用户名: 密码: 验证码:
不同维度ZnO纳米结构的合成和光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来不同维度的半导体纳米结构材料引起了学术界极大的关注。其中,以三维胶体晶体(或蛋白石)为模板制备的有序多孔材料,由于拥有均一的孔径和高度有序且内部连通的孔排列,在分离,传感器,催化,生物科学以及光子学等方面有极大的应用潜力。目前采用三维胶体晶体模板已经合成了各种类型的有序多孔材料,包括简单和多元氧化物,硫化物,非金属和金属元素,以及聚合物等。
     宽带隙半导体氧化锌是一种独特的既呈现半导体特性,又呈现压电性质的材料,它在室温紫外激光器,发光二极管,传感器,换能器,生物医学以及光催化方面有新颖应用。尤其是不同维度的氧化锌纳米结构在合成、性质及应用方面已成为材料科学领域的研究热点之一。有序多孔氧化锌薄膜作为传感器和半导体电极是非常有用的,这得益于有序多孔结构大的内表面积,以及尺寸可控的大孔所导致的质量输运的提高。
     近年来,二氧化钛优异的性能吸引了学术界广泛的关注,在光催化、染料敏化的太阳能电池以及光子晶体等方面展现出巨大的应用前景。尤其在三维光子晶体方面,高度有序的二氧化钛反蛋白石结构常常被用来研究光子晶体对材料发光的调制作用。
     本论文旨在利用经济有效的电化学沉积方法,向胶体晶体模板中填充氧化锌以及二氧化钛这样具有优异性能的半导体材料,以获得有序多孔结构,并利用热蒸发法制备一维氧化锌纳米结构,研究结构对发光和光催化性质的影响。主要工作和结果如下:
     1.利用改进的Stober方法合成了单分散的二氧化硅微球,利用无乳化剂乳液聚合法制备了单分散的聚苯乙烯微球。利用制备的二氧化硅和聚苯乙烯球,在导电的氧化铟锡玻璃衬底上通过垂直沉降的方法制备了三维有序的胶体晶体,并对垂直沉降的机制进行了讨论。
     2.提出了一种新的合成氧化锌二维有序多孔阵列的手段,即在沉降了三维蛋白石模板的ITO玻璃衬底上利用恒电位沉积来制备。衬底的亲水性和模板的疏水性被利用来控制产生的结构。三维蛋白石模板是疏水的,而ITO玻璃衬底则是亲水的,在电沉积过程中,疏水的蛋白石模板会阻止具有高表面张力的电解液填充其空隙,从而对氧化锌的生长起到物理限定作用,对多孔结构的膜厚均一性也起到精确的控制作用。利用光致发光和阴极射线发光手段研究了氧化锌二维有序多孔阵列的光学性质。
     3.以硝酸锌乙醇—水混合溶液为电解液,在聚苯乙烯胶体晶体模板中电沉积制备了在可见光波段光子带隙可调的三维有序大孔氧化锌膜。溶剂的选择对于氧化锌有序大孔膜的表面形貌产生了巨大影响。当混合溶液中的乙醇含量增加时,氧化锌在胶体晶体模板中的填充分数下降,光子禁带峰位蓝移,氧化锌反蛋白石的有序度下降。
     对氧化锌反蛋白石和纳米晶膜的近带边发射与激发功率的依赖关系做了详细的研究。光致发光强度I和激发功率L之间存在指数关系,即I~L~α,其中指数α常被用来判定半导体近带边发射的起源。然而,在我们的工作中,发现在氧化锌反蛋白石和纳米晶膜中,指数α的值显示出巨大的变化。光致发光激发谱的测量结果表明,氧化锌反蛋白石和纳米晶膜的紫外发光都归因于自由激子复合的一阶LO声子伴线。进一步的结果表明,指数α的改变主要是由于激光加热效应造成的。因而,不能简单的根据指数α的值来判定复杂结构中近带边发射的起源。
     4.利用阴极电沉积在聚苯乙烯胶体晶体模板中制备了二氧化钛有序多孔膜。使用了前人不曾使用过的钛源即硫酸钛,来进行恒电位沉积。电沉积过程中乙醇一水混合溶剂可以浸润胶体晶体模板,从而使模板空隙得到充分的填充,最终形成一个牢固的骨架。在热处理之前,先用甲苯浸泡除去模板,正是这种改进的后处理手段,使我们获得了长程有序的多孔膜。
     5.在不引入其它金属催化剂的条件下,利用金属锌粉的热蒸发在硅衬底上生长了垂直排列的氧化锌纳米棒和纳米管,其生长过程遵循气—液—固机制。利用热蒸发法也合成了氧化锌纳米针和纳米颗粒,通过降解亚甲基蓝检验了它们的光催化性能。氧化锌纳米针膜的光催化性能大大高于氧化锌纳米颗粒膜,二氧化钛膜和花状氧化锌纳/微结构。重复的光催化测试显示氧化锌的光催化活性在使用中几乎没有降低。利用Langmuir-Hinshelwood模型研究了有机污染物的降解动力学机制。
Semiconductor nanomaterials with different dimensions have attracted much attention in recent years.Three-dimensional colloidal crystals or opals are generally applied to fabricate ordered porous materials.Porous materials based on colloidal crystal templating possess uniform pore size and highly ordered pore arrangement, which have many potential applications in separations,sensors,catalysis,bioscience and photonics.Using three-dimensional colloidal crystal template various types of ordered porous materials have been synthesized,including simple and ternary oxides, chalcogenides,non-metallic and metallic elements,and polymers.
     The wide-band-gap semiconductor zinc oxide is a unique material that exhibits semiconducting and piezoelectric dual properties.It has many potential applications in room-temperature ultraviolet laser,light-emitting diodes,sensors,transducers, biomedical sciences and photocatalysis.ZnO nanostructures with different dimensions have been extensively studied in synthesis,properties and applications. Ordered porous ZnO films are useful for the applications in sensors and semiconducting electrodes in virtue of the large internal surface area and improved mass transportation originated from size-controlled macropores.
     Titania as an attractive material has been investigated in recent years for its applications in photocatalysis,dye-sensitized solar cells and photonic crystals. Preparation of three-dimensionally ordered porous titania is very attractive especially in photonic crystals.
     The aim of this work is to prepare semiconductor ordered porous structures by colloidal crystal templating,and to prepare one dimensional ZnO nanostructures by thermal evaporation.The effects of the nanostructures on optical performance in these systems have been investigated.Our works are as follows:
     1.Monodisperse silica spheres were synthesized by a modified Stober method. Monodisperse polystyrene spheres were prepared using an emulsifier-free polymerization technique.The prepared silica and polystyrene spheres were assembled into three-dimensionally ordered colloidal crystals on the indium tin oxide (ITO)coated glass substrates by vertical deposition technique.The mechanism of the vertical deposition was discussed.
     2.We present a different method for the generation of two-dimensional ZnO ordered porous films by electrodeposition using three-dimensional opal templates. The hydrophilicity of the substrate and the hydrophobicity of the template are utilized to control the generated structures.The prepared 3D opal templates are hydrophobic, whereas the substrates are hydrophilic.During electrodeposition the aqueous solution can not wet the hydrophobic template,which blocks the electrolyte infiltrating the interstices of the opal template under high surface tension of the electrolyte.As a result,the substrate will be covered with only a thin layer of electrolyte within one-sphere thickness,in which the electrodeposition process is confined.This confined electrodeposition provides a precise control on the thickness uniformity of the porous film.The optical properties of the two-dimensional ZnO ordered porous films were investigated by photoluminescence and cathodoluminescence.
     3.Three-dimensional(3D)ordered macroporous ZnO films were prepared by electrochemical deposition in Zn(NO_3)_2 mixed ethanol-water solutions using polystyrene colloidal crystals as templates.Our prepared 3D ZnO inverse opals exhibited adjustable photonic band gap in the visible spectrum.It was found that the choice of the solvent influenced the surface morphologies of the ZnO porous films. The filling fraction of ZnO decreased with the increasing ethanol content in the mixed solution.The lower filling fraction of ZnO at higher ethanol content resulted in the decrease of the order degree of ZnO inverse opals.
     The excitation-power dependence of the near-band-edge emission in ZnO inverse opals and nanocrystal films has been studied.The dependence of the photoluminescence intensity I on the excitation power L can be described by a power law,i.e.,I~L~a,where a is an exponent that is often used to identify the origin of the near-band-edge emission from semiconductors in previous models.However,in this work,it was found that the values of a show a strong variation between ZnO inverse opals and nanocrystal films.According to the results of the photoluminescence excitation measurements,the ultraviolet emission of the ZnO inverse opals and nanocrystal films can be attributed to the first-longitudinal-optical phonon replica of the free exciton recombination.And our results show that the change of a is mainly caused by the laser heating effects.Therefore,the value of a could not be simply employed to unequivocally evaluate the origin of the near-band-edge emission in complex nanostructures.
     4.The fabrication of ordered porous titania films using polystyrene colloidal crystal templates by cathodic electrodeposition is reported.A new strategy using Ti(SO_4)_2 as Ti source for the potentiostatic electrodeposition of titania has been developed.In the electrodeposition the mixed ethanol-water solvent was employed to make the electrolyte wet the colloidal crystal template,thus the void space of the original template achieved a good filling resulting in the formation of a tough porous skeleton.After the electrodeposition,an improved post-treatment was utilized where the samples were dissolved in toluene before heat treating in order to obtain long-range ordered porous structure.The improved post-treatment of the electrodeposited samples made us to obtain long-range ordered porous films.
     5.Aligned ZnO nanorods and nanotubes were grown on the silicon substrates by thermal evaporation of zinc powders without any other metal catalyst.The growth process of the ZnO nanorods and nanotubes follows the vapor-liquid-solid mechanism. ZnO nanoneedle and nanoparticle films were synthesized by the same way,and their photocatalytic performances were tested for the degradation of organic dye methylene blue.The photocatalytic performance of the ZnO nanoneedle films was greatly higher than that of the ZnO nanoparticle films,TiO_2 films and flowerlike ZnO nano/microstructures.Repeated photocatalytic tests were executed to evaluate the recycled use of the ZnO nanoneedle films,which showed nearly undiminished photocatalytic activity after the repeated photocatalytic reactions.The decomposition kinetics of the organic pollutant was investigated by Langmuir-Hinshelwood model.
引文
[1] E. Yablonovitch, Phys. Rev. Lett. 58 (1987) 2059.
    [2] S. John, Phys. Rev. Lett. 58 (1987) 2486.
    
    [3] K. M. Ho, C. T. Chan, C. M. Sonkoulis, Phys. Rev. Lett. 65 (1990) 3152.
    
    [4] X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, H. Cao, Appl. Phys. Lett. 85 (2004)3657.
    
    [5] E. R. Brown, C. D. Parker, E. Yabnolovitch, J. Opt. Soc. Am. B10 (1993) 404.
    
    [6] J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, Nature 390 (1997) 143.
    
    [7] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, Appl. Phys. Lett. 74 (1999) 1370.
    
    [8] H. Kosaka, T. Kawashima, A.Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, J. Lightwave Technology 17 (1999) 2032.
    
    [9] J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, Science 282 (1998) 1476
    [10] H. Ichikawa, T. Baba, Appl. Phys. Lett. 84 (2004) 457
    
    [11] K. Busch, S. John, Phys. Rev. E 58 (1998) 3896.
    [12] J. W. Hans, J. mod. Opt 41 (1994) 195.
    
    [13] D. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, V. L. Colvin, J. Chem. Phys 111 (1999) 345.
    
    [14] P. L Flaugh, S. E. Donnell, S. A. Asher, J. Appl. Spectrosc 38 (1984) 847.
    
    [15] J.D. Joannopoulos, P.R. Villeneuuve, S. Fan, Nature 386 (1997) 143.
    
    [16] E. Yablonovitch,T.J. Gmitter, Phys. Rev. lett. 65 (1990) 3152.
    
    [17] C. T. Han, K. M. Ho, C. M. Soukoulis, R. Biswas, M. Sigalas, Europhys. Lett. 16 (1991) 563.
    
    [18] K. M. Ho, C. T. Han, C. M. Soukoulis, R. Biswas, M. Sigalas, Solid State Commun. 89 (1994) 413.
    
    [19] Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, E. L. Thomas, J. Lightwave Technol. 17(1999)1963.
    
    [20] A. D. Dinsmore, J. C. Crocker, A. G. Yodh, Curr. Opin. Colloid Interface Sci. 3 (1998) 5.
    
    [21] J. E. G. J. Wijnhoven, W. L. Vos, Science 281 (1998) 802.
    
    [22] B. T. Holland, C. F. Blanford, A. Stein, Science 281 (1998) 538.
    
    [23] B. Subramanian, V. N. Manoharan, J. D. Thome, D. J. Pine, Adv.Mater 11 (1999) 1261.
    [24]A.S.Dimitrov,K.Nagayama,Langmuir 12(1996)1303.
    [25]P.Jiang,J.F.Bertone,K.S.Hwang,V.L.Colvin,Chem.Mater.11(1999)2132.
    [26]Y.N.Xia,B.Gates,Y.D.Yin,Y.Lu,Adv.Mater.12(2000)693.
    [27]Q.Zhou,P.Dong,L.X.Liu,B.Y.Cheng,Colloids and Surfaces A:Physicochem.Eng.Aspects 253(2005)169.
    [28]周倩,董鹏,程丙英,物理学报53(2004)3984.
    [29]陈红艺,郭红莲,倪培根,张琦,程丙英,张道中,物理学报52(2003)2155.
    [30]M.Holgado,F.Garcia-Santamaria,A.Blanco,M.Ibisate,A.Cintas,H.Miguez,C.J.Serna,C.Molpeceres,J.Requena,A.Mifsud,F.Meseguer,C.Lopez,Langmuir 15(1999)4701.
    [31]A.L.Rogach,N.A.Kotov,D.S.Koktysh,J.W.Ostrander,G.A.Ragoisha,Chem.Mater.12(2000)2721.
    [32]Pawel Pieranski,L.Strzelecki,B.Pansu,Phys.Rev.Lett.50(1983)900.
    [33]S.Neser,C.Bechinger,P.Leiderer,T.Palberg,Phys.Rev.Lett.79(1997)2348.
    [34]S.H.Park,D.Qin,Y.N.Xia,Adv.Mater.10(1998)1028.
    [35]O.D.Velev,P.M.Tessier,A.M.Lenhoff,E.W.Kaler,Nature 401(1999)548.
    [36]魏苗菊,张坤,陈启明,化学通报70(2007)207.
    [37]K.Busch,S.John,Phys.Rev.E 58(1998)3896.
    [38]A.Blanco,E.Chomski,S.Grabtchak,M.Ibisate,S.John,S.W.Leonard,C.Lopez,F.Meseguer,H.Miguez,J.P.Mondia,G.A.Ozin,O.Toader,H.M.van Driel,Nature 405(2000)437.
    [39]J.S.King,E.Graugnard,C.J.Summers,Adv.Mater.17(2005)1010.
    [40]M.Scharrer,X.Wu,A.Yamilov,H.Cao,R.P.H.Chang,Appl.Phys.Lett.86(2005)151113.
    [41]H.W.Yan,C.F.Blanford,B.T.Holland,W.H.Smyrl,A.Stein,Chem.Mater.12(2000)1134.
    [42]H.W.Yan,C.F.Blanford,J.C.Lytle,C.B.Carter,W.H.Smyrl,A.Stein,Chem.Mater.13(2001)4314.
    [43]G.Subramania,K.Constant,R.Biswas,M.M.Sigalas,K.M.Ho,Appl.Phys.Lett.74(1999)3933.
    [44]G.Subramania,K.Constant,R.Biswas,M.M.Sigalas,K.M.Ho,Adv.Mater.13(2001)443.
    [45]G.Subramania,K.Constant,R.Biswas,M.M.Sigalas,K.M.Ho,Synth.Metals 116(2001)445.
    [46]G.Subramanian,V.N.Manoharan,J.D.Thorne,D.J.Pine,Adv.Mater.11(1999)1261.
    [47]Y.A.Vlasov,N.Yao,D.J.Norris,Adv.Mater.11(1999)165.
    [48]P.N.Bartlett,P.R.Birkin,M.A.Ghanem,Chem.Commun.(2000)1671.
    [49]Q.Luo,Z.Liu,L.Li,S.Xie,J.Kong,D.Zhao,Adv.Mater.13(2001)286.
    [50]P.V.Braun,P.Wiltzius,Nature 402(1999)603.
    [51]P.V.Braun,P.Wiltzius,Adv.Mater.13(2001)482.
    [52]T.Sumida,Y.Wada,T.Kitamura,S.Yanagida,Chem.Lett.(2001)38.
    [53]P.N.Bartlett,P.R.Birkin,M.A.Ghanem,C.S.Toh,J.Mater.Chem.11(2001)849.
    [54]T.Sumida,Y.Wada,T.Kitamura,S.Yanagida,Chem.Commun.(2000)1613.
    [55]马光辉,苏志国,高分子微球材料,化学工业出版社,2005.
    [56]曹同玉,戴兵,戴俊燕,高分子通报9(1995)174.
    [57]W.Stober,A.Fink,E.Bohn,J.Colloid Interface Sci.26(1968)62.
    [58]R.K.Iler,The Chemistry of Silica,Wiley,New York 1979.
    [59]N.A.M.Verhaegh,A.V.Blaaderen,Langmuir 10(1994)1427.
    [60]S.Y.Chang,L.Liu,S.A.Asher,J.Am.Chem.Soc.116(1994)6745.
    [61]L.M.Liz-Marzan,M.Giersig,P.Mulvaney,Langmuir 12(1996)4329.
    [62]X.C.Jiang,T.Herricks,Y.N.Xia,Adv.Mater.15(2003)1205.
    [63]U.Y.Jeong,Y.N.Xia,Adv.Mater.17(2005)102.
    [64]E.W.Seelig,B.Tang,A.Yamilov,H.Cao,R.p.H.Chang,Mater.Chem.Phys.80(2003)257.
    [65]N.V.Gaponenko,Synth.Met.124(2001)125.
    [66]E.Muh,H.Frey,J.E.Klee,R.Mulhaupt,Adv.Funct.Mater.11(2001)425.
    [67]Y.Y.Song,D.Zhang,W.Gao,X.H.Xia,Chem.Eur.J.11(2005)2177.
    [68]V.V.Guliants,M.A.Carreon,Y.S.Lin,J.Membr.Sci.235(2004)53.
    [69]A.Stein,Microporous and Mesoporous Mater.44(2001)227.
    [70]H.Sieber,C.Hoffmann,A.Kaindl,P.Greil,Adv.Eng.Mater.2(2000)105.
    [71]高欣宇,刘源,吴美玲,世界科技研究与发展,28(2006)30.
    [72]A.Stein,F.Li,N.R.Denny,Chem.Mater.20(2008)649.
    [73]R.Biswas,M.M.Sigalas,G.Subramania,C.M.Soukoulis,K.M.Ho,Phys.Rev.B 61(2000)4549.
    [74]A.Richel,N.P.Johnson,D.W.McComb,Appl.Phys.Lett.76(2000)1816.
    [75]D.W.McComb,B.M.Treble,C.J.Smith,R.M.D.L.Rue,N.P.Johnson,J.Mater.Chem.11(2001)142.
    [76]M.S.Thijssen,R.Sprik,J.E.G.J.Wijnhoven,M.Megens,T.Narayanan,A.Lagendijk,W.L.Vos,Phys.Rev.Lett.83(1999)2730.
    [77]A.F.Koenderink,M.Megens,G.van Soest,W.L.Vos,A.Lagendijk,Phys.Lett.A 268(2000)104.
    [78]J.F.Bertone,P.Jiang,K.S.Hwang,D.M.Mittleman,V.L.Colvin,Phys.Rev.Lett.83(1999)300.
    [79]H.Miguez,F.Meseguer,C.Lopez,M.Holgado,G.Andreasen,A.Mifsud,V.Fornes,Langmuir 16(2000)4405.
    [80]M.Muller,R.Zentel,T.Maka,S.G.Romanov,C.M.Sotomayor Torres,Adv.Mater.12(2000)1499.
    [81]Z.Y.Li,Z.Q.Zhang,Phys.Rev.B 62(2000)1516.
    [82]Z.Y.Li,Z.Q.Zhang,Adv.Mater.13(2001)433.
    [83]C.F.Blanford,R.C.Schroden,M.Al-Daous,A.Stein,Adv.Mater.13(2001)26.
    [84]T.F.Krauss,R.M.De La Rue,Progr.Quantum Electronics 23(1999)51.
    [85]K.Busch,S.John,Phys.Rev.Lett.83(1999)967.
    [86]R M.Tessier,O.D.Velev,A.T.Kalambur,J.F.Rabolt,A.M.Lenhoff,E.W.Kaler,J.Am.Chem.Soc.122(2000)9554.
    [87]J.Huang,X.B.Hu,W.X.Zhang,Y.H.Zhang,G.T.Li,Colloid Polym.Sci.286(2008)113.
    [88]B.J.S.Johnson,A.Stein,Inorg.Chem.40(2001)801.
    [89]R.C.Schroden,C.F.Blanford,B.J.Melde,B.J.S.Johnson,A.Stein,Chem.Mater.13(2001)1074.
    [90]廖菊芳,邬泉周,尹强,王崇太,李红玉,李玉光,化学学报64(2006)2419.
    [91]尹强,廖菊芳,王崇太,李玉光,化学学报65(2007)2103.
    [92]H.W.Yan,K.Zhang,C.F.Blanford,L.F.Francis,A.Stein,Chem.Mater.13(2001)1374.
    [93]R.W.J.Scott,S.M.Yang,G.Chabanis,N.Coombs,D.E.Williams,G.A.Ozin,Adv.Mater.13(2001)1468.
    [94]T.Hyodo,K.Sasahara,Y.Shimizu,M.Egashira,Sens.Actuators B 106(2005)580.
    [95]J.S.Sakamoto,B.Dunn,J.Mater.Chem.12(2002)2859.
    [96]E.M.Sorensen,S.J.Barry,H.K.Jung,J.R.Rondinelli,J.T.Vaughey,K.R.Poeppelmeier,Chem.Mater.18(2006)482.
    [97]K.T.Lee,J.C.Lytle,N.S.Ergang,S.M.Oh,A.Stein,Adv.Funct.Mater.15(2005)547.
    [98]J.I.L.Chen,G.von Freymann,S.Y.Choi,V.Kitaev,G.A.Ozin,Adv.Mater.18(2006)1915.
    [99]J.I.L.Chen,G.von Freymann,V.Kitaev,G.A.Ozin,J.Am.Chem.Soc.129(2007)1196.
    [100]Y.Z.Li,T.Kunitake,S.Fujikawa,J.Phys.Chem.B 110(2006)13000.
    [101]D.C.Look,D.C.Reynolds,J.W.Hemsky,Appl.Phys.Lett.75(1999)811.
    [102]P.Zu,Z.K.Tang,G.K.L.Wong,M.Kawasaki,A.Ohtomo,H.Koinuma,Y.Segawa,Solid State Commun.,103(1997)459.
    [103]Z.L.Wang,J.Phys.:Condens.Matter 16(2004)829.
    [104]U.Ozgur,Y.I.Alivov,C.Liu,A.Teke,M.A.Reshchikov,S.Dogan,V.Avrutin,S.J.Cho,H.Morkoc,J.Appl.Phys.98(2005)041301.
    [105]K.Vanheusden,W.L.Warren,C.H.Seager,D.R.Tallant,J.A.Voigt,B.E.Gnade,J.Appl.Phys.79(1996)7983.
    [106]B.X.Lin,Z.X.Fu,Y.B.Jia,Appl.Phys.Lett.79(2001)943.
    [107]V.A.Fonoberov,A.A.Balandin,Appl.Phys.Lett.85(2004)5971.
    [108]A.B.Djurisic,Y.H.Leung,small 2(2006)944.
    [109]K.Vanheusden,C.H.Seager,W.L.Warren,D.R.Tallant,J.A.Voigt,Appl.Phys.Lett.68(1996)403.
    [110]B.J.Jin,S.Im,S.Y.Lee,Thin Solid Films 36(2000)107.
    [111]T.Minami,H.Nanto,S.Takata,Thin Solid Films 109(1983)379.
    [112]S.H.Bae,S.Y.Lee,H.Y.Kim,S.Im,Appl.Surf.Sci.168(2000)332.
    [113]A.Miyake,H.Kominami,H.Tatsuoka,H.Kuwabara,Y.Nakanishi,Y.Hatanaka,J.Cryst.Growth 214/215(2000)294.
    [114]S.Takata,T.Minami and H.Nanto,Jpn.J.Appl.Phys.20(1981)1759.
    [115]C.X.Guo,Z.X.Fu,C.S.Shi,Chin.Phys.Lett.16(1999)146.
    [116]D.M.Bagnall,Y.F.Chen,Z.Zhu,T.Yao,S.Koyama,M.Y.Shen,T.Goto,Appl.Phys.Lett.70(1997)2230.
    [117]H.Cao,Y.G.Zhao,S.T.Ho,E.W.Seelig,Q.H.Wang,R.P.H.Chang,Phys.Rev.Lett.82(1999)2278.
    [118]M.H.Huang,S.Mao,H.Feick,H.Q.Yan,Y.Y.Wu,H.Kind,E.Weber,R.Russo,P.D.Yang,Science 292(2001)1897.
    [119]H.Yan,J.Johnson,M.Law,R.He,K.Knutsen,J.R.McKinney,J.Pham,R.Saykally,P.Yang,Adv.Mater.15(2003)1907.
    [120]Z.K.Tang,G.K.L.Wong,P.Yu,M.Kawasaki,A.Ohtomo,H.Koinuma,Y.Segawa,Appl.Phys.Lett.72(1998)3270.
    [121]王建波,李玉国,张秋霞,夏继周,张月甫等,微纳电子技术9(2007)857.
    [122]T.Aoki,Y.Hatanaka,D.C.Look,Appl.Phys.Lett.76(2000)3257.
    [123]A.Tsukazaki,A.Ohtomo,T.Onuma,M.Ohtani,T.Makino,et al.Nat.Mater.4(2005)42.
    [124]W.Z.Xu,Z.Z.Ye,Y.J.Zeng,L.P.Zhu,B.H.Zhao,L.Jiang,J.G.Lu,H.P.He,S.B.Zhang,Appl.Phys.Lett.88(2006)173506.
    [125]S.J.Jiao,Z.Z.Zhang,Y.M.Lu,D.Z.Shen,B.Yao,J.Y.Zhang,B.H.Li,D.X.Zhao,X.W.Fan,Z.K.Tang,Appl.Phys.Lett.88(2006)031911.
    [126]W.Liu,S.L.Gu,J.D.Ye,S.M.Zhu,S.M.Liu,X.Zhou,R.Zhang,Y.Shi,Y.D.Zheng,Y.Hang,C.L.Zhang,Appl.Phys.Lett.88(2006)092101.
    [127]N.Sakagami,M.Yamashita,T.Sekiguchi,S.Miyashita,K.Obara,T.Shishido,J.Cryst.Growth 229(2001)98.
    [128]A Urbieta,P Fern'andez,J Piqueras,T Sekiguchi,Semicond.Sci.Technol.16(2001)589.
    [129]W.I.Park,G.C.Yi,J.W.Kim,S.M.Park,Appl.Phys.Lett.82(2003)4358.
    [130]T.Dietl,H.Ohno,F.Matsukura,J.Cibert,D.Ferrand,Science 287(2000)1019.
    [131]T.Dietl,Semicond.Sci.Technol.17(2002)377.
    [132]Y.Ryu,T.S.Lee,J.A.Lubguban,H.W.White,B.J.Kim,Y.S.Park,C.J.Youn,Appl.Phys.Lett.88(2006)241108.
    [133]见网页:http://optoelectronic.jobui.com/blog/71291.html
    [134]刘云燕,袁玉珍,李洁,高绪团,材料导报21(2007)9.
    [135]王英连,孙汪典,传感器世界6(2004)15.
    [136]蔡淑珍,秦向东,段平光,李霞,张玉梅,河北大学学报27(2007)332.
    [137]李萍,曾隆月,洪承浪,钟海坚,邝先飞,太阳能学报27(2006)700.
    [138]潘吉浪,尹荔松,高松华,向成承,李婷,范海陆,闻立时,纳米材料与应用3(2006)18.
    [1]W.Stober,A.Fink,E.Bohn,J.Colloid Interface Sci.26(1968)62.
    [2]Z.B.Lei,J.M.Li,Y.X.Ke,Y.G.Zhang,H.Wang,G.F.He,J.Mater.Chem.11(2001)1778.
    [3]Z.B.Lei,Y.G.Zhang,H.Wang,Y.X.Ke,J.M.Li,F.Q.Li,J.Y.Xing,J.Mater.Chem.11(2001)1975.
    [4]G.H.Bogush,M.A.Tracy,C.F.Zukoski Ⅳ,J.Non-Cryst.Solids 104(1988)95.
    [5]赵瑞玉,董鹏,梁文杰,石油大学学报19(1995)89.
    [6]B.T.Holland,C.F.Blanford,T.Do,A.Stein,Chem.Mater.11(1999)795.
    [7]J.W.Goodwin,J.Hearn,C.C.Ho,R.H.Ottewill,Colloid.Polym.Sci.252(1974)464.
    [8]A.R.Goodall,M.C.Wilkinson,J.Hearn,J.Polym.Sci.Polym.Chem.Ed.,15(1977)2193.
    [9]A.S.Dimitrov,K.Nagayama,Langmuir 12(1996)1303.
    [10]P.Jiang,J.F.Bertone,K.S.Hwang,V.L.Colvin,Chem.Mater.11(1999)2132.
    [11]T.Yamasaki,T.Tsutsui,Appl.Phys.Lett.72(1998)1957.
    [12]贾光明,张喆,张贵忠,向望华,光子学报34(2005)1473.
    [1]S.I.Matsushita,T.Miwa,D.A.Tryk,A.Fujishima,Langmuir 14(1998)6441.
    [2]C.D.Elizabeth,K.V.Oomman,G.O.Keat,Sensors 2,(2002)91.
    [3]M.Meier,A.Mekis,A.Dodabalapur,A.Timko,R.E.Slusher,J.D.Joannopoulos,O.Nalamasu,Appl.Phys.Lett.74(1999)7.
    [4]M.Imada,S.Noda,A.Chutinan,T.Tokuda,Appl.Phys.Lett.75(1999)316.
    [5]T.Tatsuma,A.Ikezawa,Y.Ohko,T.Miwa,T.Matsue,A.Fujishima,Adv.Mater.12(2000)643.
    [6]S.Matsushita,T.Miwa,A.Fujishima,Chem.Lett.(1997)925.
    [7]T.W.Ebbesen,H.J.Leze,H.F.Ghaemi,Nature 391(1998)667.
    [8]M.Winzer,M.Kleiber,N.Dix,R.Wiesendanger,Appl.Phys.A:Mater.Sci.Process.63(1996)617.
    [9]Y.Xia,J.Rogers,K.E.Paul,G.M.Whitesides,Chem.Rev.99(1999)1823.
    [10]K.L.Hobbs,P.R.Larson,G.D.Lian,J.C.Keay,M.B.Johnson,Nano Lett.4(2004)167.
    [11]P.S.Shah,M.B.Sigman,C.A.Stowell,K.T.Lira,K.P.Johnston,B.A.Korgel,Adv.Mater.15(2003)971.
    [12]X.Chen,Z.M.Chen,N.Fu,a.Lu,B.Yang,Adv.Mater.15(2003)1413.
    [13]P.Jiang,Angew.Chem.Int.Ed.43(2004)5625.
    [14]J.C.Love,B.D.Gates,D.B.Wolfe,K.E.Paul,G.M.Whitesides,Nano Lett.2(2002)891.
    [15]F.Q.Sun,W.P.Cai,Y.Li,B.Q.Cao,Y.Lei,L.D.Zhang,Adv.Funct.Mater.14(2004)283.
    [16]M.Kanungo,M.M.Collinson,Chem.Commun.(2004)548.
    [17]F.Yan,W.A.Goedel,Chem.Mater.16(2004)1622.
    [18]B.Q.Cao,W.P,Cai,F.Q.Sun,Y.Li,Y.Lei,L.D.Zhang,Chem.Commun.(2004)1604.
    [19]H.W.Yan,Y.L.Yang,Z.P.Fu,B.F.Yang,Z.Wang,L.S.Xia,S.J.Yu,S.Q.Fu,F.Q.Li,Chem.Lett.34(2005)976.
    [20]P.J.Daragh,A.J.Gaskin,J.V.Scander,Sci.Am.234(1976)84.
    [21]L.V.Woodcock,Nature 385(1997)141.
    [22]李明海,马懿,徐岭,张宇,马飞,黄信凡,陈坤基,物理学报52(2003)1302.
    [23]F.Q.Sun,W.P.Cai,Y.Li,B.Q.Cao,F.Lu,G.T.Duan,L.D.Zhang,Adv.Mater.16(2004)1116.
    [24]T.Yoshida,D.Komatsu,N.Shimokawa,H.Minoura,Thin Solid Films 451-452(2004)166.
    [25] T. Mahalingam,_, V. S. John, M. Raja, Y. K. Su, P. J. Sebastian, Sol. Energy Mater. Sol. Cells 88(2005) 227.
    [26] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun., 103 (1997) 459.
    [27] X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, H. Cao, Appl. Phys. Lett. 85 (2004) 3657.
    [28] A. Yamilov, X. Wu, H. Cao, J. Appl. Phys. 98 (2005) 103102. [29] S. Peulon, D. Lincot, J. Electrochem. Soc. 145 (1998) 864.
    [30] Q. T. Wang, G. Z. Wang, J. S. Jie, X. H. Han, B. Xu, J. G. Hou, Thin Solid Films 492 (2005) 61.
    [31] L. Bergman, X. B. Chen, J. L. Morrison, J. Huso, A. P. Purdy, J. Appl. Phys. 96 (2004) 675. [32] K. A. Alim, V. A. Fonoberov, M. Shamsa, A. A. Balandin, J. Appl. Phys. 97 (2005) 124313. [33] K. A. Alim, V. A. Fonoberov, A. A. Balandin, Appl. Phys. Lett. 86 (2005) 053103.
    [34] X. B. Chen, J. L. Morrison, J. Huso, L. Bergman, A. P. Purdy, J. Appl. Phys. 97 (2005) 024302.
    [35] C. F. Li, Y. S. Huang, L. Malikova, F. H. Pollak, Phys. Rev. B 55 (1997) 9251.
    [36] T. Schmidt, K. Lischka, W. Zulehner, Phys. Rev. B 45 (1992) 8989.
    [37] S. R. Jin, Y. L. Zheng, A. Z. Li, J. Appl. Phys. 82 (1997) 3870.
    [38] D. E. Cooper, J. Bajaj, P. R. Newmann, J. Cryst. Growth 86 (1988) 544.
    [39] J. E. Fouquet, A. E. Siegman, Appl. Phys. Lett. 46 (1984) 280.
    [40] Z. X. Fu, B. X. Lin, G. H. Liao, Z. Q. Wu, J.Cryst. Growth 193 (1998) 316.
    [1]V.V.Guliants,M.A.Carreon,Y.S.Lin,J.Membr.Sci.235(2004)53.
    [2]R.R.Bhave,Inorganic Membranes:Synthesis,Characteristics and Application,Van Nostrand Reinhold,New York,1991.
    [3]R.W.J.Scott,S.M.Yang,G.Chabanis,N.Coombs,D.E.Williams,G.A.Ozin,Adv.Mater.13(2001)1468.
    [4]Y.Y.Song,D.Zhang,W.Gao,X.H.Xia,Chem.Eur.J.11(2005)2177.
    [5]Y.J.Wang,F.Caruso,Adv.Funct.Mater.14(2004)1012.
    [6]P.Lodahl,A.F.van Driel,I.S.Nikolaev,A.Irman,K.Overgaag,D.Vanmaekelbergh,W.L.Vos,Nature 430(2004)654.
    [7]O.D.Velev,T.A.Jede,R.F.Lobo,A.M.Lenhoff,Nature 389(1997)447.
    [8]H.W.Yah,C.F.Blanford,B.T.Holland,W.H.Smyrl,A.Stein,Chem.Mater.12(2000)1134.
    [9]Z.B.Lei,J.M.Li,Y.G.Zhang,S.M.Lu,J.Mater.Chem.10(2000)2629.
    [10]J.S.King,C.W.Neff,C.J.Summers,W.Park,S.Blomquist,E.Forsythe,D.Morton,Appl.Phys.Lett.83(2003)2566.
    [11]G.Chai,S.B.Yoon,S.Kang,J.-H.Choi,Y.-E.Sung,Y.-S.Ahn,H.-S.Kim,J.-S.Yu,Electrochim.Acta 50(2004)823.
    [12]P.N.Bartlett,M.A.Ghanem,I.S.El Hallag,P.de Groot,A.Zhukov,J.Mater.Chem.13(2003)2596.
    [13]P.Jiang,M.J.McFarland,J.Am.Chem.Soc.126(2004)13778.
    [14]Z.L.Wang,J.Phys.:Condens.Matter 16(2004)829.
    [15]S.J.Pearton,D.P.Norton,K.Ip,Y.W.Heo,T.Steiner,Progr.Mater.Sci.50(2005)293.
    [16]T.Sumida,Y.Wada,T.Kitamura,S.Yanagida,Chem.Lett.(2001)38.
    [17]P.Lodahl,A.F.van Driel,I.S.Nikolaev,A.Irman,K.Overgaag,D.Vanmaekelbergh,W.L.Vos,Nature 430(2004)654.
    [18]M.Scharrer,X.Wu,A.Yamilov,H.Cao,R.P.H.Chang,Appl.Phys.Lett.86(2005)151113.
    [19]H.W.Yan,Y.L.Yang,Z.P.Fu,B.F.Yang,L.S.Xia,S.Q.Fu,F.Q.Li,Electrochem.Commun.7(2005)1117.
    [20]P.Jiang,J.F.Bertone,K.S.Hwang,V.L.Colvin,Chem.Mater.11(1999)2132.
    [21]A.A.Chabanov,Y.Jun,D.J.Norris,Appl.Phys.Lett.84(2004)3573.
    [22]黄忠兵,高继宁,汪静,唐芳琼,袁春伟,物理化学学报20(2004)651.
    [23] H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, V. Fornes, Langmuir 16 (2000) 4405.
    
    [24] J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, C. H. Kam, Appl. Phys. Lett. 76 (2000) 3513.
    
    [25] Y. Lin, J. Zhang, E. H. Sargent, E. Kumacheva, Appl. Phys. Lett. 81 (2002) 3134.
    
    [26] J. Valenta, J. Linnros, R. Juhasz, J.-L. Rehspringer, F. Huber, C. Hirlimann, S. Cheylan, R. G Elliman, J. Appl. Phys. 93 (2003) 4471.
    
    [27] M. Scharrer, A. Yamilov, X. H. Wu, H. Cao, R. P. H. Chang, Appl. Phys. Lett. 88 (2006) 201103.
    
    [28] L. Bergman, X. B. Chen, J. L. Morrison, J. Huso, A. P. Purdy, J. Appl. Phys. 96 (2004) 675.
    
    [29] C. F. Li, Y. S. Huang, L. Malikova, F. H. Pollak, Phys. Rev. B 55 (1997) 9251.
    
    [30] T. Schmidt, K. Lischka, W. Zulehner, Phys. Rev. B 45 (1992) 8989.
    
    [31] S. R. Jin, Y. L. Zheng, A. Z. Li, J. Appl. Phys. 82 (1997) 3870.
    
    [32] D. E. Cooper, J. Bajaj, P. R. Newmann, J. Cryst. Growth 86 (1988) 544.
    
    [33] J. E. Fouquet, A. E. Siegman, Appl. Phys. Lett. 46 (1984) 280.
    
    [34] W. S. Shi, B. Cheng, L. Zhang, E. T. Samulski, J. Appl. Phys. 98 (2005) 083502.
    
    [35] B. Guo, Z. R. Qiu, K. S. Wong, Appl. Phys. Lett. 82 (2003) 2290.
    
    [36] Y. Zhang, Z. Y. Zhang, B. X. Lin, Z. X. Fu, J. Xu, J. Phys. Chem. B 109 (2005) 19200.
    
    [37] V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. X. Xiu, J. L. Liu, Phys. Rev. B 73 (2006) 165317.
    
    [38] L. J. Wang and N. C. Giles, J. Appl. Phys. 94 (2003) 973.
    
    [39] W. Shan, W. Walukiewicz, J. W. Ager III, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, Appl. Phys. Lett. 86 (2005) 191911.
    
    [40] T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, A. Waag, Appl. Phys. Lett. 89 (2006) 182107.
    
    [41] K. A. Alim, V. A. Fonoberov, A. A. Balandin, Appl. Phys. Lett. 86 (2005) 053103.
    
    [42] K. A. Alim, V. A. Fonoberov, M. Shamsa, A. A. Balandin, J. Appl. Phys. 97 (2005) 124313.
    
    [43] Y. L. Yang, H. W. Yan, Z. P. Fu, B. F. Yang, L. S. Xia, Y. D. Xu, J. Zuo, F. Q. Li, J. Phys. Chem.B 110(2006)846.
    [1]C.Y.Hsiao,C.L.Lee,D.F.Ollis,J.Catal.82(1983)418.
    [2]B.O'Regan,M.Gratzel,Nature 353(1991)737.
    [3]M.S.Thijssen,R.Sprik,J.E.G.J.Wijnhoven,M.Megens,T.Narayanan,A.Lagendijk,W.L.Vos,Phys.Rev.Lett.83(1999)2730.
    [4]J.I.L.Chen,G.von Freymann,S.Y.Choi,V.Kitaev,G.A.Ozin,Adv.Mater.18(2006)1915.
    [5]J.I.L.Chen,G.von Freymann,V.Kitaev,G.A.Ozin,J.Am.Chem.Soc.129(2007)1196.
    [6]M.M.Ren,R.Ravikrishna,K.T.Valsaraj,Environ.Sci.Technol.40(2006)7029.
    [7]Y.Z.Li,T.Kunitake,S.Fujikawa,J.Phys.Chem.B 110(2006)13000.
    [8]S.L.Kuai,S.Badilescu,G.Bader,R.Bruning,X.F.Hu,V.V.Truong,Adv.Mater.15(2003)73.
    [9]J.S.King,E.Graugnard,C.J.Summers,Adv.Mater.17(2005)1010.
    [10]L.Kavan,M.Zukalova,M.Kalbac,M.Graetzel,J.Electrochem.Soc.151(2004)A1301.
    [11]C.Natarajan,G.Nogami,J.Electrochem.Soc.143(1996)1547.
    [12]H.J.An,S.R.Jang,R.Vittal,J.Lee,K.J.Kim,Electrochim.Acta 50(2005)2713.
    [13]Y.Matsumoto,Y.Ishikawa,M.Nishida,S.Ii,J.Phys.Chem.B 104(2000)4204.
    [14]S.Karuppuchamy,K.Nonomura,T.Yoshida,T.Sugiura,H.Minoura,Solid State Ionics 151(2002)19.
    [15]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,化学工业出版社,2002.
    [16]H.J.An,S.R.Jang,R.Vittal,J.Lee,K.J.Kim,Electrochim.Acta 50(2005)2713.
    [17]D.Schwarzenbach,Inorg.Chem.9(1970)2391.
    [1] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, Adv. Mater. 15(2003)353.
    
    [2] Z. L. Wang, Adv. Mater. 12 (2000) 1295.
    
    [3] J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 32 (1999) 435.
    
    [4] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4 (1964) 89.
    
    [5] A. I. Klimovskaya, I. P. Ostrovskii, A. S. Ostrovskaya, Phys. Status Solidi a 153 (1996) 465.
    
    [6] O. Toshio, N. Masayuki, J. Cryst. Growth 46 (1979) 504.
    
    [7] Y. Iwao, S. J. Hajime, J. Cryst.Growth 45 (1978) 511.
    
    [8] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science 270(1995)1791.
    
    [9] C. C. Chen, C. C. Yeh, Adv. Mater. 12 (2000) 738.
    
    [10] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, S. T. Lee, Chem. Mater. 14 (2002) 1216.
    
    [11] D. P. Yu, X. S. Sun, C. S. Lee, I. Bello, S. T. Lee, H. D. Gu, K. M. Leung, G. W. Zhou, Z. F. Dong, Z. Zhang, Appl. Phys. Lett. 72 (1998) 1966.
    
    [12] X. F. Duan, C. M. Lieber, J. Am. Chem. Soc. 122 (2000) 188.
    [13] R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 15 (2003) 635.
    [14] W. Q. Han, S. S. Fan, Q. Q. Li, Y. D. Hu, Science 277 (1997) 1287.
    
    [15] C. R. Wang, K. B. Tang, Q. Yang, B. Hai, G Z. Shen, C. H. An, W. C. Yu, Y. T. Qian, Chem. Commun.4(2001)339.
    
    [16] Y. Jiang, Y. Wu, X. Mo, W. C. Yu, Y. Xie, Y. T. Qian, Inorg. Chem. 39 (2000) 2964.
    
    [17] C. R. Wang, K. B. Tang, Q. Yang, Y. T. Qian, J. Electrochem. Soc. 150 (2003) G163.
    
    [18] M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma, Appl. Phys. Lett. 61 (1992) 2051.
    
    [19] K. Keem, H. Kim, G. T. Kim, J. S. Lee, B. Min, K. Cho, M. Y. Sung, S. Kim, Appl. Phys. Lett. 84 (2004)4376.
    
    [20] M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, J. Phys. Chem. B 107 (2003) 659.
    
    [21] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D.Yang, Science 292 (2001) 1897.
    
    [22] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, Appl. Phys. Lett. 81 (2002) 3648.
    [23] W. I. Park, Y. H. Jun, S. W. Jung, G. C. Yi, Appl. Phys. Lett. 82 (2003) 964.
    [24] Z. L. Wang, Mater. Today 7 (2004) 26.
    [25]J.H.Park,H.J.Choi,Y.J.Choi,S.H.Sohn,J.G.Park,J.Mater.Chem.14(2004)35.
    [26]J.H.Park,H.J.Choi,J.G.Park,J.Cryst.Growth 263(2004)237.
    [27]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,化学工业出版社,2002.
    [28]A.Muruganandham,N.Shobana,A.Swaminathan,J.Mol.Catal.A:Chem.246(2006)154.
    [29]S.Sakthivel,B.Neppolian,M.V.Shankar,B.Arabindoo,M.Palanichamy,V.Murugesan,Sol.Energy Mater.Sol.Cells 77(2003)65.
    [30]A.A.Khodja,T.Sehili,J.F.Pilichowski,P.Boule,J.Photochem.Photobiol.A 141(2001)231.
    [31]C.Lizama,J.Freer,J.Baeza,W.D.Mansilla,Catal.Today 76(2002)235.
    [32]T.Pauporte,J.Rathousky,J.Phys.Chem.C 111(2007)7639.
    [33]C.H.Ye,Y.Bando,G.Z.Shen,D.Golberg,J.Phys.Chem.B 110(2006)15146.
    [34]Y.Y.Wu,H.Q.Yan,P.D.Yang,Top.Catal.19(2002)197.
    [35]M.R.Hoffmann,S.T.Martin,W.Y,Choi,D.W.Bahnemann,Chem.Rev.95(1995)69.
    [36]J.L.Yang,S.J.An,W.I.Park,G.C.Yi,W.Choi,Adv.Mater.16(2004)1661.
    [37]Q.Wan,T.H.Wang,J.C.Zhao,Appl.Phys.Lett.87(2005)083105.
    [38]J.J.Wu,C.H.Tseng,Appl.Catal.B:Environ.66(2006)51.
    [39]F.Xu,Z.Y.Yuan,G.H.Du,T.Z.Ren,C.Bouvy,M.Halasa,B.L.Su,Nanotechnology 17(2006)588.
    [40]Z.L.Wang,Annu.Rev.Phys.Chem.55(2004)159.
    [41]Z.R.Dai,Z.W.Pan,Z.L.Wang,Adv.Funct.Mater.13(2003)9.
    [42]J.G.Lu,P.C.Chang,Z.Y.Fan,Mater.Sci.Eng.R:Rep.52(2006)49.
    [43]M.Law,J.Goldberger,P.D.Yang,Annu.Rev.Mater.Res.34(2004)83.
    [44]H.J.Fan,F.Bertram,A.Dadgar,J.Christen,A.Krost,M.Zacharias,Nanotechnology 15(2004)1401.
    [45]O.A.Fouad,A.A.Ismail,Z.I.Zaki,R.M.Mohamed,Appl.Catal.B:Environ.62(2006)144.
    [46]N.Daneshvar,D.Salari,A.R.Khataee,J.Photochem.Photobiol.A 162(2004)317.
    [47]I.Poulios,E.Micropoulou,R.Panou,E.Kostopoulou,Appl.Catal.B:Environ.41(2003)345.
    [48]S.H.Zhou,A.K.Ray,Ind.Eng.Chem.Res.42(2003)6020.
    [49]S.Chakrabarti,B.K.Dutta,J.Hazard.Mater.112(2004)269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700