用户名: 密码: 验证码:
淡水鱼发酵对酸鱼品质影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国传统酸鱼不仅具有风味独特、酸香浓郁、鱼腥味低、回味醇厚、贮藏期长的产品特点,还能软化鱼体骨刺,带骨即食,是一种颇受消费者喜好,具有巨大开发潜力的优质发酵鱼制品。但该传统产品发酵周期长、含盐量不均、产品质量不稳定、随机性强、发酵条件难控制,因而制约了该产品的规模化、工业化生产。本论文依据传统酸鱼的微生物及生化特性,优选出适合工业化生产酸鱼的发酵剂,结合现代生物发酵技术,开发出了既保持传统酸鱼的风味特点,又能实现工业化生产的优质发酵鱼体。本研究对于探讨传统酸鱼的生化特性、微生物菌相变化及优势菌种特性,接种发酵酸鱼的理化、微生物变化、挥发性风味变化以及安全性具有重要的学术意义,为克服制约淡水鱼加工业的行业瓶颈,利用现代食品发酵技术建立工业化生产发酵鱼体技术提供了一定的理论依据,对促进我国淡水鱼加工业的发展具有重要的应用价值。
     本文以我国6种不同产地的酸鱼作为研究对象,首先研究了这一传统发酵酸鱼的生化、微生物特性及安全性指标。结果表明:6种不同酸鱼中含有的肠道菌和假单胞菌属均在检测限以下,蛋白与水分含量分别为17.2%-22.9%,52.9%-58.1%,pH值在4.27-5.18之间,乳酸是酸鱼中的主要有机酸,SDS-PAGE分析显示重链蛋白和肌动蛋白发生剧烈水解。另外,酸鱼中测出较低含量的生物胺和TBARS。酸鱼的产品特性受原料、配辅料及发酵工艺条件等因素影响较大。
     考察了我国传统酸鱼不同发酵期间的优势微生物及微生物菌相的变化及分布,重点对具有优良性状的21株植物乳杆菌、17株戊糖片球菌、19株木糖葡萄球菌和13株酿酒酵母菌的菌种特性进行了研究。对筛选的乳酸菌和葡萄球菌,主要探讨了的产酸速率、氨基酸脱羧酶活性、脂酶和蛋白酶活性、抗菌性等菌种特性。对酵母菌的菌种特性评价主要包括产气率、产酯力、耐盐性、耐酸性等。研究结果表明:乳酸菌和酵母菌在酸鱼发酵期间逐渐增加,发酵成熟后分别达8log cfu/g,6log cfu/g,葡萄球菌在发酵期间呈现先增后降的趋势,在发酵末期为4log cfu/g,肠道菌、假单胞菌属及芽孢菌在发酵期间逐渐降低至检测限以下。酸鱼中的乳酸菌主要包括植物乳杆菌、戊糖片球菌,接着是明串珠菌和食品乳杆菌,还有零星的肠球菌和干酪乳杆菌。葡萄球菌主要包括木糖葡萄球菌和腐生葡萄球菌。酵母菌主要包括酿酒酵母菌和异常汉逊酵母菌。酸鱼在发酵前期主要是明串珠菌和葡萄球菌,中后期是植物乳杆菌、戊糖片球菌、木糖葡萄球菌、腐生葡萄球菌、酿酒酵母菌和异常汉逊酵母菌,它们在酸鱼发酵过程中存在一个动态关系。肠杆菌等腐败菌主要集中在酸鱼发酵前期,随着pH值的降低及乳酸菌的大量繁殖,在酸鱼的发酵中后期没能测出肠杆菌等野生杂菌。21株乳酸菌在三种不同的温度条件下都能使pH值快速的降至4.5以下,大部分乳酸菌株显示对大肠杆菌、金黄色葡萄球菌、李斯特杆菌较强的抑菌效果,10株植物乳杆菌和4株戊糖片球菌能分泌细菌素,琼脂扩散法和SDS-PAGE分析5株植物乳杆菌有显示弱的蛋白酶活性,13株木糖葡萄球菌具有较强的蛋白酶活性,11株木糖葡萄球菌显示一定的脂肪酶活性。仅Lp-10具有酪氨酸脱羧酶活性,4株木糖葡萄球菌也测出具有氨酸脱羧酶活性,其中3株具有酪氨酸脱羧酶活性。通过对13株酿酒酵母菌的产香、耐乳酸、耐盐及蛋白酶试验,得出所有菌株都具有一定产酯能力和蛋白酶活性,Ss-3,Ss-8能耐受10%的食盐浓度。实验结果得出:Lp-15,Lp-21,Pp15,Sx-8,Ss-3,Ss-8显现出良好的菌种特性,具有开发成发酵鱼肉制品优良发酵剂的潜在价值。
     采用从酸鱼中选育出的发酵剂,分别选用3组单菌种发酵剂(Lp-15, Lp21, Pp-15)模型和3组混合菌种发酵剂(S1:Lp-15,Sx-8,Ss8; S2:Lp21,Sx-8,Ss-3;S3:Pp-15,Sx-8,Ss-8)模型对鲤鱼鱼体进行发酵,使用传统发酵方法加工的酸鱼作为对照组。对接种发酵鱼制品发酵期间的品质变化进行了系统研究,主要包括发酵期间微生物、pH值、TA、蛋白降解、质构、挥发性风味及生物胺等的变化,结果表明:在各接种发酵剂酸鱼组发酵初期阶段,乳酸菌和酵母菌大量增殖,而葡萄球菌为发酵初期增殖较快,pH值快速降低,致病菌和腐败菌在检测限以下。混合菌种发酵剂组酸鱼发酵初期的葡萄球菌和酵母菌显示了更明显的增长速率,单菌种发酵剂组的TA值高于混合菌种发酵剂组。发酵成熟后,相较对照组,发酵剂酸鱼组的TBARS积累量降低,游离氨基酸和游离脂肪酸含量增加明显,SDS-PAGE分析显示肌原纤维蛋白和肌浆蛋白降解显著。产品感官评定表明:各发酵剂组样品的外形,风味,滋味及总体接受性显著高于对照组,各个产品的质购方面没有显著性差异,但接种混合菌种发酵剂组的酸鱼酸味更为柔和,因而,混合发酵剂制作的酸鱼更能满足消费者的需求,产品品质明显改善。GC/MS分析酸鱼组(对照组、发酵剂组、香辛料组)发酵过程中挥发性风味物质的变化显示,分别含有53、84、101种挥发性风味化合物。挥发性风味种类主要包括酸类、醛类、碳氢类、醇类、酮类、酯类、含氮化合物和呋喃类化合物,其中,碳氢类的萜类物质在香辛料组中含量最高,而乙醇和酯类物质在对照组中含量较低。发酵中形成的主要风味化合物为己醛、乙酸、乙醇、3-羟基-2-丁酮、2,3-丁二酮、3-甲基丁醛、乙酸乙酯、己酸乙酯、苯甲醛等挥发性物质。其中,乙醇和乙酸的含量最高,构成了发酵酸鱼独特的风味物质。推测这些挥发性的风味化合物主要是形成于发酵过程中的氨基酸的Strecker降解、脂肪水解氧化碳水化合物的分解代谢以及香辛料。接种混合发酵剂组酸鱼在发酵期间生物胺的变化表明,混合菌种发酵剂组酸鱼发酵期间较对照组挥发性盐基氮值明显降低,强烈抑制了肠道菌和假单胞菌的生长繁殖,发酵剂组酸鱼(S1,S3)的酪胺、尸胺、腐胺的积累受到显著抑制,但发酵剂组酸鱼(S2)的腐胺含量与对照组类似。各样品中的组胺和精胺均在检测限以下。此外,pH值、游离氨基酸与生物胺的产生没有发现具有直接的相关性。因而,混合发酵剂组(S1,S3)较S2具有更好的抑制酸鱼发酵过程中生物胺的产生,能更显著的改善发酵酸鱼品质,提高产品安全性。因而,使用从传统酸鱼中选育的菌种作为生产发酵鱼体的优良发酵剂,能够有效的改善酸鱼品质,从而为酸鱼实现工业化生产奠定坚实的理论基础。
Suan yu, which is a traditional fish product in China that maintains stable and retainsnutritional substances during storage without fishy odor and taste, can be eaten directly withsoftened fish bone spur. Therefore, freshwater fish can be potentially processed properly withconsiderably elevated product yield. However, this traditional product suffers from longfermentation cycle, uneven salt distribution, unstable product quality, random preparation anddifficultly NSlable fermentation condition. Therefore, the product has not been industrializedin large-scale manufacture. In our study, autochthonous microfloras were isolated from thetraditional Suan yu as starter cultures that were the most appropriate strains owing to theirtechnological and antimicrobial characteristics, armed with which will develop high qualityfermented fish that tastes uniquely and suits industrial production combining modern food andfermentation technology. This study is dedicated to understanding the changes of microbialphase and characteristics of selected starter cultures as well as chemical and microbialproperties, the origin of volatile flavor and the safety of Suan yu. A solid theoretical basis wasprovided using modern food fermentation technology to overcome the bottleneck, aiming topromote the development of freshwater fish processing industry eventually.
     The chemical and microbial properties of Suan yu, a sanitary Chinese traditional low-saltfermented whole fish product which is highly nutritional, particularly flavored and long-termstorable, were studied. Six brands of Suan yu from different locations in China were selected.The characteristics of this traditional fermented fish, raw material and other spontaneouslyfermented fish differed significantly. The counts of Enterobacteria and Pseudomonads in thesix brands were below the detection limits. In addition, the products contained high proteinand low moisture contents ranging from17.2%to22.9%and52.9%to58.1%, respectively.The pH values ranged between4.27and5.18, and lactic acid was the major organic acid. Thesodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealsthe proteolysis of myosin heavy chain and actin chain. Moreover, lowly concentrated biogenicamine (BA) and thiobarbituric acid (TBARS) were found in all samples. The characteristicsof the six Suan yu brands were all influenced by raw materials, ingredients, and fermentationprocesses and conditions.
     The variations of microbial phase and the distribution of dominant microorganism werestudied at different fermentation stages in naturally fermented Suan yu. Furthermore, thecharacteristics of21strains of Lactobacillus plantarum,17strains of Pediococcuspentosaceus,19strains of Staphylococcus xylosus, and13strains of Saccharomycescerevisiae were investigated. To select the most suitable candidates to be used as the startercultures for fermented fish products, the lactic acid bacteria (LAB) and Staphylococcus xylosus were screened for the acidifying rate, the amino-biogenic ability, and the proteolysis,lipolysis and antimicrobial activities. The Saccharomyces cerevisiae were screened for gasrelease rate, ester production ability, salt tolerance, acid tolerance and etc. The counts of LABand yeast gradually increased during fermentation and ripening to8log cfu/g and6log cfu/grespectively at the end of fermentation. The number of Staphylococci gradually increasedduring the first fermentation stage and then slowly decreased until the end of ripening (4logcfu/g). The counts of Enterobacteria, Pseudomonas and aerobic spore-formers whichdecreased during fermentation were lower than the detection limits ultimately. Most of theLAB isolated from Suan yu were Lactobacillus plantarum and Pediococcus pentosaceus,followed by leuconostoc and food lactobacillus, as well as sporadic enterococcus andlactobacillus casei. The predominant Staphylococcus isolated from Suan yu comprisedStaphylococcus saprophyticus and Staphylococcus xylosus. The yeast mainly consisted ofSaccharomyces cerevisiae and Hansenula anomala. The predominant microorganism in earlyfermentation included leuconostoc and staphylococcus aureus, and those detectedsubsequently included Lactobacillus plantarum, Pediococcus pentosaceus, staphylococcusxylose, Staphylococcus saprophyticus, Saccharomyces cerevisiae and Hansenula anomala.Enterobacteria and other spoilage organisms were mainly concentrated in the thresholdfermentation stage. The counts of Enterobacteria and other spoilage organisms were below thedetection limits with the growth of LAB and the decrease of pH during the later fermentation.All of these organisms were dynamically related in Suan yu during fermentation and ripening.Major LAB dramatically reduced the pH to lower than4.5at each temperature, which thussuppressed the growth of Listeria monocytogenes, Staphylococcus aureus and Escherichiacoli. Ten L. plantarum strains and four Pediococcus pentosaceus produced bacteriocins. Theagar plate assay and SDS-PAGE suggest that five L. plantarum strains mildly proteolyzedmyofibrillar proteins. None of LAB showed any lipolytic activity.13and11Staphylococcusxylosus strains were of intense proteolytic and lipase activities, respectively. Besides, LABwere mostly decarboxylase-negative, but the strain Lp-10was of L-tyrosine decarboxylaseactivity.4Staphylococcus xylosus strains exhibited decarboxylase activity, most of whichtargeted tyrosine. All the Saccharomyces cerevisiae were ester-production capable andprotease-active. Ss-3and Ss-8tolerated10%salt. Hence, Lp-15, Lp-21, Pp-15, Sx-8, Ss-3andSs-8displayed the optimal technological properties out of the isolated strains, which arefeasible to be applied as starter cultures in fermented fish products manufacture.
     Three groups of single starter cultures (Lactobacillus plantarum15, Lactobacillusplantarum21,8and Pediococcus pentosaceus15) and three groups of mixed starter cultures(S1: Lactobacillus plantarum15, Staphylococcus xylosus8and Saccharomyces cerevisiae8;S2: Lactobacillus plantarum21, Staphylococcus xylosus8and Saccharomyces cerevisiae3;S3: Pediococcus pentosaceus15; Staphylococcus xylosus8and Saccharomyces cerevisiae8), isolated from Suan yu, were inoculated to produce the traditional fermented fish. Duringfermentation and ripening, the samples inoculated with different starter cultures weresubjected to rapid-growing LAB and yeast, declined pH, slow-growing spoilage bacteria andpathogens, and low TBARS accumulation. However, Staphylococcus grew more rapidly atthe beginning of fermentation. Staphylococcus and yeast inoculated mixed starter culturesalso grew more quickly initially. The TA values of the samples with single starter cultureswere higher than those with mixed starter cultures. The total free amino acids (FAA) of thesamples with starter cultures were higher compared to those of the NS (p<0.05). The proteinswere severely hydrolyzed during fermentation (SDS-PAGE). Moreover, the sensoryevaluation indicates the inoculator fermented fish was more acceptable than the NS was.Nevertheless, the samples inoculated with single starter cultures tasted slightly more acid thanthose inoculated with mixed starter cultures did. Therefore, the results suggest that beinginoculated with mixed starter cultures shortened the lag time that fermentation was initiatedand improved the quality of Suan yu. The alterations of the volatile flavor compounds in alltreated fermented Suan yu were identified by a GC/MS system during ripening, including NSbatch, sample with starter cultures batch and those with starter cultures and spices batch. Theresults show that the53,84and101volatile flavor compounds were detected in those samples,respectively. These compounds in Suan yu were clustered in acids, aldehydes, ketones,hydrocarbons, esters, alcohols and furans. Besides, the contents of terpenoids, one type ofhydrogens, were higher in the batch spices than those in other batches. The levels of estersand alcohols were higher in the batch spices and starter cultures compared to those in the NS.The main volatile flavor compounds included hexanal, acetic acid, ethanol,3-hydroxy-2-butanone,2,3-butanedione,3-methyl butyl aldehyde, ethyl acetate, ethylcaproate and benzaldehyde during ripening. The obviously increased quantities of acetic acidand ethanol during processing led to the distinct flavor. We infer that Strecker degradation,lipids hydrolysis oxidation, carbohydrate catabolism and spices mainly accounted for thegeneration of volatile compounds during ripening. Therefore, the most appropriate strainsisolated from the traditional Suan yu were used as the starter cultures, the flavor of Suan yuwas adjusted for public acceptance, and a solid theoretical basis was provided for the possibleindustrialization production. The effects of mixed starter cultures on the suppression of BAproduced during ripening were investigated. The results show that the mixed starter culturesrapidly decreased pH, and the accumulation of TVB-N were reduced compared to that of theNS. Moreover, the growth of contaminant microorganisms in the sample with mixed startercultures was inhibited. In addition, the contents of tyramine, cadaverine and putrescine in thesamples inoculated with starter cultures (S1and S3) were also restricted. The levels ofputrescine in the samples with S2were similar to those in the NS. Histamine and sperminewere not produced in any batch. Furthermore, pH and FAA and BA productions were not directly correlated. The study suggests that the samples inoculated with S1and S3inhibitedBA more significantly compared to those with S2did, thereby securing the product better.Thus, the quality of Suan yu can be substantially improved using the mixed starter culturesisolated from traditional Suan yu. The results herein are able to assist the commercializationof Suan yu theoretically.
引文
1.农业部渔业局.2010中国渔业年鉴[M].北京:中国农业出版社,2010.208-222
    2.草启平.湘西酸鱼制作方法[J].湖南农业,1999(5):8
    3. Lee CH, Steinkraus KH. Fish Fermentation Technology [J]. Tokyo:1993The United Nations Univ.,c1993,1993
    4. Asiedu M, Sanni AI. Chemical composition and microbiological changes during spontaneous andstarter culture fermentation of Enam Ne-Setaakye, a West African fermented fish-carbohydrate product[J].European Food Research and Technology,2002,215(1):8-12
    5. Jae-Hyung M, Hyung-Kee H, Young-Jun O, et al. Biogenic amines in Jeotkals, Korean salted andfermented fish products[J]. Food chemistry,2002,79(2):239-243
    6. Rabie M, Simon-Sarkadi L, Siliha H, et al. Changes in free amino acids and biogenic amines ofEgyptian salted-fermented fish (Feseekh) during ripening and storage [J]. Food chemistry,2009,115(2):635-638
    7. Paludan-Müller C, Huss H H, Gram L. Characterization of lactic acid bacteria isolated from a Thailow-salt fermented fish product and the role of garlic as substrate for fermentation [J]. International journalof food microbiology,1999,46(3):219-229
    8. Paludan-Müller C, Madsen M, Sophanodora P, et al. Fermentation and microflora of plaa-som, a Thaifermented fish product prepared with different salt concentrations [J]. International journal of foodmicrobiology,2002,73(1):61-70
    9. Sanni A, Asiedu M, Ayernor G. Microflora and Chemical Composition of Momoni, a GhanaianFermented Fish Condiment [J]. Journal of food composition and analysis,2002,15(5):577-583
    10.胡永金.淡水鱼糜发酵及其机理研究[D].无锡:江南大学,2007
    11. Wu YC, Kimura BFT. Comparison of three culture methods for the differentiation of Micrococcus andStaphylococcus in fermented squid shiokara [J].Fisheries Science,2000,66(1):142-146
    12.卢晓莉.鱼鲊制品中乳酸菌的分离、筛选及应用[D].武汉:华中农业大学,2007
    13.刘忠义,乐平,候芳等.基于乳酸菌的混合菌种发酵的红曲鱼及其制备方法[p].中国专利:200910042552.8,2009-7-29
    14. CoPpela R, Giagnaocvo B, Iorizzo M, etal. Characterization of lactobacilli involved in the ripening ofSo Ppesrsata molisana, a typical southen italy fermented sausage. Food Microbiology.1998,15(3):347-353
    15. Houle JE, Iarfanec M. Seleetion of mixed cultures for meat of fermentation. Jounral of FoodScience.1989,54(4):839-842
    16.李凤彩,程文新,谢华,张建国.发酵香肠菌种筛选标准探讨.食品科技[J],2002,6:78-79
    17.王永霞.肉品发酵剂的菌种筛选及在发酵香肠中的应用:[D].北京:中国农业大学,2003
    18. Joo-Yeon Lee, Cheon-Jei kim, Beuno Kunz. Identification of lactic acid bacteria isolated from klmchiand studies on their suitability for application as starter culture in the production of fermented sausages[J].Meat Science,2006,72(3):437-445
    19. E. Papamanoli. Characterization of lactic acid bacteria isolated from a Greek dry fermented sausage inrespect of their technological and probiotic properties [J].Meat Science,2003,65(2):859-867
    20. Monte MC. Characterization of the microbial effect added into fermented meat [J]. Food Microbiology,1996,13(3):489-499
    21. Monika Simonova. Characterization of staphylococcus xylosus and staphylococcus carnosus isolatedfrom slovak meat products [J]. Meat Seience,2006,73(4):559-56
    22. Riebroy S, Benjakul S, Visessanguan W. Properties and acceptability of Som-fug, a Thai fermented fishmince, inoculated with lactic acid bacteria starters [J]. LWT-Food Science and Technology,2008,41(4):569-580
    23. stahnke LH. Dried sausages fermented with staphylococcus xylosus at different temperatures and withdifferent ingridient levels [J]. Part11.Volatilecomponents.Meat Seienee,1995,41(2):211-223
    24. Hugas M, Monfort JM. Bacterial starter cultures form eat fermentation [J].Foodchemistry,1997,59(4):547-554
    25.天野庆之等.肉制品加工手册[M].北京:中国轻工业出版社,1992,6
    26. Caplice E, Fitzgerald GF. Food fermentation: role of microorganisms in food production andpreservation [J]. International fournal of food microbiology,1999,50(4):131-149
    27. Yin L. Effect of lactic acid bacterial fermentation on the characteristics of minced mackerel [J]. J FoodSci,2002,67(2):786-792
    28. Xu Y, Xia W, Yang F, et al. Effect of fermentation temperature on the microbial and physicochemicalproperties of silver carp sausages inoculated with Pediococcus pentosaceus [J]. Food Chem,2010,118(3):512-518
    29. Alexander G, Vladimir D, Larisa G. Evaluation of lactic acid bacteria, isolated from lightly preservedfish products, as starter cultures for new fish-based food products[J]. Innovative Food Science&EmergingTechnologies,2001,1(3):219-226
    30. Doumoto. Process for producing fermented fish food [P]. United States Patent,6884455.2005
    31. Nychas GJE, Arkoudelos JS. staphylococci: their role in fermented sausages[J].Joumalof APPliedBacteriology Symposium Supplement,1990,69(19):167-188
    32. Hammes WP, Hertel C. Selection and improvement of lactic acid bacteria used in meat and sausagefermentation [J]. Lait,1996.76:159-168
    33. Gonzalez-Fandos ME, Sierra M, Garcia-Lopez ML, et al. The influence of manufacturing and dryingconditions on the survival and toxinogenesis of Staphylococcus aureus in two Spanish dry sausages(chorizo and salchichon)[J]. Meat Science,1999.52(4):411-419
    34. Johansson G, Berdague JL, Larsson, M, et al. Lipolysis, proteolysis and formation of volatilecomponents during ripening of a fermented sausage with Pediococcus pentosaceus and Staphylococcusxylosus as starter cultures [J]. Meat Science,1994.38(2):203-218
    35. Olesen PT, Meyer AS, Stahnke LH. Generation of flavour compounds in fermented sausages--theinfluence of curing ingredients, Staphylococcus starter culture and ripening time [J]. Meat Science,2004.66(3):675-687
    36. Casaburi A, Aristoy M, Cavella S, et al. Biochemical and sensory characteristics of traditionalfermented sausages of Vallo di Diano (Southern Italy) as affected by the use of starter cultures [J]. MeatScience,2007,76(2):295-307
    37. Olesen PT, Meyer AS, Stahnke LH. Generation of flavour compounds in fermented sausages-theinfluence of curing ingredients, Staphylococcus starter culture and ripening time [J]. Meat Science,2004.66(3):675-687
    38. Adams MR. Fermented flesh foods [J]. rogress in industrial microbiology.1986,23(7):179-180
    39. Cooke RD, Twiddy DR, Alan Reilly P. Lactic-acid fermentation as a low-cost means of foodpreservation in tropical countries[J]. FEMS microbiology letters,1987,46(3):369-379
    40.张雪花.鲢及其加工废弃物发酵鱼露的比较[J].上海水产大学学报,2000.9(3):226-230
    41. Mizutanit, kimizuica Ja, ruddlek. Chemical Components of Fermented Fish Products [J]. Journal ofFood Composition and Analisis,1992.5(2):152-159
    42. Larrouture C, Ardaillon V, Pépin M, et al. Ability of meat starter cultures to catabolize leucine andevaluation of the degradation products by using an HPLC method [J]. Food Microbiology,2000,17(5):563-570
    43. Hughes MC, Kerry JP, Arendt EK, et al. Characterization of proteolysis during the ripening of semi-dryfermented sausages [J]. Meat Science,2002.62(2):205-216
    44. Bolumar T, Sanz Y, Aristoy MC, et al. Purification and properties of an arginyl aminopeptidase fromDebaryomyces hansenii [J]. International Journal of Food Microbiology,2003.86(1-2):141-151
    45. Fadda S, Oliver G, Vignolo G. Protein degradation by Lactobacillus plantarum and Lactobacillus caseiin a sausage model system [J]. Journal of Food Science,2002.67(3):1179-1183
    46. PaPamanoli E, Kotzekidou P. Characterization of micrococcaceae isolated from dry fermented sausage[J].Food Microbiology.2002,19(5):441-449
    47. El-Sebaiy LA, Metwalli SM. Changes in some chemical characteristics and lipid composition of saltedfermented Bouri Fish muscle (Mugil cephalus)[J]. Food Chemistry,1989.31(1):41-50
    48. Ansorena D, Gimeno O, Astiasaran I, et al. Analysis of volatile compounds by GC–MS of a dryfermented sausages: Chorizode Pamplona [J]. Food Res. Int,2001,34(1):67-75
    49. Johansson G, Berdague JL, Larsson M, et al. Lipolysis, proteolysis and formation of volatilecomponents during ripening of a fermented sausage with Pediococcus pentosaceus and Staphylococcusxylosus as starter cultures [J]. Meat Science,1994.38(2):203-218
    50. Olesen PT, Meyer AS, Stahnke LH. The influence of environmental parameters on the catabolism ofbrached-chain amino acid by Staphylococcus xylosus and Staphylococcus carnosus [J]. Food Microbiol,2004,21(1):43-50
    51. Schubring R, Oehlenschl ger J. Comparison of the ripening process in salted Baltic and North Seaherring as measured by instrumental and sensory methods [J]. Z Lebensm Unters Forsch A,1997,205(2):89–92
    52. Yanshun Xu, Wenshui Xia, Fang Yang, et al. Physical and chemical changes of silver carp sausagesduring fermentation with Pediococcus pentosaceus [J]. Food Chemistry,2010,122(3):633-637
    53. stergaard A, Embarek PKB, Wedell-Neergaard C, et al. Characterization of anti-listerial lactic acidbacteria isolated from Thai fermented fish products [J], Food Microbiol,1998,15(2),223–233
    54.丁耐克.食品风味化学[M].北京:中国轻工业出版社,1996,2
    55.刘战丽,罗欣.发酵肠的风味物质及其来源[J].中国调味品,2002,(10):32-35
    56. Huan YJ, Zhou GH, Zhao GM, et al.Changes in flavor compounds of dry-cured Chinese Jinhua hamduring processing [J].Meat Science,2005,71(2):291-299
    57. Dainty RH, Blom H. Flavour chemistry of fermented sausage. Fermented Meats, Blackie, Glasgow:eds G.Campbell-Platt&P.E.Cook,1995,176-193
    58. Chang SS, Peterson RJ. The Basis of Quality in Muscle Foods RECENT DEVELOPMENTS IN THEFLAVOR OF MEAT [J]. Food Science,1997,42(2):98-105
    59.郭凯,芮汉明.食品中挥发性风味成分的分离、分析技术和评价方法研究进展[J].食品与发酵工业,2007,33(4):110-115
    60. MonteI MC, Reitz J, TaIon R, et al. Biochemical activities of micrococcaceae and their effects on thearomatic profiles and odours of a dry sausage model [J]. Food Microbiology,1996,15(3):489-499
    61. Papamanoli E, Tzanetakis N, LitopouIou-Tzanetaki E, et al. Characterization of lactic acid bacteriaisolated from a Greek dry fermented sausage in respect of their technological and probiotic properties [J].Meat Science,2005.65(2),859-867
    62. Beck HC, Hansen AM, Lauritsen FR. Catabolism of leucine to branched-chain fatty acids inStaphylococcus xylosus [J]. Journal of Applied Microbiology,2004,96(5):1185-1195
    63. Huss HH, Ababouch L, Gram L. Assessment and Management of Seafood Safety and Quality FAOFisheries Technical Paper,2003444, FAO, Rome
    64. Essuman KM. Fermented Fish in Africa: a Study of Processing, Marketing and Consumption. FAOTechnical Paper No.329FAO, Rome (1992), p.80
    65. K se S, üzen F, Tufan B, et al. Investigating some quality parameters of several traditional fishproducts in relation to food safety [M]. In Pacific fisheries technologists conference,2008,3-6
    66. Bakiet Hha, Khogalie F. Effect of different salt concentrations on chemical compositions of the fishhydrocynus spp [J]. Online J. Anim. Feed Res,2011,2(6):461-464
    67. Santos MHS. Biogenic amines: Their importance in foods. International Journal of Food Microbiology,(1996)29,213-231.
    68. Maijala RL, Eerola SH, Aho MA, et al. The effect of GDL-induced pH decrease on the formation ofbiogenic amines in meat [J]. Journal of Food Protection,1993,56(2):125-129
    69. Alberto MR, Arena ME, Manca de Nadra MC. A comparative survey of two analytical methods foridentification and quantification of biogenic amines [J]. Food NS,2002,13(2):125-129
    70. Taylor SL, Guthertz LS, Leatherwood H, et al. Histamine production by foodborne bacterial species [J].Journal of Food Safety,1978,1(3):173-187
    71. Bills DD, Hildrum KI, Scanlan RA, et al. Potential precursors of N-nitrosopyrrolidine in bacon andother fried foods [J]. Journal of Agricultural Food Chemistry,1973,21(5),876-877
    72. Rice SL, Eitenmiller RR, Koehler PE. Biologically active amines in foods: A review [J]. Journal ofMilk and Food Technology,1976,39(3):353–358
    73. Brink B, Damirik C, Joosten HMLJ, et al. Occurrence and formation of biologically active amines infoods. International Journal of Food Microbiology,1990,11(1):73-84
    74. Taylor SL. Histamine poisoning associated with fish, cheese, and other foods. Monograph,VPH/FOS/85.1. Geneva, Switzerland: World Health Organization,1985:1-47
    75. Mah J-H, Han H-K, Oh Y-J, et al. Biogenic amines in Jeotkals, Korean salted and fermented fishproducts [J].Food Chemistry,2002,79(2):239–243
    76. Tsai Y-T, Lin C-Y, Chien L-T, et al. Histamine contents of fermented fish products in Taiwan andisolation of histamine-forming bacteria [J]. Food Chemistry,98(1),64–70
    77. Mah J-H, Hwang H-J. Inhibition of biogenic amine formation in a salted and fermented anchovy byStaphylococcus xylosus as a protective culture [J]. Food NS,2009a,20(9):796–801
    78. Mah J-H, Han H-K, Kim M-G, et al. Inhibitory effects of garlic and other spices on biogenic amineproduction in Myeolchi-jeot, Korean salted and fermented anchovy product [J]. Food NS,2009,20(5):449-454
    79. Mah J-H, Hwang H-J. Effects of food additives on biogenic amine formation in Myeolchi-jeot, a saltedand fermented anchovy (Engraulis japonicus)[J]. Food Chemistry,2009b,114(1):168–173
    80. Valyasevi R, Rolle RS. An overview of small-scale food fermentation technologies in developingcountries with special reference to Thailand: scope for their improvement [J]. International Journal of FoodMicrobiology,2002,75(3):231-239
    81. Buckenhüskes HJ. Selection criteria for lactic acid bacteria to be used as starter cultures for variousfood commodities [J]. FEMS Microbiology Reviews,1993,12(1-3):253-271
    82. Roseiro L, Santos C, Sol M, et al. Proteolysis in Painho de Portalegre dry fermented sausage in relationto ripening time and salt content [J]. Meat Science,2008,79(4):784-794
    83. Rawles DD, Flick G.J, Martin RE. Biogenic amines in fish and shellfish [J]. Advances in Food andNutrition Research,1996,39:329-365
    84. AOAC. Official methods of analysis of AOAC International (16th), Association of Official AnalyticalChemists. Arlington, VA, USA,1997
    85. Wang FS. Effects of three preservative agents on the shelf life of vacuum packaged Chinese-stylesausage stored at20oC [J]. Meat Science,2000,56(1):67-71
    86. Buege JA, Aust SD. Microsomal lipid peroxidation [J]. Methods in enzymology,1978,52(5):302-310
    87. Visessanguan W, Benjakul S, Riebroy S, et al. Changes in composition and functional properties ofproteins and their contributions to Nham characteristics [J]. Meat Science,2004,66(3):579-588
    88. Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent [J].Journal of Biologilal Chemistry,1951,193(1):265-275
    89. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J].Nature,1970,227:680-685
    90. Ben-Gigirey B, de Sousa JVBM, Villa TG, et al. Histamine and cadaverine production by bacteriaisolated from fresh and frozen albacore (Thunnus alalunga)[J]. Journal of Food Protection,1999,62(8):933-939
    91. Ostergaard A, BEN E. Fermentation and spoilage of som fak, a Thai low-salt fish product [J]. TropicalScience,1998,38(1):105-112
    92. Achinewhu S, Oboh C. Chemical, Microbiological, and Sensory Properties of Fermented Fish Productsfrom Sardinellasp. in Nigeria [J]. Journal of Aquatic Food Product Technology,2002,11(1):53-59
    93. Anihouvi V, Sakyi-Dawson E, Ayernor G, et al. Microbiological changes in naturally fermented cassavafish (Pseudotolithus sp.) for lanhouin production [J]. International journal of food microbiology,2007,116(2):287-291
    94. Gilbert R, De Louvois J, Donovan T, et al. Guidelines for the microbiological quality of someready-to-eat foods sampled at the point of sale. PHLS Advisory Committee for Food and Dairy Products [J].Communicable disease and public health/PHLS,2000,3(3):163
    95. Casiraghi E, Pompei C, Dellaglio S, et al. Quality attributes of Milano salami, an Italian dry-curedsausage [J]. Journal of Agricultural and Food Chemistry,1996,44(5):1248-1252
    96. Comi G., Urso R, Iacumin L, et al. Characterization of naturally fermented sausages produced in theNorth East of Italy [J]. Meat science,2005,69(3):381-392
    97. Phithakpol, B. The traditional fermented foods of Thailand: Institute of Food Research and ProductDevelopment, Kasetsart University,1995
    98. Kose S, Hall G.M. Sustainability of Fermented Fish Products [J]. Fish Processing,2010,138-166
    99. Jo C, Ahn D. Volatiles and oxidative changes in irradiated pork sausage with different fatty acidcomposition and tocopherol content [J]. Journal of Food Science-Chicago,2000,65(2):270-275
    100. Molly K, Demeyer D, Johansson G, et al. The importance of meat enzymes in ripening and flavorgeneration in dry fermented sausages. First results of a European project [J]. Food Chemistry,1997,59(4):539-545
    101. Astiasarán I, Villanueva R, Bello J. Analysis of proteolysis and protein insolubility during themanufacture of some varieties of dry sausage [J]. Meat Science,1990,28(2):111-117
    102. Nout, M. Fermented foods and food safety. Food Research International,1994,27():291-298
    103. Shalaby AR. Significance of biogenic amines to food safety and human health [J]. Food ResearchInternational,1996,27(3):675-690
    104. en z B, I ikli NN, oks yler N. Biogenic amines inTurkish sausages (Sucucks)[J]. Journal ofFood Science,(2000).65(1):764–767
    105. Santos EM, Gonzalez-Fernandez C, Jaime I, et al. Comparative study of lactic acid bacteria houseflora isolated in different varieties of 'chorizo'[J]. International Journal of Food Microbiology,1998.39(1-2):123-128
    106. Lucke FK. Utilization of microbes to process and preserve meat [J]. Meat Science,2000.56(2):105-115
    107. Hu Y J, Xia WS, Liu XY. Changes in biogenic amines in fermented silver carp sausages inoculatedwith mixed starter cultures [J]. Food Chemistry,2007,104(1):188-195
    108. Fukami K, Funatsu Y, Kawasaki K, et al. Improvement of fish-sauce odor by treatment with bacteriaisolated from the fish-sauce mush (Moromi) made from frigate mackerel[J]. J Food Sci Tech,2004,69(2):45-49
    109. Fukami K, Satomi M, Funatsu Y, et al. Characterization and distribution of Staphylococcus spimplicated for improvement of fish sauce odor [J]. Fisheries Science,2004,70(5):916-923
    110. Gardini F, Suzzi G, Lombardi A, et al. A survey of yeasts in traditional sausages of southern Italy [J].FEMS yeast research,2006,1(2):161-167
    111.东秀珠.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    112.凌代文.乳酸菌分类鉴定及试验方法[M].北京:中国轻工业出版社,1999,117-129
    113. Sharpe ME. Identification of lactic acid bacteria. In: Skinner, F.A., Lovelock, D.W.(Eds.),Identification Methods for Microbiologists. Academic Press, London, UK,1979,233-259
    114. Kloos WE, Schleifer KH. The genus Staphylococcus. In: Sneath,P.H.A.(Ed.), Bergey's Manual ofSystematic Bacteriology, vol.2. Williams and Wilkins, Baltimore,1986,1013-1035
    115. Schleifer KH, Kloos WE, Kocur M. The genus Micrococcus. In: Starr, Stolp, Trüper, Balows,Schlegel (Eds.),The Prokaryotes. A handbook on Habitats,Isolation and Identification of Bacteria.Springer-Verlag, Berlin,1981,1539-1547
    116.巴尼特J A.酵母菌的特征与鉴定手册[M].胡瑞卿,译.青岛:青岛海洋大学出版社,1991:140-174
    117. Lapage SP, Rowe B, Holmes B, et al. Biochemical identification of Enterobacteriaceae. In: Skinner,F.A., Lovelock, D.W.(Eds.), Identification Methods for Microbiologists. Academic Press, London, UK,1979,123-141
    118. Brenner DJ. Family Enterobacteriaceae. In: Krieg, N.R., Holt,J.G.(Eds.), Bergey’s Manual ofSystematic Bacteriology, vol.1. The Williams and Wilkins Company, Baltimore, MD, USA,1984,408-516
    119. Devriese LA, van de Kerckhove A, Kilpper-Balz R, et al. Characterization and identification ofEnterococcus species isolated from the intestines of animals. Int. J. Syst. Bacteriol,1987,37(3):257-259
    120. Franco I, Prieto B, Cruz JM, et al. Study of the biochemical changes during the processing ofAndrolla, a Spanish dry-cured pork sausage. Food Chemistry,2002.78(3),339-345
    121. F.奥斯伯,R.布伦特编.颜子颖,王海林译.精编分子生物学实验指南[M].北京:科学出版社,1998,37-39
    122. Tanasupawat S, Thongsanit J, Okada S, et al. Lactic acid bacteria isolated from soy sauce mash inThailand[J]. Journal of General and Applied Microbiology,2002,48(4):201–209
    123. Papamanoli E, Tzanetakis N, Litopoulou-Tzanetaki E, et al. Characterization of lactic acid bacteriaisolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties.Meat science,2003,65(2):859-867
    124. Drosinos EH, Paramithiotis S, Kolovos G, et al. Phenotypic and technological diversity of lactic acidbacteria and staphylococci isolated from traditionally fermented sausages in Southern Greece [J]. FoodMicrobiology,2007,24(3):260-270
    125. Benito M, Martín A, Aranda E, et al. Characterization and Selection of Autochthonous Lactic AcidBacteria Isolated from Traditional Iberian Dry‐Fermented Salchichón and Chorizo Sausages. Journal offood science,2007,72(6):193-201
    126. Rodr guez E, González B, Gaya P, et al. Diversity of bacteriocins produced by lactic acid bacteriaisolated from raw milk [J]. International Dairy J,2007,10(1-2):7-15
    127. Paramithiotis S, Muller MRA, Ehrmann MA, et al. Polyphasic identification of wild yeast strainsisolated from Greek sourdoughs [J]. systematic and applied microbiology,2000,23(1):156-164
    128. Buffa M, Morais J, Jimenez-Belenguer A, et al. Technological characterization of lactic acid bacteriaisolated from raw ewes' milk for cheese making [J]. Milchwissenschaft2006,61(4):404-407
    129. Nieto-Arribas P, Poveda J, Sese a S, et al. Technological characterization of Lactobacillus isolatesfrom traditional Manchego cheese for potential use as adjunct starter cultrules [J]. Food NS,2009,20(12):1092-1098
    130. Bonomo MG., Ricciardi A, Zotta T, et al. Molecular and technological characterization of lactic acidbacteria from traditional fermented sausages of Basilicata region (Southern Italy)[J]. Meat Science,2008,80(4):1238-1248
    131. Grazia L, Romano P, Suzzi G.. Caratterizzazione di lattobacilli per salami: Potere proteolitico epotere acidogeno[J]. Ingegneria Alimentare-Le conserve animali,1990,4(1):1–4
    132. Mauriello G., Casaburi A, Blaiotta, G, et al. Isolation and technological properties of coagulasenegative staphylococci from fermented sausages of Southern Italy. Meat science,2004,67(1):149-158
    133.张鹏.四川泡菜中酵母菌的分离筛选及其应用研究[M].2007,哈尔滨:东北农业大学
    134. Lanciotti R, Chaves-López C, Patrignani F, et al. Effects of milk treatment with dynamic highpressure on microbial populations, and lipolytic and proteolytic profiles of Crescenza cheese [J].International Journal of Dairy Technology,2004,57(1):19–25
    135. Lizaso G., Chasco J, Beriain MJ. Microbiological and biochemical changes during ripening ofsalchicho′n, a Spanish dry cured sausage. Food Microbiology,1999,16(3),219-228
    136. Coppola S, Marconi E, Rossi F, et al. Artisanal production of Naples-type salami: chemical andmicrobiogical aspects. Ital. J. Food Science,1995,7(1):57–62
    137. Domi’nguez MC, Gutie’rrez LM, Lo’ pez A, et al. Evolucio’n de los principales grupos demicroorganismos durante la maduracio’n del chorizo de Leo’n. Alimentaria,1989,199(34):11-15
    138. Dolazo F, Steinhof V, Pfeiffer S, et al. Microbial status of the Spanish fermented sausage “Chorizogallego”. Fleischwirtschaft,1998,78(10):1089-1092
    139.李宗军,江汉湖,中国传统酸肉发酵过程中微生物的消长变化.微生物学通报,2004,31(4):9-13
    140. Hugas M, Monfort JM. Bacterial starter cultures for meat fermentation. Food Chemistry,1997,59(4):547-554
    141. Aksu M, Kaya M. Effect of usage Urtica dioica L. on microbiological properties of sucuk, a Turkishdry-fermented sausage. Food NS,2004,15(8):591-595
    142. Steinkraus KH Handbook of indigenous fermented foods,1996,73, CRC
    143. Sanni A. The need for process optimization of African fermented foods and beverages. InternationalJournal of Food Microbiology,1993,18(2):85-95
    144. Nout M. Ecology of accelerated natural lactic fermentation of sorghum-based infant food formulas.International Journal of Food Microbiology,1991,12(2-3):217-224
    145. Halm M, Lillie A, S rensen A, et al. Microbiological and aromatic characteristics of fermented maizedoughs for kenkey production in Ghana. International Journal of Food Microbiology,1993,19(2):135-143
    146. Hansen, Hansen B. Flavour of sourdough wheat bread crumb. Zeitschrift fürLebensmitteluntersuchung und-Forschung A,1996,202(3):244-249
    147. Sakhare P, Narasimha Rao D. Microbial profiles during lactic fermentation of meat by combinedstarter cultures at high temperatures. Food NS,2003,14(1):1-5
    148. Hugas M, Garriga M, Aymerich T, et al. Biochemical characterization of lactobacilli from dryfermented sausages. International Journal of Food Microbiology,1993,18(2):107-113
    149. Kostinek M, Specht I, Edward VA, et al. Characterization and biochemical properties of predominantlactic acid bacteria from fermenting cassava for selection as starter cultures. International Journal of FoodMicrobiology,2007,114(3):342-351
    150.李宗军,李罗明.侗族传统发酵肉的微生物特性[J].中国微生态学杂志,2002,14(1):19-22
    151.曾令彬,谭汝成,熊善柏,等.腊鱼加工中优势乳酸菌的分离与鉴定[J].食品工业科技,2007,28(1):115-119
    152. Coppola S, Mauriello G, Aponte M, et al. Microbial succession during ripening of Naples-typesalami, a southern Italian fermented sausage. Meat Science,2000,56(4):321-329
    153. Torriani S, Di Bucchianico R, Pattarini F, et al. Presence and biotechnological characterization oflactic acid bacteria and Micrococcaceae strains in Abruzzo traditional raw dry sausages. IndustriaConserve,1994,69(1):3-9
    154. Garc’a-Varona M, Santos EM, Jaime I, et al. Characterization of Micrococcaceae isolated fromdifferent varieties of chorizo. International Journal of Food Microbiology,2000,54(3):189-195
    155. McMeekin TA, Chandler RE, Doe PE, et al. Model for combined effect of temperature and saltconcentration/water activity on the growth of Staphylococcus xylosus. Journal AppliedBacteriology,1987,62(6):543-550
    156. Samelis J, Metaxopoulos J, Vlassi M, et al. Stability and safety of traditional Greek salami—amicrobial ecology study. International Journal of Food Microbiology,1998,44(1-2):69-82
    157. Luangsakul N, Keeratipibul S, Jindamorakot S, et al. Lactic acid bacteria and yeasts isolated fromthe starter doughs for Chinese steamed buns in Thailand. LWT-Food Science and Technology,2009,42(8):1404-1412
    158. Senses-Ergul S, ágoston R, Belák á, et al. Characterization of some yeasts isolated from foods bytraditional and molecular tests. International Journal of Food Microbiology,2006,108(1):120-124
    159. Noveir MR, Dogan HB, Halkman AK. Presence of Enterobacteriaceae members in various animaloriginated foods. Gida,2000,25(4):423-428
    160. Murray BE. The life and times of the Enterococcus. Clin. Microbiol,1990,3(1):46-65
    161. Devriese LA, Pot B, van Damme L, et al. Identification of Enterococcus species isolated from foodsof animal origin. International Journal of Food Microbiology,1995,26(2):187-197
    162. Gobbetti, Pandiella, Angelov, etal. The sour dough microflora: internationals of lactic acid bacteriaand yeast. Trends Food Science Technology.1998:267-271
    163. Hugas M, Monfort JM. Bacterial starter cultures for meat fermentation [J]. Food Chemistry,1997,59(4):547-554
    164. Ammor MS, Mayo B. Selection criteria for lactic acid bacteria to be used as functional startercultures in dry sausage production: An update. Meat science,2007,76(1):138-146
    165. Arnau J, Serra X, Comaposada J, et al. Technologies to shorten the drying period of dry-cured meatproducts [J]. Meat Science,2007,77(1):81-89
    166. Gao Y, Van Belkum MJ, Stiles ME. The outer membrane of gram-negative bacteria inhibitsantibacterial activity of brochocin-C [J]. Applied and Environmental Microbiology,1990,65(8):4329-4333
    167. Todorov S, Dicks L. Lactobacillus plantarum isolated from molasses produces bacteriocins activeagainst Gram-negative bacteria [J]. Enzyme and Microbial Technology,2005,36(2-3):318-326
    168. Fadda S, Sanz Y, Vignolo G, et al. Characterization of muscle sarcoplasmic and myofibrillar proteinhydrolysis caused by Lactobacillus plantarum [J]. Applied and Environmental Microbiology,1999,65(8):3540-3546
    169. Yvon M. Key enzymes for flavor formation by lactic acid bacteria [J]. Australian Journal of DairyTechnology2000,61(2):89-96
    170. Buffa M, Morais J, Jiménez-Belenguer A, et al. Technological characterization of lactic acid bacteriaisolated from raw ewes' milk for cheese making [J]. Milchwissenschaft,2006,61(4):404-407
    171. Komprda T, Neznalov J, Standara S, et al. Effect of starter culture and storage temperature on thecontent of biogenic amines in dry fermented sausage polian[J]. Meat Science,2001,59(3):267-276
    172. Hammes WP, Bosch Y, Wolf G.. Contribution of Staphylococcus carnosus and Staphylococcuspiscifermentans to the fermentation of protein foods [J]. Journal of Applied Bacteriology, SymposiumSupplement,1995,79(3):76-83
    173. Stahnke LH. Dry sausages fermented with Staphylococcus xylosus at different temperatures and withdifferent levels. Chemical and bacteriological data [J]. Meat Science,1995,41(2):179-191
    174. Martin A, Colin B, Aranda E, et al. Characterization of Micrococcaceae isolated from Iberiandry-cured sausages [J]. Meat Science,2007,75(4):696–708
    175. Hu Y, Xia W, Ge C. Effect of mixed starter cultures fermentation on the characteristics of silver carpsausages [J]. World Journal of Microbiology&Biotechnology,2007,23(7):1021-1031
    176. Stahnke LH, HolckA, JensenA, e tal. Maturity acceleration of Italian dried sausage byStaphylococcus carnosus relationship between maturity and flavor compounds [J]. Journal of FoodScience,2002,67(5):1914-1921
    177. Garcia-VaronaM, Santos EM. Characterization of micrococcaceae isolated from differentvarieties ofchorizo [J]. International Journal of Food Microbiology,2000,54(3):189-195
    178. Papamanoli E, Kotzekidou P, Tzanetakis N, et al. Characterization of Micrococcaceae isolated fromdry fermented sausage [J]. Food Microbiology,2002,19(5):441–449
    179. Ansonrena D, Montel MC, Rokka M, et al. Analysis of biogenic amines in northern and southernEuropean sausages and role of flora in ammine production [J]. Meat Science,2002,61(2):141–147
    180. Martin A, Colin B, Aranda E, et al. Characterization of Micrococcaceae isolated from Iberiandry-cured sausages [J]. Meat Science,2007,75(4):696–708
    181. Fleet G.. Yeasts in dairy products–a review [J]. Journal of Applied Bacteriology.68(3):199–211
    182. Jones EW. Three proteolytic systems in the yeast Saccharomyces cerevisiae [J]. Journal of BiologicalChemistry,1991,266(13):7963-7966
    183. Klionsky DJ, Herman PK, Emr SD. The fungal vacuole: composition, function, and biogenesis.Microbiological Reviews,1990,54(3):266-292
    184.孙力军,张中,孙德坤,陆兆新.4种香辛料对泡菜发酵过程中乳酸菌生长的影响[J].食品与发酵工业,2004,8:22-24
    185.杨瑞,张伟,陈炼红,等.发酵条件对泡菜发酵过程中微生物菌系的影响[J].食品酵工业,2005,3:90~92
    186. Dierick N, Vanderkerckove V, Demeyer D. Changes in non-protein nitrogen compounds during drysausage ripening [J]. Journal of Food Science,1974,39(3):301-304
    187. OsmanSagdie, Musaozcan. Antibacterial activity of Turki spices hydrosols [J]. FoodNS.2003,14(3):141-143
    188. Aristoy MC, Toldra F. Deproteinization techniques for HPLC amino acid analysis in fresh porkmuscle and dry-cured ham [J]. Journal of Agricultural and Food Chemistry,1991,39(10),1792-1795
    189. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification [J]. Can J Biochem Phys,1959,37(8):911-917
    190. Leseigneur-Meynier A, Gandemer G. Lipid composition of pork muscle in relation to the metabolictype of the fibres [J]. Meat Sci,1991,29(3):229-241
    191. Chambers E, Wolf MB. Sensory testing methods: ASTM International,1996
    192. Amezquita A, Brashears M. Competitive inhibition of Listeria monocytogenes in ready-to-eat meatproducts by lactic acid bacteria [J]. Journal of Food Protection,2002,65(2):316-325
    193. O’sullivan L, Ross R, Hill C. Potential of bacteriocin-producing lactic acid bacteria forimprovements in food safety and quality [J]. Biochimie,2002,84(5-6):593-604
    194. Riebroy S, Benjakul S, Visessanguan W, et al. Some characteristics of commercial Som-fugproduced in Thailand [J]. Food Chemistry,2004,88(4):527-535
    195. Yin LJ, Pan CL, Jiang ST. New Technology for Producing Paste‐like Fish Products using LacticAcid Bacteria Fermentation[J]. Journal of Hood Science,2002b,67(8):3114-3118
    196. Hu Y, Xia, WS, Ge C. Characterization of fermented silver carp sausages inoculated with mixedstarter culture [J]. LWT-Food Science and Technology,2008,41(4):730-738
    197. Barriere C, Centeno D, Lebert A. Roles of superoxide dismutase and catalase of Staphylococcusxylosus in the inhibition of linoleic acid oxidation[J]. FEMS Microbiology Letters,2001,201(2):181-185
    198. Verplaetse A, Demeyer D, Gerard S, Buys E. Endogenous and bacterial proteolysis in dry sausagefermentation [J]. Proc.38th Int. Congr. Meat Science Technology,1992,38(3):851-854
    199. García de Fernando GD, Fox P F. Study of proteolysis during the processing of a dry fermented porksausage [J]. Meat science,1991,30(4):367-383
    200. Beriain M, Horcada A, Purroy A, et al. Characteristics of Lacha and Rasa Aragonesa lambsslaughtered at three live weights [J]. Journal of Animal Science,2000,78(12):3070-3077
    201. Benito MJ, Rodriguez M, Cordoba MG, et al. Effect of the fungal protease EPg222on proteolysisand texture in the dry fermented sausage ‘salchichón’[J]. Journal of the Science of Food and Agriculture,2005,85(2):273-280
    202. Casaburi A, Blaiotta G, Mauriello G, et al. Technological activities of Staphylococcus carnosus andStaphylococcus simulans strains isolated from fermented sausages [J]. Meat Sci,2005,71(4):643-650
    203. Toldrá F, Rico E, Flores J. Activities of pork muscle proteases in model cured meat systems [J].Biochimie,1992,74(3):291-296
    204. Alford JA, Smith JL, Lilly HD. Relation of microbial activity to changes in lipids of foods [J].Journal of Applied Bacteriology,1971,34:133-146
    205.竺尚武.金华火腿挥发性风味物质的研究[J].食品科学,1993,2:16-18
    206.罗欣,朱燕.发酵剂微生物及其代谢与发酵香肠的工艺控制[J].食品与发酵T业,2001,28(3):67-71
    207.张红诚,闵连杰.发酵肠生产中乳酸菌的选择[J].食品科学,1996,17(8):25-29
    208. Flores M, Durá MA, Marco A. Effect of Debaryomyces spp.on aronla formation and sensory qualityof dry-ferment sausages [J]. Meat science,2004,68(3):439-446
    209. Jose M, Bruna, et a1. Microbial and physico-chemical changes during the ripening of dry fermentedsausages supe rficially inoculated with or having added an d intracellular cell-free extract of Penici11iumaurantiogriscum [J]. Meat Science,2001,59(1):87-96
    210.葛长荣,马美湖,马长伟..肉与肉制品工艺学[M].北京:中国轻工业出版社,2002,211-240
    211. Spanier AM, Shahidi F, Parliament TH, et al. Food flavors and chemistry: advances of the newmillennium (Vol.274): Royal Society of Chemistry,2001
    212. MarcoA, Navarro JL, FloresM. Volatile compounds of dry-fermented sausages as affected bysolid-phase microextraction (SPME)[J].Food Chemistry,2004,84(4):633-641
    213. Mateo J, Zumalacárregui JM.Volatile Compounds in Chorizo and Their Changes during Ripening[J].Meat Science,1996,44(4):255-273
    214.何洁.宣威火腿香味活性化合物的分析[D].北京:中国农业大学,2008
    215.周才琼,代小容,杜木英.酸肉发酵过程中挥发性风味物质形成的研究[J].食品科学,2010,31(7):98-104
    216.章银良.食品风味学[M].银川:宁夏人民出版社,2000,1
    217. Larrouture C, Ardaillon V, Pepin M, et al. Ability of meat starter cultures to catabolize leucine andevaluation of the degradation products by using an HPLC method [J].Food Microbiology,2000,17(5):563-570
    218. Larrouture Thiveyrat C, Montel MC. Efects of environmental factors on leucine catabolism byCamobacteriumpiscicola [J].International Journal of Food Microbiology2003.81(3):3177-184
    219. Montel M-C, Reitz J, Talon R et a1. Biochemical activities of Micrococcaceae and their effects onthe aromatic profiles and odours of a dry sausage model [J]. Food Microbiology.1996,13(6):489-499
    220. Heath HB, Reineccius G. Changes in food flavor due to processing.In flavor chemistry andtechnology.1986,71-107.The AVI publishing company, INC.Westport,Connecticut.
    221. Mateo J, Zumalacárregui JM.Volatile Compounds in Chorizo and Their Changes during Ripening[J].Meat Science,1996,44(4):255-273
    222.李平兰,王成涛.发酵食品安全生产与品质控制[M].北京:化学工业出版社,2005,261-289
    223. Pastorelli G, Magni S, Rossi R.Influence of dietary fat on fatty acid composition and sensoryproperties of dry-cured Parma ham [J].Meat Science,2003,65(1):571-580
    224. Meynier E, Novelli R, Chizzolini E.Volatile compounds of commercial Milano salami [J].MeatScience,1999,51(2):175-183
    225. Shahidi F.著,李洁,朱国斌译.肉制品与水产品的风味[M].北京:中国轻工业出版,2001
    226. Olesen PT, Stahnke LH, Talón R. Effect of ascorbate, nitrate and nitrite on the amount of flavourcompounds produced from leucine by Staphylococcus xylosus and Staphylococcus carnosus [J].MeatScience,2004,68(2):193-200
    227. Meynier E, Novelli R, Chizzolini E. Volatile compounds of commercial Milano salami [J].MeatScience,1999,51(2):175-183
    228.赵丽华.羊肉发酵干香肠品质特性及挥发性风味变化及其形成机理研究[D].呼和浩特:内蒙古农业大学,2009
    229. Buscailhon S, Berdague JL, Bousset J. Relations between compositional traits and sensory qualitiesof French dry-cured ham [J].Meat Science,1993,37(2):229-243
    230. Bover-Cid S, Miguélez-Arrizado MJ, Vidal-Carou MC. Biogenic amine accumulation in ripenedsausages affected by the addition of sodium sulphite [J]. Meat science,2001,59(4):391-396
    231. Hernandez-Jover T, Izquierdo-Pulido M, Veciana-Nogues MT, e tal. Effect of starter cultures onbiogenic amine formation during fermented sausage production [J]. Journal of Food Protection,1997,60(7):825-830
    232. Ayhan K, Kolsarici N, zkan GA. The effects of a starter culture on the formation of biogenicamines in Turkish soudjoucks [J]. Meat science,1999,53(3):183-188
    233. Gale EF.. The bacterial amino acid decarboxylases. Advances in Enzymology andRelated Areas of Molecular Biology,1946:1-32
    234. Straub BW, Kicherer M, Schilcher SM, et al. The formation of biogenic amines byfermentation organisms. Zeitschrift für Lebensmitteluntersuchung und-Forschung A,1995,201(3):79-82
    235. Ben-Giglrey B, Vieites Baptista de Sousa JM., Villa TG. Changes in biogenic amines andmicrobiological analysis in albacore (Thunnus alalunga) muscle during frozen storage [J]. Journal of FoodProtection,1998,61(5):608-615
    236. Bover-Cid S, Hugas M, Izquierdo-Pulido M, et al. Reduction of biogenic amine formation using anegative amino acid-decarboxylase starter culture for fermentation of Fuet sausages [J]. Journal of FoodProtection,2000,63(2):237-243
    237. K í ek M, Pavlí ek T, Vácha F. Formation of selected biogenic amines in carp meat [J]. Journal ofthe Science of Food and Agriculture,2002,82(9):1088-1093
    238. Zhong-YiL, Zhong-Hai L, Miao-Ling Z, et al. Effect of fermentation with mixed starter cultures onbiogenic amines in bighead carp surimi [J]. International Journal of Food Science&Technology,2010,45(5):930-936
    239. Lehane L, Olley J. Histamine fish poisoning revisited [J]. International Journal of Food Microbiology,2000,58(1-2):1-37
    240. Suzzi G, Gardini F. Biogenic amines in dry fermented sausages: a review [J]. International Journal ofFood Microbiology,2003,88(1):41-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700