propose two theoretical protocols. Firstly,we present two analytic expressions that most generally simulate n-qubit controlled-Ugates using universal one-qubit gates and CNOT gates with exponential and polynomialcomplexity respectively. Based on analytic results of quantum gates, we present afull Bell, GHZ and W basis-states analyzer. It provides a new method and view forexperimental design of state initialization and quantum measurement.
     In the field of quantum database processing algorithm, we propose five new al-gorithms, i.e., quantum deletion algorithm which deletes a marked basis-state from aneven superposition of all basis-states with a single query, generalized quantum dele-tion algorithm which deletes M marked basis-states from arbitrary initial superposedstate, approximate quantum deletion algorithm which uses a fixed phase rotationπ/3to approximately delete a marked basis-state from a large database, quantum insertionalgorithm which inserts a marked basis-state into a superposed state with a single queryand generalized quantum search algorithm which searches M marked basis-states fromarbitrary initial distribution with certainty. The former four algorithms can achieve anexponential speedup compared to classical computing, the latter one algorithm is thegeneralization of the Long quantum search algorithm.
     In the field of database processing based on duality properties, to realize dualitycapability in quantum computers, we present duality mode and recycling mode of quan-tum computers to simulate a 2-slit symmetric duality computer. We present general- ized duality mode and generalized duality gates to simulate arbitrary duality computerin quantum computers. In addition, a fixed-point search algorithm and two fixed-pointdeletion algorithms in quantum computers using duality mode are presented.
     In the field of quantum computation with nonlinear optics, we propose a schemeof nonlinear optics quantum computation implemented by Mach-Zehnder interferom-eter, magnetic-induced Faraday rotation device, positive and negative uniaxial crystalwith second susceptibility and polarization-plastic device. Under ideal conditions, thesuccess probability of our scheme is deterministic or near-deterministic.
引文
[1] Nielsen M A, Chuang I L. Quantum computation and quantum information. Cambridge:Cambridge university press, 2000.
    [2]李承祖,黄明球,陈平行,等.量子通信和量子计算.长沙:国防科技大学出版社, 2000.
    [3]张永德.量子信息论物理原理和某些进展.武汉:华中师范大学出版社, 2001.
    [4]张永德.量子信息物理原理.北京:科学出版社, 2006.
    [5]戴葵,宋辉,刘芸,等.量子信息技术引论.长沙:国防科技大学出版社, 2001.
    [6]张镇九,张昭理,李爱民.量子计算与通信加密.武汉:华中科技大学出版社, 2002.
    [7]陈汉武.量子信息和量子计算简明教程.南京:东南大学出版社, 2006.
    [8]傅祖芸.信息论基础理论与应用.北京:电子工业出版社, 2001.
    [9]朱雪龙.应用信息论基础.北京:清华大学出版社, 2001.
    [10]吴鹤龄,崔林.计算机发展史的缩影.北京:高等教育出版社, 2000.
    [11] Bennett C H. Notes on the history of reversible computation. IBM J. Res. Dev., 1988,32(1):16–23.
    [12] Landauer R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev.,1961, 5(3):183–191.
    [13] Bennett C H. Logical reversibility of computation. IBM J. Res. Dev., 1973, 17(6):525–532.
    [14] Feynman R. Quantum mechanical computer. Found. Phys., 1986, 16(6):507–531.
    [15] Planck M. On the law of distribution of energy in the normal spectrum. Ann. der. Physik,1901, 4:553–563.
    [16] Einstein A. Uber einen die Erzeugung und Verwandlung des Lichtes betre?enden heuris-tischen Gesichtspunkt. Ann der. Physik, 1905, 17:132–148.
    [17] Benio? P. The computer as a physical system: a microscopic quantum mechanical Hamil-tonian model of computers as represented by Turing machines. J. Stat. Phys., 1980,22(5):563–591.
    [18] Feynman R. Quantum theory, the Church Turing principle and the universal quantum com-puter. Int. J. Theor. Phys., 1982, 21(6):467–488.
    [19] Feynman R. Simulating physics with computers. Int. J. Theor. Phys., 1982, 21(6):467–488.
    [20] Benio? P. Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys.,1982, 29(3):515–546.
    [21] Benio? P. Quantum mechanical models of Turing machines that dissipate no energy. Phys.Rev. Lett., 1982, 48(3):1581–1585.
    [22] Feynman R. Quantum mechanical computers. Optics News, 1985, 11(2):11–20.
    [23] Deutsch D. Quantum theory, the Church Turing principle and the universal quantum com-puter. Proceedings Royal Society of London A, 1985, 400:97–117.
    [24] Deutsch D. Quantum computational networks. Proceedings Royal Society of London A,1989, 425:73–90.
    [25] Berthiaume A, Brassard G. The quantum challenge to structural complexity theory. 7thIEEE Conference on Structure in Complexity Theory, IEEE, 1992:181–182.
    [26] Berthiaume A, Brassard G. Oracle quantum computation. Workshop on Physics of Com-putation: Phys. Comp. 92, 1992:195–199.
    [27] Shor P. Algorithms for quantum computation: discrete logarithm and factoring. in Proc. ofthe 35th Annual Symposium on Foundations of Computer Science, IEEE Computer SocietyPress, 1994:124–134.
    [28] Rivert R, Ahamir A, Adleman L. On digital signatures and publc-key-cryptosystems. Tech-nical report, MIT Laboratory for Computer Science, 1979.
    [29] Grover L K. A fast quantum mechanical algorithm for database search. Proceedings of theSymposium on the Foundations of Computer Science, 1996:212–219.
    [30] Grover L K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.Lett., 1997, 79(2):325–328.
    [31] Grover L K. Quantum computers can search arbitrarily large databases by a single query.Phys. Rev. Lett., 1997, 79(23):4709–4712.
    [32] Lloyd S. A potentially realizable quantum computer. Science, 1993, 261:1569–1571.
    [33] Cirac J I, Zoller P. Quantum computations with cold trapped ions. Phys. Rev. Lett., 1995,74(20):4091–4094.
    [34] Steane A. The ion trap quantum information processor. Appl. Phys. B: Laser O., 1997,64:623–642.
    [35] Monroe C, Meekhof D M, al. B E K. Demonstration of a fundamental quantum logic gate.Phys. Rev. Lett., 1995, 75(25):4714–4717.
    [36] Gershenfeld N A, Chuang I L. Bulk spin resonance quantum computation. Science, 1997,275:350–355.
    [37] Cory D G, Fahmy A F, Havel T F. Nuclear magnetic resonance spectroscopy: an experi-mental accessible paradigm for quantum computing. Physica D, 1998, 1201(1):82–101.
    [38] Chuang I L, Gershenfeld N, Kubinec M. Experimental implementation of fast quantumsearching. Phys. Rev. Lett., 1998, 80(15):3408–3411.
    [39] Chuang I L, Vandersypen L M K, Zhou X L. Experimental realization of a quantum algo-rithm. Nature, 1998, 393:143–146.
    [40] Jones J A, Mosca M. Implementation of a quantum algorithm on a nuclear magnetic reso-nance quantum computer. J. Chem. Phys., 1998, 109(5):1648–1653.
    [41] Bennett C H, Cre′peau C, Jozsa R, et al. Teleportation an unknown quantum state via dualclassical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 1993, 70(13):1895–1899.
    [42] Fang X M, Zhu X W, Feng M, et al. Experimental implementation of dense coding usingnuclear magnetic resonance. Phys. Rev. A, 2000, 61(2):022307.
    [43] Havel T F, Semaroo S, Tseng C H, et al. Principles and demonstrations of quantum infor-mation processing by NMR spectroscopy. Appl. Algeb. in Eng. Comm. and Comp., 2000,10(4):339–374.
    [44] Tseng C H, Somaroo S, Sharf Y, et al. Quantum simulation of a three-body-interactionHamiltonian on an NMR quantum computer. Phys. Rev. A, 1999, 61(1):012302.
    [45] Tseng C H, Somaroo S, Sharf Y, et al. Quantum simulation with natural decoherence. Phys.Rev. A, 2000, 62(3):032309.
    [46] Marx R, Fahmy A F, Myers J M, et al. Approaching five-bit NMR quantum computing.Phys. Rev. A, 2000, 62(1):012310.
    [47] Peng X H, Zhu X W, Fang M, et al. Experimental implementation of Hogg algorithm on athree-quantum-bit NMR quantum computer. Phys. Rev. A, 2002, 65(4):042315.
    [48] Cummins H K, Jones C, Furze A, et al. Approximate quantum cloning with nuclear mag-netic resonance. Phys. Rev. Lett., 2002, 88(18):187901.
    [49] Vandersypen L M K, Ste?en M, Breyta G, et al. Experimental realization of Shor’s quantumfactoring algorithm using nuclear magnetic resonance. Nature, 2001, 414:883–887.
    [50] Long G L, Xiao L. Experimental realization of a fetching algorithm in a 7-qubit NMR spinLiouville space computer. J. Chem. Phys., 2003, 119(16):8473–8481.
    [51] Wei D X, Luo J, Sun X P, et al. NMR experimental realization of seven-qubit D-J algorithmand controlled phase-shift gates with improved precision. Chin. Sci. Bull., 2003, 48(3):239–243.
    [52] Knill E, La?amme R, Martinez R, et al. An algorithm benchmark for quantum informationprocessing. Nature, 2000, 404:368–370.
    [53] Du J F, Shi M J, Wu J H, et al. Implementing universal multiqubit quantum logic gates inthree-and four-spin systems at room temperature. Phys. Rev. A, 2001, 63(1):042302.
    [54] Long G L, Yan H Y, Li Y S, et al. Experimental NMR realization of a generalized quantumsearch algorithm. Phys. Lett. A, 2001, 286(2-3):121–126.
    [55] Xiao L, Long G L, Yan H Y, et al. Experimental realization of Bruschweiler’s exponentiallyfast search algorithm in a homonuclear system. J. Chem. Phys., 2002, 117(7):3310–3315.
    [56] Xiao L, Long G L. Fetching marked items from an unsorted database in NMR ensemblecomputing. Phys. Rev. A, 2002, 66(5):052320.
    [57] Zhang J F, Lu Z H, Shan L, et al. Realization of generalized quantum searching usingnuclear magnetic resonance. Phys. Rev. A, 2002, 65(3):034301.
    [58] Zhang J F, Lu Z H, Shan L, et al. Synthesizing NMR analogs of Einstein-Podolsky-Rosenstates using the generalized Grover’s algorithm. Phys. Rev. A, 2002, 66(4):044308.
    [59] Zhang J F, Lu Z H, Deng Z W, et al. NMR analogue of the generalized Grovers algorithmof multiple marked states and its application. Chinese Physics, 2003, 12(7):700–707.
    [60] Zhou X, Luo J, Sun X P, et al. NMR signals enhanced by spin-exchange optical pumpingunder ?ow solid and liquid Xe-129. Acta Phys. Sin., 2002, 51(10):2221–2224.
    [61] Yang X D, Miao X J. The theoretic design of NMR pulses program of arbitrary N-qubitGrover’s algorithm and the NMR experiment proof. Sci. China Ser. A, 2002, 45(12):1610–1619.
    [62] Pellizzari T, Gardiner S A, Cirac J I, et al. Decoherence continuous observation and quantumcomputing: a cavity QED model. Phys. Rev. Lett., 1995, 75(21):3788–3791.
    [63] Barenco A, Deutsch D, Ekert A, et al. Conditional quantum dynamics and logic gates. Phys.Rev. Lett., 1995, 74(20):4083–4086.
    [64] Sleator J, Weinfurter H. Quantum teleportation and quantum computation based on cavityQED. Phys. Rev. Lett., 1995, 74(20):4087–4090.
    [65] Enk S J, Cirac J I, Zoller P. Purifying two-bit quantum gates and joint measurements incavity QED. Phys. Rev. Lett., 1997, 79(25):5178–5181.
    [66] Rauschenbeutel A, Nogues G, Osnaghi S, et al. Coherent operation of a tunable quantumphase gate in cavity QED. Phys. Rev. Lett., 1999, 83(24):5166–5169.
    [67] Imamoglu A, Awschalom D D, Burkard G, et al. Quantum information processing usingquantum dot spins and cavity QED. Phys. Rev. Lett., 1999, 83(20):4204–4207.
    [68] Zheng S B, Guo G C. E?cient scheme for two-atom entanglement and quantum informationprocessing in cavity QED. Phys. Rev. Lett., 2000, 85(11):2392–2395.
    [69] Hollenberg L C L, Salgueiro A N, Nemes M C. Cavity QED Deutsch quantum computer.Phys. Rev. A, 2001, 64(4):042309.
    [70] Feng M. Quantum computing in cavity QED with cold trapped ions by bichromatic radia-tion. Phys. Rev. A, 2002, 65(6):064301.
    [71] Yi X X, Su X H, You L. Conditional quantum phase gate between two 3-state atoms. Phys.Rev. Lett., 2003, 90(9):097902.
    [72] Feng M, D’Amico I, Zanardi P, et al. Spin-based quantum-information processing withsemiconductor quantum dots and cavity QED. Phys. Rev. A, 2003, 67(1):014306.
    [73] Duan L M, Kuzmich A, Kimble H J. Cavity QED and quantum-information processingwith hot trapped atoms. Phys. Rev. A, 2003, 67(3):032305.
    [74] Yang C P, Chu S I, Han S Y. Quantum information transfer and entanglement with SQUIDqubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter.Phys. Rev. Lett., 2004, 92(11):117902.
    [75] Linden N, Barjat H, Kupce E, et al. How to exchange information between two couplednuclear spins: the universal SWAP operation. Chem. Phys. Lett., 1999, 307(3-4):198–204.
    [76] Shlimak I, Safarov V I, Vagner I D. Isotopically engineered silicon/silicon-germaniumnanostructures as basic elements for a nuclear spin quantum computer. J. Phys.-Condens.Mat., 2003, 13(26):6059–6065.
    [77] Suter D, Lim K. Scalable architecture for spin-based quantum computers with a single typeof gate. Phys. Rev. A, 2002, 65(5):052309.
    [78] Pershin Y V, Vagner I D, Wyder P. Indirect hyperfine interaction between nuclear spinqubits in mesoscopic wires and rings. J. Phys.-Condens. Mat., 2003, 15(6):997–1006.
    [79] Kane B E. A silicon-based nuclear spin quantum computer. Nature, 1998, 393:133–137.
    [80] Wang Y D, Zhang P, Zhou D L, et al. Fast entanglement of two charge-phase qubits throughnonadiabatic coupling to a large Josephson junction. Phys. Rev. B, 2004, 70(22):224515.
    [81] Zhang P, Wang Z D, Sun J D, et al. Holonomic quantum computation using rf supercon-ducting quantum interference devices coupled through a microwave cavity. Phys. Rev. A,2005, 71(4):042301.
    [82] Loss D, DiVincenzo D P. Quantum computation with quantum dots. Phys. Rev. A, 1998,57(1):120–126.
    [83] Burkard G, DiVincenzo D L D P. Coupled quantum dots as quantum gates. Phys. Rev. B,1999, 59(3):2070–2078.
    [84] Averin D V. Adiabatic quantum computation with Cooper pairs. Solid State Commun.,1998, 105(10):659–664.
    [85] Io?e L B, Geshkenbein V B, Feigelman M V, et al. Environmentally decoupled sds-waveJosephson junctions for quantum computing. Nature, 1999, 398:679–681.
    [86] Yamamoto T, Pashkin Y A, Astafiev O, et al. Demonstration of conditional gate operationusing superconducting charge qubits. Nature, 2004, 425:941–944.
    [87] Raussendorf R, Browne D E, Briegel H J. The one-way quantum computer a non-networkmodel of quantum computation. Modern Optics, 2002, 49(8):1299–1306.
    [88] Raussendorf R, Briegel H J. Computational model underlying the one-way quantum com-puter. Quantum Information and Computation, 2002, 2(6):443–486.
    [89] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics.Phys. Rev. Lett., 1987, 58(20):2059–2062.
    [90] John S. Strong localization of photons in certain disordered dielectric superlattices. Phys.Rev. Lett., 1987, 58(23):2486–2489.
    [91] Kwiat P G, Mitchell J R, Schwindt P D D, et al. Grover’s search algorithm: an opticalapproach. J. Mod. Optics, 2000, 47(2-3):257–266.
    [92] Knill E, La?amme R, Milburn G J. A scheme for e?cient quantum computation with linearoptics. Nature, 2001, 409:46–52.
    [93] Angelakis D G, Santos M F, Yannopapas V, et al. Quantum computation in photonic crys-tals. quant–ph/0410189.
    [94] Munro W J, Nemoto K, Spiller T P, et al. E?cient optical quantum information processing.Journal of Optics B, 2005, 7(7):S135–S140.
    [95] Petrosyan D. Towards deterministic optical quantum computation with coherently drivenatomic ensembles. Journal of Optics B, 2005, 7(7):S141–S151.
    [96] Lecerf Y. Reversible Turing machines, recursive insolubility for n in N of the equation u =θto the n, whereθis an isomorphism of codes. Comptes Rendus de l’Acade′mie Franc?aisedes Sciences, 1963, 257:2597–2600.
    [97] Bennett C H. Time/Space trade-o?s for reversible computation. SIAM J. Comput., 1989,18(4):766–776.
    [98] Bennett C H, Landauer R. Fundamental physical limits of computation. Sci. Am., 1985,253(1):48–56.
    [99] Fredkin E, To?oli T. Conservative logic. Int. J. Theor. Phys., 1982, 21(3):219–253.
    [100] To?oli T. Reversible computing. in Automata, Languages and Programming, edited by J.W. de Bakker and J. van Leeuwen, Springer, New York, 1982:632–644.
    [101] Margolus N. Parallel quantum computation. in Complexity, Entropy and the Physics ofInformation, edited by W. H. Zurek, 1990:273–287.
    [102] Watrous J. On one-dimensional quantum cellular automata. Proceedings of the 36th IEEESymposium on Foundations of Computer Science, 1995:528–537.
    [103] Yao A C. Quantum circuit complexity. Proceedings of the 34th Annual Symposium on theFoundations of Computer Science, IEEE Computer Society, Los Angeles, 1993:352–361.
    [104] DiVincenzo D P. 2-bit gates are universal for quantum computation. Phys. Rev. A, 1995,51(2):1015–1022.
    [105] Barenco A. A universal 2-bit gate for quantum computation. Proc. R. Soc. London Ser. A,1995, 449(1937):678–683.
    [106] Deutsch D, Barenco A, Ekert A. Universality in quantum computation. Pro. R. Soc. LondonA, 1995, 449(1937):669–677.
    [107] Lloyd S. Almost any quantum logic gate is universal. Phys. Rev. Lett., 1995, 75(2):346–349.
    [108] Sleator T, Weinfurter H. Realizable universal quantum logic gates. Phys. Rev. Lett., 1995,74(20):4087–4090.
    [109] Chau H F, Wilczek F. Simple realization of the Fredkin gate using a series of two-bodyoperators. Phys. Rev. Lett., 1995, 75(4):748–750.
    [110] Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation. Phys.Rev. A, 1995, 52(5):3457–3466.
    [111] Brune M, Nussenzveig P, Schmidt-Kaler F, et al. From Lamb shift to light shifts: vacuumand subphoton cavity fields measured by atomic phase sensitive detection. Phys. Rev. Lett.,1994, 72(21):3339–3342.
    [112] Turchette Q A, Hood C J, Lange W, et al. Measurement of conditional phase shifts forquantum logic. Phys. Rev. Lett., 1995, 75(25):4710–4713.
    [113] Cirac J I, Zoller P. Quantum computations with cold trapped ions. Phys. Rev. Lett., 1995,74(20):4091–4094.
    [114] Lloyd S. Envisioning a quantum supercomputer. Science, 1994, 263:695–699.
    [115] Yao A C. The complexity of pattern matching for a random string. SIAM Journal onComputing, 1979, 8(3):368–387.
    [116] Bernstein E, Vazirani U. Quantum complexity theory. in Proc. 25th ACM Symp. Theory ofComputation, 1993:11–20.
    [117] Berthiaume A, Brassard G. Oracle quantum computing. J. Mod. Opt., 1994, 41(12):2521–2535.
    [118] Navarro G, Fredriksson K. Average complexity of exact and approximate multiple stringmatching. Theoretical Computer Science, 2004, 321(2-3):283–290.
    [119] Golub C H, Loan C F V. Matrix Computations. Baltimore: Johns Hopkins Press, 1996.
    [120] Paige C C, Wei M. History and Generality of the CS Decomposition. Linear Algebra Appl.,1994, 208(209):303–326.
    [121] Shende V V, Markon I L, Bullock S S. Minimal universal two-qubit controlled-not-basedcircuits. Phys. Rev. A, 2004, 69(6):062321.
    [122] Vatan F, Williams C P. Optimal quantum circuits for general two-qubit gates. Phys. Rev. A,2004, 69(3):032315.
    [123] Zhang J, Vala J, Sastry S, et al. Minimum construction of two-qubit quantum operations.Phys. Rev. Lett., 2004, 93(2):020502.
    [124] Vidal G, Dawson C M. Universal quantum circuit for two-qubit transformations with threecontrolled-not gates. Phys. Rev. A, 2004, 69(1):010301.
    [125] Khaneja N, Glaser S. Cartan decomposition of S U(2n), constructive controllability of spinsystems and universal quantum computing. Chem. Phys., 2001, 267(1-3):11–23.
    [126] Vatan F, Williams C P. Realization of a general three-qubit quantum gate. quant–ph/0401178.
    [127] Mottonen M, Vartiainen J J, Bergholm W, et al. Quantum circuits for general multiqubitgates. Phys. Rev. Lett., 2004, 93(13):130502.
    [128] Bullock S S, Markov I L. Asymptotically optimal circuits for arbitrary n-qubit diagonalcomputations. Quant. Inf. Comput., 2004, 4(1):27–47.
    [129] Beckman D, Chari A N, Devabhaktuni S, et al. E?cient networks for quantum factoring.Phys. Rev. A, 1996, 54(2):1034–1063.
    [130] Knill E. Approximation by quantum circuits. quant–ph/9508006.
    [131] Cybenko G. Reducing quantum computations to elementary unitary operations. Compu.Sci. Eng., 2001, 3(2):27–32.
    [132] Aho A V, Svore K M. Compiling quantum circuits using the palindrome transform. quant–ph/0311008.
    [133] Tucci R R. A rudimentary quantum compiler. quant–ph/9902062 (2001, 2nd version).
    [134] Bullock S S. Note on the Khaneja Glaser Decomposition. quant–ph/0403143.
    [135] Vartiainen J J, Mottonen M, Salomaa M M. E?cient decomposition of quantum gates.Phys. Rev. Lett., 2004, 92(17):177902.
    [136] Press W H, Flannery B P, Teukolsky S A, et al. Towards robust memetic algorithms. inNumerical Recipes in FORTRAN: The Art of Scientific Computing, Cambridge UniversityPress, United Kingdom, 1992:886–888.
    [137] Deutsch D, Jozsa R. Rapid solution of problems by quantum computation. Proc. R. Soc.London A, 1992, 439:553–558.
    [138] Simon D. On the power of quantum computation. Proceedings of 35th Annual Symposiumon Foundations of Computer Science, IEEE Press, Los Alamitos, CA, 1994:116–123.
    [139] Grover L K. Quantum computer can search rapidly by using almost any transformation.Phys. Rev. Lett., 1998, 80(19):4329–4332.
    [140] Boyer M, Brassard G, H?yer P, et al. Tight bounds on quantum searching. Fortsch. Phys.-Prog. Phys., 1998, 46(4-5):493–505.
    [141] Brassard G, H?yer P, Tapp A. Quantum counting. quant–ph/9805082.
    [142] Mosca M. Quantum searching, counting and amplitude amplification. Proceedings of In-ternational Workshop in Randomized Algorithms, 1998:90–100.
    [143] Hogg T. Highly structured searches with quantum computers. Phys. Rev. Lett., 1998,80(11):2473–2476.
    [144] Bruschweiler R. Novel strategy for database searching in spin Liouville space by NMRensemble computing. Phys. Rev. Lett., 2000, 85(22):4815–4818.
    [145] Turing A M. On computable numbers, with an application to the Entscheidungs problem.Proceedings of the London Mathematical Society, 1936, 2(42):230–265.
    [146] Durr C. A quantum algorithm for finding the minimum. quant–ph/9602016.
    [147] Twamley J J. A hidden shift quantum algorithm. J. Phys. A, 2000, 33(48):8973–8979.
    [148] Schack R. Using a quantum computer to investigate quantum chaos. Phys. Rev. A, 1998,57(3):1634–1635.
    [149] Terranco M, Georgeot B, Shepelyansky D K. Strange attractor simulated on a quantumcomputer. quant–ph/0203062.
    [150] Bacon D, Childs A M, Chuang I L, et al. Universal simulation of Markovian quantumdynamics. quant–ph/0203062.
    [151] Havukainen M, Probny G, Stenholm S, et al. Quantum simulation of Optical Systems. J.Mod. Optic, 1999, 46(9):1347–1367.
    [152] Brassard G. Searching a quantum phone book. Science, 1997, 275:627–628.
    [153] Brassard G, H?yer P. An exact quantum polynomial-time algorithm for Simon’s prob-lem. Proceedings of 35th Annual Symposium on the Foundations of Computer Sciences,1997:116–123.
    [154] Grover L K. Quantum search on structured problems. Chaos, Solitons and Fractals, 1999,10(10):1695–1705.
    [155] Benio? P. Space searches with a quantum robot. Quantum computation and information.Washington DC: ACM Series on Contemporary Mathematics, 2000, 305:1–12.
    [156] Guo H, Long G L, Sun Y. A quantum algorithm for finding a Hamilton circuit. Commu.Theor. Phys., 2001, 35(4):385–388.
    [157] Guo H, Long G L, Li F. Quantum algorithms for some well-known NP problems. Commu.Theor. Phys., 2002, 37(4):424–426.
    [158] Grover L K. Synthesis of quantum superpositions by quantum computation. Phys. Rev.Lett., 2000, 85(6):1334–1337.
    [159] Aharonov D. Noisy quantum computation[D]. Jerusalem: The Hebrew University, 1999.
    [160] Long G L, Xiao L, Sun Y. Phase matching condition for quantum search with a generalizedquantum database. Phys. Lett. A, 2002, 294(3-4):143–152.
    [161] Chakraborty S, Radhakrishnan J, Raghunathan N. Bounds on error-reduction withfew quantum queries. Proceedings of RANDOM and APPROX, Berkeley, California,2005:245–256.
    [162] Brassard G, H?yer P, Mosca M, et al. Quantum amplitude amplification and estimation.AMS Contemporary Mathematics Series, 2002, 305:53–84.
    [163] Biron D, Biham O, Biham E, et al. Generalized Grover search algorithm for arbitrary initialamplitude distribution. Lecture Notes in Computer Science, 1999, 1509:140–147.
    [164] Biham E, Biham O, Biron D, et al. Analysis of generalized Grover quantum search algo-rithms using recursion equations. Phys. Rev. A, 2001, 63(1):012310.
    [165] Zalka C. A Grover-based quantum search of optimal order for an unknown number ofmarked elements. quant–ph/9902049.
    [166] Long G L, Zhang W L, Li Y S, et al. Arbitrary phase rotation of the marked state can not beused for Grover’s quantum search algorithm. Commu. Theor. Phys., 1999, 32(3):335–338.
    [167] Long G L, Li Y S, Zhang W L, et al. Phase matching in quantum searching. Phys. Lett. A,1999, 262(1-2):27–34.
    [168] Bhattacharya N, Heuvell HBV , Spreeuw R. Implementation of quantum search algorithmusing classical Fourier optics. Phys. Rev. Lett., 2002, 88(13):137901.
    [169]韩其智,孙洪洲.群论.北京:北京大学出版社, 1987.
    [170] Long G L, Tu C C, Li Y S, et al. An S O(3) picture for quantum searching. J. Phys. A, 2001,34(4):861–866.
    [171] Li D F, Li X X. More general quantum search algorithm Q = ?IγVIτU and the preciseformula for the amplitude and the nonsymmetric e?ects of di?erent rotating angles. Phys.Lett. A, 2001, 287(5-6):304–316.
    [172] Li D F, Li X X, Huang H T, et al. Invariants of Grovers algorithm and the rotation in space.Phys. Rev. A, 2002, 66(4):044304.
    [173] Li C M, Hwang C C, Hsieh H Y, et al. General phase-matching condition for a quantumsearching algorithm. Phys. Rev. A, 2002, 65(3):034305.
    [174] H?yer P. Arbitrary phases in quantum amplitude amplification. Phys. Rev. A, 2000,62(5):052304.
    [175] Long G L, Li Y S, Zhang W L, et al. Dominant gate imperfection in Grover’s quantumsearch algorithm. Phys. Rev. A, 2000, 61(4):042305.
    [176] Niwa J, Matsumoto K, Imai H. General-purpose parallel simulator for quantum computing.Phys. Rev. A, 2002, 66(6):062317.
    [177] Shenvi N, Brown K R, Whaley K B. E?ects of a random noisy oracle on search algorithmcomplexity. Phys. Rev. A, 2003, 68(5):052313.
    [178] Beals R, Buhrman H, Cleve R, et al. Quantum lower bounds by polynomials. Proceedingsof the 39th Annual Symposium on Foundations of Computer Science, IEEE, Los Angeles,California, 1998:352–361.
    [179] Bennett C H, Bernstein E, Brassard G, et al. Strengths and weaknesses of quantum com-puting. SIAM J. Comput., 1997, 26(5):1510–1523.
    [180] Zalka C. Simulating quantum systems on a quantum computer. Proc. Soc. London A, 1998,454(1969):313–322.
    [181] Chen G, Diao Z. Exponentially fast quantum search algorithm. quant–ph/0011109.
    [182] Guo H, Long G L, Sun Y. E?ects of imperfect gate operations in Shor’s prime factorizationalgorithm. J. Chin. Chem. Soc., 2001, 48(4):449–454.179
    [183] Wu X D, Long G L. Verifier-based algorithm for unsorted database search problem. Int. J.Quant. Inf., 2007, 5(4):597–604.
    [184] Long G L. Grover algorithm with zero theoretical rate. Phys. Rev. A, 2001, 64(2):022301.
    [185] Chi D P, Kim J. Quantum database search with certainty by a single query. Chaos, Solitonsand Fractals, 1999, 10(10):1689–1693.
    [186] Hu C R. Family of sure-success quantum algorithms for solving a generalized Grover searchproblem. Phys. Rev. A, 2002, 66(4):042301.
    [187] Hsieh J Y, Li C M. General S U(2) formulation for quantum searching with certainty. Phys.Rev. A, 2002, 65(5):052322.
    [188] Grover L K. Fixed-point quantum search. Phys. Rev. Lett., 2005, 95(15):150501.
    [189] Tulsi T, Grover L K, Patel A. A new algorithm for fixed point quantum search. QuantumInformation and Computation, 2006, 6(6):483–494.
    [190] Li D F, Chen J P, Li X R, et al. Performance of equal phase-shift search for one iteration.Eur. Phys. J. D, 2007, 45(2):335–340.
    [191] Li D F, Li X R, Huang H T, et al. Fixed-point quantum search for di?erent phase shifts.Phys. Lett. A, 2007, 362(4):260–264.
    [192] Jones J A, Mosca M, Hansen R H. Implementation of a quantum search algorithm on aquantum computer. Nature, 1998, 393:344–346.
    [193] Vandersypen L M K, Ste?en M, Sherwood M H, et al. Implementation of a three-quantum-bit search algorithm. Appl. Phys. Lett., 2000, 76(5):646–648.
    [194] Yang X D, Wei D X, Luo J, et al. Modification and realization of Bruschweiler’s search.Phys. Rev. A, 2002, 66(4):042305.
    [195] Wei L F, Xiao L, Hu X D, et al. E?ects of dynamical phases in Shor’s factoring algorithmwith operational delays. Phys. Rev. A, 2005, 71(3):022317.
    [196] Zhirov O V, Shepelyansky D L. Dissipative decoherence in the Grover algorithm. Eur.Phys. J. D, 2006, 38(2):405–408.
    [197] Gingrich R M, Williams C P, Cerf N J. Generalized quantum search with parallelism. Phys.Rev. A, 2002, 61(5):052313.
    [198] Pang C Y, Zhou Z W, Guo G C. A hybrid quantum encoding algorithm of vector quantiza-tion for image compression. Chinese Physics, 2006, 15(12):3039–3043.
    [199] Mehring M, Muller K, Averbukh I S, et al. NMR experiment factors numbers with Gausssums. Phys. Rev. Lett., 2007, 98(12):120502.
    [200] Long G L, Xiao L. Parallel quantum computing in a single ensemble quantum computer.Phys. Rev. A, 2004, 69(6):052303.
    [201] Long G L. The general interference principle and the duality computer. Commu. Theor.Phys., 2006, 45(5):825–844. It was brie?y mentioned in an abstract (5111–5153) (TrackingNo. FN03–FN02–32) submitted to SPIE conferece of Fluctuations and Noise in Ohotonicsand Quantum Optics in 18 Coc. 2002.
    [202] Gudder S. Mathematical theory of duality quantum computers. Quantum InformationProcessing, 2007, 6(1):37–48.
    [203] Long G L. Mathematical theory of the duality computer in the density matrix formalism.Quantum Information Processing, 2007, 6(1):49–54.
    [204] Wang Y Q, Du H K, Dou Y N. Note on generalized quantum gates and quantum operations.Int. J. Theor. Phys., DOI 10.1007/s10773-008-9659-4.
    [205] Du H K, Wang Y Q, Xu J L. Applications of the generalized Luders theorem. Journal ofMathematical Physics, 2008, 49(1):013507.
    [206] Gudder S. Duality quantum computers and quantum operations. Int. J. Theor. Phys., 2008,47(1):268–279.
    [207] Long G L, Liu Y. Duality computing in quantum computers. quant–ph/0708.1986.
    [208] Du H K, Wang Y Q, Xu J L. Applications of the generalized Luders theorem. Journal ofMathematical Physics, 2008, 49(1):013507.
    [209] Wang W Y, Shang B, Wang C, et al. Prime factorization in the duality computer. Commu.Theor. Phys., 2007, 47(3):471–473.
    [210]喀兴林.高等量子力学.北京:高等教育出版社, 2001.
    [211] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical realitybe considered complete? Phys. Rev., 1935, 47(10):777–780.
    [212] Bhom D. Quantum Theory. Prentice Hall, Englewood Cli?s, 1995.
    [213]曽谨言,裴寿镛.量子力学新进展(第一辑).北京:北京大学出版社, 2000.
    [214]曽谨言,裴寿镛,龙桂鲁.量子力学新进展(第二辑).北京:北京大学出版社, 2001.
    [215]曽谨言,裴寿镛,龙桂鲁.量子力学新进展(第三辑).北京:清华大学出版社, 2003.
    [216] Greenberger D M, Horne M A, Zerlinger Z. Going beyond Bell’s theorem. in Bell’s the-orem, quantum theory, and conceptions of the universe, Dordrecht: Kluwer, M. Kafatos(Ed.), 1989.
    [217] Greenberger D M, Horne M A, Shimony A, et al. Bell′s theorem without inequalities.Am. J. Phys., 1990, 58(12):1131–1143.
    [218] Mermin N D. Quantum mysteries revisited. Am. J. Phys., 1990, 58(8):731–734.
    [219] Mermin N D. What’s wrong with these elements of reality. Phys. Today, 1990, 43(6):9–11.
    [220] Alber G, Beth T, Horodecki M, et al. Quantum information, an introduction to basic theo-retical concepts and experiment. Berlin Heidelberg: Springer Verlag, 2001.
    [221] Dur W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways. Phys.Rev. A, 2000, 62(6):062314.
    [222]刘晓曙.量子纠缠及其在量子通讯中的应用[硕士学位论文].济南:山东师范大学,2002.
    [223] Kim Y H, Kulik S P, Shih Y. Quantum teleportation of a polarization with a Kerr nonlin-earity. Phys. Rev. Lett., 2000, 58(2):445–448.
    [224] Michler M, Mattle K, Weinfurter H, et al. Interferometric Bell-state analysis. Phys. Rev. A,1996, 53(3):R1209–R1212.
    [225] Ekert A, Jozsa R. Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys.,1996, 68(3):733–753.
    [226] Bouwneester D, Ekert A, Zeilinger A. The physics of quantum information. Spring, 2000..
    [227] Preskill J. Quantum information and quantum computation. California Institute of Technol-ogy, 1998.
    [228] Long G L, Liu Y. Search an unsorted database with quantum mechanics. Front. Comput.Sci. China, 2007, 1(3):247–271.
    [229] Shang B. Query complexity for searching multiple marked states from an unsorted database.quant–ph/0604059.
    [230] Long G L, Sun Y. E?cient scheme for initializing a quantum register with an arbitrarysuperposed state. Phys. Rev. A, 2001, 64(1):014303.
    [231] DiVincenzo D P, Smolin J. Results on two-bit gate design for quantum computers. Pro-ceedings of the Workshop on Physics and Computation, 1994:14–23.
    [232] Zhang J, Xie C D, Peng K C. Controlled dense coding for continuous variales using three-particle entangled states. Phys. Rev. A, 2002, 66(3):022318.
    [233] Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 1992, 69(20):2881–2884.
    [234] Barenco A, Ekert A. Dense coding based on quantum entanglement. J. Mod. Phys., 1995,42(6):1253–1259.
    [235] Hausladen P, Jozsa R, Schumacher B, et al. Classical information capacity of a quantumchannel. Phys. Rev. A, 1996, 54(3):1869–1876.
    [236] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state viadual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 1996, 70(13):1895–1899.
    [237] Nielsen M A, Caves C M. Reversible quantum operations and their application to telepor-tation. Phys. Rev. A, 1997, 55(4):2547–2556.
    [238] Braunstein S L, Kimble H J. Teleportation of continuous quantum variables. Phys. Rev.Lett., 1998, 80(4):869–872.
    [239] DelRe E, Crosignani B, Di P P. Scheme for total quantum teleportation. Phys. Rev. Lett.,2000, 84(13):2989–2992.
    [240] Rudolph T, Sanders B C. Requirement of optical coherence for continuous-variable quan-tum teleportation. Phys. Rev. Lett., 2001, 87(7):077903.
    [241] Furusawa A, Sorensen J L, Braunstein S L, et al. Unconditional quantum teleportation.Science, 1998, 282:706–709.
    [242] Lombardi E, Sciarrino F, Popescu S, et al. Teleportation of a vacuum-one-photon qubit.Phys. Rev. Lett., 2002, 88(7):070402.
    [243] Bartlett S D, Munro W J. Quantum teleportation of optical quantum gates. Phys. Rev. Lett.,2003, 90(11):117901.
    [244] Fattal D, Diamanti E, Inoue K, et al. Quantum teleportation with a quantum dot singlephoton source. Phys. Rev. Lett., 2004, 92(3):037904.
    [245] Yeo Y, Chua W K. Teleportation and dense coding with genuine multipartite entanglement.Phys. Rev. Lett., 2006, 96(6):060502.
    [246] Li C X, Wang C Z, Guo G C. Entanglement and teleportation through thermal equilibriumstate of spins in the XXZ model. Optics Communications, 2004, 260(2):741–748.
    [247] Page L, Brin S, Motwani R, et al. The pagerank citation ranking: Bringing order to the web.Technical report, Stanford Digital Libraries, 1998.
    [248] Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. ComputerNetworks and ISDN Systems, 1998, 30(1-7):107–117.
    [249]田鲁怀.数据结构.北京:电子工业出版社, 2006.
    [250] Freadman M L, Tarjan R E. Fibonacci heaps and their uses in improved network optimiza-tion algorithms. Journal of the Association for Computing Machinery, 1987, 34(3):596–615.
    [251] Abuaiadh D, Kingston J H. Are Fibonacci heaps optimal? Algorithms and Computation.5th International Symposium, ISAAC’94 Proceedings, 1994:442–450.
    [252] Liu Y, Long G L. Deleting a marked item from an unsorted database with a single query.quant–ph/0710.3301.
    [253] Feynman R F, Leighton R B, Sands M. The Feynman Lectures on Physics. Addison-WesleyPublishing Company, 1963, 1:37–39.
    [254] Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299:802–803.
    [255] d’Dspagnat B. Veiled reality: an analysis of present-day quantum mechanical concepts.Addison-Wesley Publishing Company, 1995, 1:98–10.
    [256] Long G L, Zhou Y F, Jin J Q, et al. Density matrix in quantum mechanics and distinctnessof ensembles having the same compressed density matrix. Found. Phys., 2006, 36(8):1217–1243.
    [257] Reck M, Zeilinger A, Bernstein H J, et al. Experimental realization of any discrete unitaryoperator. Phys. Rev. Lett., 1994, 73(1):58–61.
    [258] Stenholm S. Polarization coding of quantum information. Opt. Commun., 1996,123(1):287–296.
    [259] Cerf N J, Adami C, Kwiat P G. Optical simulation of quantum logic. Phys. Rev. A, 1998,57(3):R1477–R1480.
    [260] Summhammer J. Factoring and Fourier transformation with a Mach-Zehnder interferome-ter. Phys. Rev. A, 1997, 56(5):4324.
    [261] Spreeuw R J C. Classical analogy of entanglement. Found. Phys., 1998, 28(3):361–374.
    [262] Clauser J F, Dowling J P. Factoring integers with Young’s N-slit interferometer. Phys. Rev.A, 1996, 53(6):4587–4590.
    [263] Dood M J A, Irvine W T M, Bouwmeester D. Nonlinear photonic crystals as a source ofentangled photons. Phys. Rev. Lett., 2004, 93(4):040504.
    [264] Irvine W T M, Dood M J A, Bouwmeester D. Bloch theory of entangled photon generationin non-linear photonic crystals. quant–ph/0505076.
    [265] Shih Y H. Entangled biphoton source-property and preparation. Rep. Prog. Phys., 2003,66(6):1009–1044.
    [266] Kwiat P G, Mattle K, Weinfurter H, et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett., 1995, (24):4337–4341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700