用户名: 密码: 验证码:
复杂零件加工过程质量控制理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂零件是指结构复杂、多质量特征、多加工工序、高制造精度的机械零件,其加工过程的质量控制是提高产品质量和企业竞争力的基础。本文以复杂零件加工过程质量控制为对象,采用理论分析与工程应用相结合的研究方法,重点研究复杂零件加工过程误差传递建模、误差源可诊断性分析和识别、加工过程工艺能力指数计算及调控、加工过程装夹规划选择等核心技术,构建复杂零件加工过程质量控制的理论基础,提出面向装配的复杂零件加工过程质量控制方法。论文的主要研究内容如下:
     (1)在分析复杂零件加工过程特征和误差源的基础上,提出复杂零件加工过程误差传递的状态空间建模理论。采用微分运动矢量描述工件,采用齐次变换建立复杂零件加工过程误差传递模型,确立复杂零件加工质量特征误差与加工过程中各种过程参数之间明确的数学关系,实现复杂零件加工过程误差传递的量化分析,并用实例加以验证。
     (2)复杂零件加工过程误差信息传递和误差源识别问题研究。在分析复杂零件加工过程误差信息相关性的基础上,提出一种误差源的在线识别方法。通过把误差传递模型转化成线性混合形式,建立加工过程误差源的识别模型;参考线性混合模型中可识别性的概念,建立复杂零件加工过程误差源的完全可诊断模型和部分可诊断模型,提出部分可诊断加工过程的最小可诊断类和可诊断性分析方法;将多元方差成分分析方法引入到加工过程诊断中,结合工程实例,提出基于参数估计和检验统计的复杂零件加工过程误差源在线识别方法,实现加工过程误差源的快速识别。
     (3)复杂零件加工过程工艺能力问题研究。在研究复杂零件加工过程调整策略的基础上,建立复杂零件加工过程工艺能力的观察模型;采用田口质量损失函数,提出复杂零件加工过程的工艺能力指数的计算方法;为获得效能最优的过程工艺能力调控方法,提出两层的复杂零件加工过程工艺能力影响参数的敏感性分析模型,以此确定过程调整的方向和方位;结合工程实例,提出复杂零件加工过程工艺能力调控方法。
     (4)复杂零件加工过程装夹规划优化问题研究。基于复杂零件加工过程误差传递模型,建立复杂零件加工装夹误差传递模型和以满足质量规范且加工成本最小为目标函数的装夹规划优化模型,并采用动态规划理论求解,实现复杂零件加工装夹工艺参数的优化配置。
     (5)面向装配的复杂零件加工过程质量控制问题研究。在分析面向装配的复杂零件加工过程质量控制问题的基础上,提炼出其核心技术,提出装配中选配度的计算公式;在研究单个复杂零件加工过程质量控制流程的基础上,提出面向装配的复杂零件加工过程质量控制流程;结合工程实例,提出面向装配的复杂零件加工过程质量控制方法。
A complex workpiece is defined as a kind of mechanical part which has complex composition, multiple quality characteristics, multiple machining processes, and high manufacturing precise. The quality control of complex workpiece machining process (CWMP) is the basis of product quality improvement and the competitive ability of enterprises. The CWMP quality control is concerned in this dissertation, the research method of this dissertation is combining the theory analysis with practice application. The core technologies, such as machining process variation propagation modeling, variation sources diagnosability analysis and identification, machining process technology capability index calculation and improvement, setup planning selection in machining process, etc., have been mainly studied. The basis of the CWMP quality control theory is established. A CWMP quality control method for assembly is proposed. The main contributions of this dissertation are as follows.
     (1) On the basis of the CWMP characteristic and variation sources analysis, a CWMP variation propagation modeling theory based on state space model is proposed. A machining variation propagation model is established by describing the workpiece with the differential motion vector according to the kinematic principle. This model explicitly describes the relationship between quality characteristic variations of CPMP and their variation sources, which can quantify the variation propagation effects analysis among different stages and is testified by an example.
     (2) To study the quality variation information propagation and identify the variation sources in the CWMP, a variation sources on-line identification method is proposed based on the complicate mutuality analysis of quality variation information in the CWMP. An identification model for the CWMP variation source is established by translating the variation propagation model into a linear mixed model. A variation source fully diagnosable model and a partially diagnosable model are presented for the CWMP by referring to the identifiability in a linear mixed model. To study the partially diagnosable CWMP, the concept of a minimal diagnosable class is proposed to identify the process variation and realize the identifiability study of partially diagnosable process. On this basis, introducing the multivariate variance components analysis method into the CWMP diagnosis, combining an engineering case, an on-line variation sources identification method for CWMP is proposed based on statistical estimates and hypothesis testing, which realizes the quick variations sources identification in the CWMP.
     (3) To study the problem of the process technology capability in the CWMP, an observation model is established for technology capability in the CWMP according to the process adjustment strategy, a technology capability index measuring method is presented based on Taguchi's quality loss function. Based on this, in order to achieve the highest efficiency method of process technology capability adjustment, a two-level sensitive analysis model for process technology capability impact parameter model is proposed to determine the positions and directions of the process adjustment. A technology capability adjustment method for the CWMP is proposed by combining an engineering case.
     (4) To study the optimization of setup planning in the CWMP, a setup variation propagation model is established based on the variation propagation model of the CWMP. A minimum cost and quality assured function is defined for an objective function to obtain an optimal setup planning selective decision and the solution of this problem is based on dynamic planning algorithm, which realizes the optimum configuration of setup planning parameters in the CWMP.
     (5) To study the CWMP quality control method for assembly, the core technologies are extracted according to the analysis of CWMP quality control problem for assembly, a matchable degree calculation formula is proposed. The CWMP quality control flow for the assembly is presented based on the study of the CWMP quality control flow for the single. A CWMP quality control method for assembly is presented by combining an engineering case.
引文
[1]姚倡锋.复杂零件异地协同制造资源优化配置技术研究[D].西北工业大学,2006.
    [2]Kash D E and Rycroft P W. Emerging patterns of complex technological innovation [J]. Technological Forecasting and Social Change,2002,69(6):581-606.
    [3]Hobday M and Rush H. Technology management in complex product systems (CoPS):ten questions answered[J]. International Journal of Technology Management,1999,17(6):618-638.
    [4]柴旭东,李伯虎,熊光楞等.复杂产品协同仿真平台的研究与实现[J].计算机集成制造系统-CIMS,2002,8(7):580-584.
    [5]桂彬旺.基于模块化的复杂产品系统创新因素与作用路径研究[D].浙江大学,2006.
    [6]刘晓冰,王霄,丁向峰等.复杂产品创新过程中的知识管理问题研究[J].科技进步与对策,2009,26(16):103-106.
    [7]张公绪.选控图理论与实践[M].北京:人民邮电出版社,1984.
    [8]张公绪.两种质量诊断理论及其应用[M].北京:科学出版社.2001.
    [9]罗振壁,汪劲松,贾岿等.制造过程加工误差流及其模型的研究[J].机械工程学报,1994,30(1):112-118.
    [10]罗振壁,汪劲松,杨世明等.制造过程质量控制中误差流理论的研究[J].机械工程学报,1995,31(4):62-69.
    [11]Daniel Y, Fong T and Lawless J F. The analysis of process variation transmission with multivariate measurements [J].Statistica Sinica,1998,46(8):151-164.
    [12]Lawless J F, Mackay R J and Robinson J A. Analysis of variation transmission in manufacturingprocesses-part 1 [J]. Quality Technology.1999,31 (2):131-142.
    [13]Agrawal R, Lawless J F and Mackay R J. Analysis of variation transmission in manufacturing processes-part II [J]. Quality Technology,1999,31 (2):143-154.
    [14]Mantripragada R and Whitney D E. Modeling and controlling variation propagation in mechanical assemblies using state transition models [J]. IEEE Transactions on Robotics and Automation,1999,15(1):124-140.
    [15]Jin J H and Shi J J. State space modeling of sheet metal assembly for dimensional control [J]. Journal of Manufacturing Science and Engineering,1999,121(7):756-762.
    [16]Ding Y, Ceglarek D and Shi J. Modeling and diagnosis of multistage manufacturing processes:part I state space model[C]. Presented at the 2000 Japan/USA Symposium on Flexible Automation, July 23-26,2000, Ann Arbor, MI.
    [17]Huang W, Lin J, Bezdecny M, Kong Z and Ceglarek D. Stream-of-variation modeling I:a generic 3D variation model for rigid body assembly in single station assembly processes [J]. ASME Transactions, Journal of Manufacturing Science and Engineering,2007,129(4), 821-831.
    [18]Huang W, Lin J, Kong Z and Ceglarek D. Stream-of-variation (SOVA) modeling II:a generic 3D variation model for rigid body assembly in multi station assembly processes [J]. ASME Transac Transactions, Journal of Manufacturing Science and Engineering,2007, 129(4),832-842.
    [19]Liu J, Jin J and Shi J. State space modeling for 3-dimensional variation propagation in rigid-body multistage assembly processes [J]. IEEE Transactions on Automation Science and Engineering,2010, vol.7, No.2, pp.274-290.
    [20]Camelio J, Hu S J and Ceglarek D. Modeling variation propagation of multi-station assembly systems with compliant parts [J]. ASME Transactions, Journal of Mechanical Design,2003,125(4),673-681.
    [21]Xie K, Wells L, Camelio J and Youn B.D. Variation propagation analysis on compliant assemblies considering contact interaction[J]. ASME Transactions, Journal of Manufacturing Science and Engineering,2007,129(1),934-942.
    [22]Huang Q, Zhou N and Shi J. Stream of variation modeling and diagnosis of multi-station machining processes[C], in Proceedings of the 2000 ASME International Mechanical Engineering Congress & Exposition, Orlando, FL,2000(11):81-88.
    [23]Zhou S, Huang Q and Shi J. State space modeling of dimensional variation propagation in multistage machining process using differential motion vectors[J]. IEEE Transactions on Robotics and Automation,2003,19(2),296-309.
    [24]Djurdjanovic D and Ni J. Linear state space modeling of dimensional machining errors [J]. Transactions of NAMRI/SME,2001,29,541-548.
    [25]Loose J, Zhou S and Ceglarek D. Kinematic analysis of dimensional variation propagation for multistage machining processes with general fixture layouts[J]. IEEE Transactions on Automation Science and Engineering,2007,4(2),141-152.
    [26]Loose J, Zhou Q, Zhou S and Ceglarek D. Integrating GD&T into dimensional variation models for multistage machining processes [J]. International Journal of Production Research,2009,1-21, iFirst,1-21.
    [27]Suri R and Otto K. Variation modeling for a sheet stretch forming manufacturing system [J]. Annals of CIRP,1999,48,397-400.
    [28]Ren Y, Ding and Zhou S. A data-mining approach to study the significance of nonlinearity in multi-station assembly processes [J]. HE Transactions,2006,38(12),1069-1083.
    [29]Apley D W and Shi J. A factor analysis method for diagnosing variability in multivariate manufacturing processes[J]. Technometrics,2001,43(1),84-95.
    [30]Liu J, Shi J and Hu S J. Engineering-driven factor analysis for variation sources identification in multistage manufacturing processes[J].ASME Transactions, Journal of Manufacturing Science and Engineering,2008,130(4), No.041009
    [31]Apley D W and Lee H Y. Identifying spatial variation patterns in multivariate manufacturing processes:a blind separation approach[J]. Technometrics,2003,45(3),220-234.
    [32]Shan X and Apley D W. Blind identification of manufacturing variation patterns by combining source separation criteria[J]. Technometrics,2008,50(3),332-343.
    [33]Krzanoski W J. Between-groups comparison of principal components'[J]. Journal of the American Statistical Association,1979,74(367),703-707.
    [34]Johnson R A and Wichern D W. Applied multivariate statistical analysis [M], fifth edition, Prentice Hall, Upper Saddle River, NJ.2002.
    [35]Jin N and Zhou S. Data-driven variation source identification of manufacturing processes based on eigenspace comparison [J]. Naval Research Logistics,2006,53(5),383-396.
    [36]Jin N and Zhou S. Signature construction and matching for fault diagnosis in manufacturing processes through fault space analysis [J].IIE Transactions,2006,38(4),341-354.
    [37]Zeng L and Zhou S. Inferring the interactions in complex manufacturing processes using graphical models [J]. Technometrics,2007,49(4),373-381.
    [38]Li J and Shi J. Knowledge discovery from observational data for process control through causal Bayesian networks [J]. IIE Transactions,2007,39(6),681-690.
    [39]张赤斌,史金飞,易红.基于偏最小二乘法回归的工序质量建模[J].东南大学学报,2005,35(5):702-705.
    [40]Hawkins D M. Multivariate quality control based on regression adjusted variables [J]. Technometrics,1991,33(1),61-75.
    [41]Hawkins D M. Regression adjustment for variables in multivariate quality control [J]. Journal of Quality Technology,1993,25(3),170-182.
    [42]Hauck D J, Runger G C and Montgomery D C. Multivariate statistical process monitoring and diagnosis with grouped regression-adjusted variables [J]. Communications in Statistics, Simulation and Computation,1999,28(2),309-328.
    [43]余忠华,吴昭同.面向小批量制造过程的质量控制方法研究[J].机械工程学报,2001,37(8):60-64.
    [44]Zantek P F, Wright G P and Plante R D. Process and product improvement in manufacturing systems with correlated stages[J].Management Science,2002,48(5),591-606.
    [45]Zeng L and Zhou S. Impacts of measurement errors and regressor selection on regression adjustment monitoring of multistage manufacturing processes [J]. IIE Transactions,2008, 40(2),109-121.
    [46]Xiang L and Tsung F. Statistical monitoring of multistage processes based on engineering models [J]. HE Transactions,2008,40(10),957-970.
    [47]Zou C and Tsung F. Directional MEWMA schemes for multistage process monitoring and diagnosis [J]. Journal of Quality Technology,2008,40(4),407-427.
    [48]乐清洪,滕霖,朱名铨,等.质量控制图在线智能诊断分析系统[J].计算机集成制造系统-CIMS,2004,10(12):1583-1587,1599.
    [49]杨世元,吴德会,苏海涛.基于PCA和SVM的控制图失控模式智能识别方法[J].系统仿真学报,2006,18(5):1314-1318.
    [50]郑再象,陈效华,徐诚.基于直方图异常模式识别的变速器生产线故障诊断[J].南京理工大学学报,2005,29(8):433-436.
    [51]Zou C, Tsung F and Liu Y. A change point approach for phase Ⅰ analysis in multistage processes[J]. Technometrics,2008,50(3),344-356.
    [52]Li Y and Tsung F. False discovery rate-adjusted charting schemes for multistage process fault diagnosis and isolation[J]. Technometrics,2009,51(2),186-205.
    [53]龚雯.机械加工偏差源模糊智能诊断系统建模研究[J].机械设计与制造,2003,5:36-38.
    [54]杨鸿鹏,林志航.基于集成诊断模型加工质量的智能诊断系统研究[J].西安交通大学学报,1997,31(9):1-5.
    [55]陈康宁,林志航,杨鸿鹏.基于神经网络和模糊逻辑的加工偏差源诊断系统[J].西安交通大学学报,1995,29(7):60-66.
    [56]傅晓锦,张新华.零件加工偏差原因诊断专家系统[J].机械设计与制造工程,1999,5(28):36-38.
    [57]Danai K and Chin H. Fault diagnosis with process uncertainty[J]. ASME Journal of Dynamic Systems, Measurement, and Control,1991,113:339-343.
    [58]罗振璧.可重组制造系统过程可诊断性的测度[J].清华大学学报,2001,41(2):34-37.
    [59]刘阶萍,罗振璧.快速可重组制造系统的可诊断性设计原理[J].清华大学学报,2000,40(8):14-17.
    [60]Ding Y, Shi J and Ceglarek D. Diagnosability analysis of multistation manufacturing processes [J]. ASME Transactions, Journal of Dynamic Systems, Measurement, and Control, 2002,124(1),1-13.
    [61]Ding Y, Kim P, Ceglarek D and Jin J H.Optimal sensor distribution for variation diagnosis in multi-station assembly processes[J].IEEE Transactions on Robotics and Automation,2003, 19(4):543-556.
    [62]Zhou S, Ding Y, Chen Y and Shi J. Diagnosability study of multistage manufacturing processes based on linear mixed-effects model[J].Technomatrics,2003,45(4):312-325.
    [63]Ding Y, Gupta A and Apley D. Singularity of fixture fault diagnosis in multi-station assembly systems [J]. ASME Transactions, Journal of Manufacturing Science and Engineering,2004,26(1),200-210.
    [64]Zhang M, Djurdjanovic D and Ni J. Diagnosibility and sensitivity analysis for multi-station machining processes [J]. International Journal of Machine Tools and Manufacture,2007, 47(3),646-657.
    [65]Chen N and Zhou S. Detectability study for statistical monitoring of multivariate dynamic processes [J]. IIE Transactions,2009,41(7),593-604
    [66]Apley D W and Ding Y. A characterization of diagnosability conditions for variance components analysis in assembly operations [J]. IEEE Transactions on Automation Science and Engineering,2005,2(2),101-110.
    [67]Apley D W and Shi J. Diagnosis of multiple fixture faults in panel assembly[J]. ASME Transactions, Journal of Manufacturing Science and Engineering,1998,120(4),793-801.
    [68]Chang M and Gossard D C. Computational method for diagnosis of variation-related assembly problem [J]. International Journal of Production Research,1998,36(11), 2985-2995.
    [69]Huang Q and Shi J. Variation transmission analysis and diagnosis of multi-operational machining processes [J]. IIE Transactions,2004,36,807-815.
    [70]Zhou S, Chen Y and Shi J. Root cause estimation and statistical testing for quality improvement of multistage manufacturing processes [J]. IEEE Transactions on Automation Science and Engineering,2004,1(1),73-83.
    [71]Ding Y, Zhou S and Chen Y. A comparison of process variation estimators for in-process dimensional measurements and control [J]. ASME Transactions, Journal of Dynamic Systems, Measurement, and Control,2005,127(1),69-79.
    [72]Ceglarek D and Shi J. Fixture failure diagnosis for autobody assembly using pattern recognition[J].ASME Transactions, Journal of Engineering for Industry,1996 (188),55-65.
    [73]Rong Q, Ceglarek D and Shi J. Dimensional fault diagnosis for compliant beam structure assemblies[J].ASME Transactions, Journal of Manufact uring Science and Engineering, 2000(122),773-780.
    [74]Ding Y, Ceglarek D and Shi J. Fault diagnosis of multistage manufacturing mrocesses by using state space approach [J]. ASME Transactions, Journal of Manufacturing Science and Engineering,2002,124(2):313-322.
    [75]Li Z, Zhou S and Ding Y. Pattern matching for root cause identification of manufacturing processes with consideration of general structured noise [J]. IIE Transactions on Quality and Reliability Engineering,2005,39:251-263.
    [76]Li Z and Zhou S. Robust method of multiple variation sources identification in manufacturing processes for quality improvement [J]. ASME Transactions, Journal of Manufacturing Science and Engineering,2006,128(1),326-336.
    [77]Kong Z, Ceglarek D and Huang W. Multiple fault diagnosis method in multi-station assembly processes using orthogonal diagonalization analysis [J]. ASMETransactions, Journal of Manufacturing Science and Engineering,2008,130(1), No.011014.
    [78]Zeng L, Jin N and Zhou S. Multiple fault signature integration and enhancing for variation source identification in manufacturing processes [J]. IIE Transactions,2008,40(10), 919-930.
    [79]Loose J, Zhou S and Ceglarek D. Variation source identification in manufacturing processes based on relational measurements of key product characteristics [J]. Journal of Manufacturing Science and Engineering,2008,130(3), No.031007.
    [80]Juran J M..Quality Control Handbook[M].3ed.Mc Graw-Hill, New York, NY.1974:50-5.
    [81]Kotz S and Johnson N L. Process capability indices-Areview,1992-2000 [J]. Journal of Quality Technology,2002,34(1):2-19.
    [82]Zachary G S. Process capability indices:overview and extension [J]. Nonlinear Analysis: real World Applications,2002,3:191-210.
    [83]Chien W W, Pearn W L and Kotz S. An overview of theory and practice on process capability indices for quality assurance [J]. International Journal of Production Economics, 2009,117:338-359.
    [84]Pearn.W.L.Distributional and inferential properties of process capability indices[J].Journal of Quality Technology,1992,24(4):216-231.
    [85]Singhal S C. A new chart for analyzing multiprocess performance[J]. Quality Engineering, 1990,2(4):379-390.
    [86]Chen K S, Huang M L, Li R K. Process capability analysis for an entire product[J]. International Journal of Production Research,2001,39(17):4077-4087.
    [87]Wu C C, Kuo H L, Chen K S. Implementing process capability indices for a complete product[J]. International Journal of Advanced Manufacturing Technology,2004,24 (11/12): 891-898.
    [88]Chen S C. Process performance estimation on the quality characteristics of auto engines[J]. International Journal of Advanced Manufacturing Technology,2007,32(5/6):492-499.
    [89]Huang M L, Chen K S, Hung Y H. Integrated process capability analysis with an application in backlight module[J]. Microelectronics Reliability,2002,42(12):2009-2014.
    [90]Pearn W L, Shu M H, Hsu B M. Monitoring manufacturing quality for multiple Li-BPIC processes based on capability index Cpmk[J]. International Journal of Production Research, 2005,43(12):2493-2512.
    [91]Linn R J, Au E, Tsung F. Process capability improvement for multistage processes[J]. Quality Engineering,2002,15(2):281-292.
    [92]Greenwich M, Jahr-schaffrath B L. A process incapability index[J]. International Journal of Quality & Reliability Management,1995,12 (4):58-71.
    [93]Deleryd M, Vannman K. Process capability plots-a quality improvement tool[J]. Quality and Reliability Engineering International,1999,15(3):213-227.
    [94]Vannman K. The circular safety region:a useful graphical tool in capability analysis [J]. Quality and Reliability Engineering International,2005,21(5):529-538.
    [95]刘道玉,江平宇.基于波动轨迹图的多工序过程能力量测方法[J].计算机集成制造系统,2009,15(8):1621-1627
    [96]Mandroli S S, Shrivastava A and Ding Y. A survey of inspection strategy and sensor distribution studies in discrete-part manufacturing processes[J]. IIE Transactions,2006, 38(4),309-328.
    [97]Ding Y, Ceglarek D and Shi J. Design evaluation of multi-station assembly processes by using state space approach[J]. ASME Transactions, Journal of Mechanical Design,2002, 124(4),408-418.
    [98]Ding Y, Jin J, Ceglarek D, et al. Process-oriented tolerancing for multi-station assembly systems[J].IIE Transactions,2005,37(6):493-508.
    [99]Huang W, Ceglarek D and Zhou Z. Tolerance analysis for design of multistage manufacturing processes using number-theoretical net method(NT-net)[J]. International Journal of Flexible Manufacturing Systems,2004,16(1):65-90.
    [100]Huang W, Phoomboplab T and Ceglarek D. Process capability surrogate model-based tolerance synthesis for multi-station manufacturing systems[J].IIE Transactions,2009, 41(4):309-322.
    [101]Chen Y, Ding Y,Jin J,et al. Integration of process-oriented tolerancing and maintenance planning in design of multi-station manufacturing processes[J]. IEEE Transactions on Automation Science and Engineering,2006,3(4):440-453.
    [102]Phoomboplab T and Ceglarek D. Design synthesis framework for dimensional management in multi-station assembly systems [J].Annals of the CIRP,2007,56 (1): 153-158.
    [103]Suri R, Painter C, Otto K. Process capability to guide tolerancing in manufacturing systems[J].Transactions of NAMRI/SME,1999, ⅩⅩⅦ,227-232.
    [104]李淑娟,李言,洪伟等.多工序公差综合优化方法的研究[J].西安理工大学学报,2000,16(1):88-91.
    [105]黄美发,高咏生.基于工序加工能力的并行公差优化设计[J].中国机械工程,2003,14(5):385-389.
    [106]Gerth R J and Hancock W M. Computer aided tolerance analysis for improved process control [J]. Computer & Industrial Engineering,2000,38(1):1-19.
    [107]Li Z, Kokkolaras M, Papalambros P, et al. Product and process tolerance allocation in multistation compliant assembly using analytical target cascading[J]. Journal of Mechanical Design,2008,130(9):091701-1-9.
    [108]Kim P and Ding Y. Optimal design of fixture layout in multi-station assembly processes [J]. IEEE Transactions on Automation Science and Engineering,2004,1(2):133-145.
    [109]Kim P and Ding Y. Optimal engineering system guided by data-mining methods[J]. Technometrics,2005,47(3):336-348.
    [110]Phoomboplab T and Ceglarek D. Process yield improvement through optimal design of fixture layout in 3D multi-station assembly systems[J].ASME Transactions, Journal of Manufacturing Science and Engineering,2008,130(6):061005-1-16.
    [111]Liu J,Shi J and Hu S J. Quality assured setup planning based on the stream-of-variation model for multistage machining processes[J]. HE Transactions,2009,41(4):323-334.
    [112]Chen Y, Jin J and Shi J. Integration of dimensional quality and locator reliability in design and evaluation of multi-station body-in white assembly processes[J]. HE Transactions,2004, 39(9),827-839.
    [113]Chen Y and Jin J. Quality-reliability chain modeling for system-reliability analysis of complex manufacturing processes [J]. IEEE Transactions of Reliability,2005,54:475-488.
    [114]Chen Y and Jin J. Quality-oriented-maintenance of multiple interactive tooling components in discrete manufacturing processes[J]. IEEE Transactions on Reliability,2006, 55(1):123-134.
    [115]赵友亮,杨有刚,王宏斌.机械加工偏差统计分析与控制系统的设计和实现[J].机械制造,2003,41(467):33-35.
    [116]费业泰,孙健.单元制造质量零废品控制理论基本模型[J].机械科学与技术,2000,19,(4):614-616.
    [117]Jin J, Guo H and Zhou S. Supervisory generalized predictive control combining with statistical process control for thin film deposition processes[J].ASME Transactions, Journal of Manufacturing Science and Engineering,2006,128(1),315-325.
    [118]Zhou S, Sun B and Shi J. An SPC monitoring system for cycle-based waveform signals using haar transform[J]. IEEE Transactions on Automation Science and Engineering,2006, 37,971-982.
    [119]Ding Y, Zeng L and Zhou S. Phase Ⅰ analysis for monitoring nonlinear profile signals in manufacturing processes[J]. Journal of Quality Technology,2005,38(3),199-216.
    [120]Izquierdo L E, Shi J, Hu J and Wampler C W. Feed forward control of multistage assembly processes using programmable tooling[J]. Transactions of NAMRI/SME,2007,35, 295-303.
    [121]Djurdjanovic D and Ni J. On-line stochastic control of dimensional quality in multi-station manufacturing systems[J]. Journal of Engineering Manufacture,2007,221(B5),865-880.
    [122]Rao C R and Kleffe J. Estimation of variation components and applications[M]. Amsterdam:North-Holland,1988.
    [123]李波,吴渝春.概率论与数理统计[M].重庆:重庆大学出版社.1995.
    [124]McCulloch C. and Searle S R. Generalized, linear, and mixed models[M]. New York: Wiley,2001.
    [125]Kane V E. Process capability indices[J]. Journal of Quality Technology,1986,18:41-52.
    [126]Taguchi G. Introduction to quality engineering:designing quality into products and processes [M].1st Edn, Asian Productivity Organization, Tokyo, ISBN:9283310837.
    [127]张之骊,李建德.动态规划及其应用[M].北京:国防工业出版社.1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700