用户名: 密码: 验证码:
黄瓜(Cucumis sativus L.)离体雌核发育早期生理生化特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离体雌核发育是单倍体诱导的主要途径之一,有关离体雌核发育方面的生理生化机
    制的研究报道尚少。天津科润黄瓜研究所在国内首次通过黄瓜未受精子房培养获得单倍
    体植株,建立了高效、稳定的黄瓜单倍体诱导体系。本试验在前期有关离体黄瓜雌核发
    育形态学和生理生化研究的基础上,以诱导离体雌核发育的 M99 培养基上和非雌核发
    育的 W5 培养基上培养的黄瓜未受精子房为试材,采用生物化学技术和组织化学技术,
    深入研究了离体雌核发育早期外植体内的标志酶——过氧化物酶及其同工酶的活性及
    分布的变化、可溶性蛋白质的含量和总蛋白质分布的变化及核酸和多糖(淀粉)分布的
    变化,为揭示离体雌核发育早期的细胞分化机制提供科学依据。试验结果如下:
     1. 研究了过氧化物酶同工酶在两种培养基上的外植体内的变化,结果发现,在培
    养的 1-9 天,在可发生离体雌核发育的 M99 培养基上的黄瓜未受精子房内,总的 POD
    和 NADHPOD、GSH-Px 两种同工酶活性均比 W5 上的外植体内酶活性高,COX,ASP
    活性较 W5 上的低。培养在 M99 上的外植体内 IAAO 活性一直保持较高的水平,而 W5
    上的 IAAO 活性在培养前 5 天略高于 M99,培养 5 天后则急剧下降。
     2. 培养在 M99 上的黄瓜未受精子房内,在培养的第 0~2 天过氧化物酶主要分布于
    珠被和珠心组织的细胞质中。子房的薄壁组织随着培养天数的增加染色加深,POD 主
    要分布于其细胞壁及邻近的区域。培养 4 天后 POD 在胚珠内整个细胞都有分布,而薄
    壁组织的细胞壁中 POD 分布较多;在 W5 上的外植体内,在培养的 0~4 天一直以胚珠,
    尤其珠被细胞较周围的薄壁细胞分布多,发现培养 4 天时珠被细胞开始增生,增生细胞
    的细胞壁及邻近区域染色。
     3. 在培养的前 4 天,M99 和 W5 两种培养基上的外植体内可溶性蛋白的含量变化
    略有上升,培养 4 天后,M99 上的外植体内可溶性蛋白含量呈下降趋势,而 W5 上的则
    呈上升趋势;总蛋白质在 M99 上以胚珠内分布一直较多而薄壁组织中分布减少,W5 上
    的胚珠与薄壁组织中蛋白质分布都较多,随着培养天数的增加,胚珠与薄壁组织的细胞
    染色都加深,细胞壁着色明显。
     4. M99 上的外植体,胚珠内尤其是珠心组织中 DNA、RNA 含量增加,薄壁细胞内
    DNA 含量逐渐减少;胚珠细胞内有很小的淀粉颗粒出现,且细胞壁很薄,而薄壁组织
    的细胞内没有淀粉粒出现。在 W5 上的外植体内胚珠和薄壁组织细胞的 DNA、RNA 都
    增加,第 6-9 天,增生的细胞 DNA 含量减少;薄壁组织中多糖含量一直增加,并且发
    现增生的细胞内布满了大的淀粉粒。
In vitro gynogenesis is one of the major methods for haploid production. There is
    few report about physiological and biochemical changes of cucumber in vitro gynogenesis.
    An efficient and stable system for cucumber haploid production via in vitro gynogenesis was
    established in Tianjin Keneil Cucumber Research Institute. On the basis of this system and
    previously morphological, physiological and biochemical studies on cucumber in vitro
    gynogenesis. Materials from both typical gynogenesis using M99 as induction medium and
    non gynogenesis using W5 as induction medium were collected. The activities and
    distribution of peroxidase and its isoenzymes, content of soluble protein and distribution of all
    protein during early stage of cucumber in vitro gynogenesis and non gynogenesis were
    investigated by biochemistry and histochemistry technology. Nucleic acid and amylose were
    also studied by histochemistry. These researches aimed to give a probative value for cell
    differentiation mechanism during the early stage of cucumber in vitro gynogenesis.
     The results showed that total peroxidase, NADH peroxidase, and glutathione peroxidase
    activities of explants in mediums M99 were all increased more and earlier than that in W5.
    While cytochrome peroxidase and ascorbate peroxidase of explants in mediums M99 were always
    lower than that in W5. The Indole-3-acetic acid oxidase activity of explants in medium M99
    increased markedly and remained high level, while that in W5 increased in the first 5 days and
    decreased markedly after 5-day culture.
     Peroxidase localization in explants of medium M99 showed that total peroxidase was
    found mainly in cytoplasm of outer integument and nucellar tissue during 0-2 days of culture,
    peroxidases activity in parenchyma tissue of ovary increased gradually which showed
    gradient staining following culture days and peroxidases mainly localized in cell wall and the
    extracellular gaps. Whole ovule cells were completely stained. While in medium W5
    peroxidases mostly localized in ovule cells especially in integument during 2-4 days after
    culture. Peroxidase located in cell wall and in the extracellular gaps of proligerous cells in
    integument at day 4.
     Soluble proteins in explants of both M99 and W5 were all increased slightly in the first 4
    days of culture. But it decreased in explants of mediums M99, while it increased in that of W5
    after 4 days culture. Total protein in ovules increased, while that in parenchyma of mediums
    M99 decreased. But total protein in both ovules and parenchyma of mediums W5 were all
    increased.
     In explants of M99, DNA and RNA content increased in ovules, especially in nucellus.
    Small starch grains appeared in ovule cells, while no starch grains appeared in parenchyma.
    
    
    In explants of W5, DNA and RNA content increased in both ovules and parenchyma. DNA
    content in proligerous cells decreased after 6 days of culture. Amylose increased in
    parenchyma gradually and big starch grains appeared in proligerous cells.
引文
1. 曹鸣庆等. 芸薹属(Brassica)蔬菜游离小孢子培养研究进展. 园艺学报,
     1996.2: 63-100
    2. 周嫦,杨弘远. 未传粉的子房与胚珠的离体培养.武汉大学学报(自然科学
     版),1982,3:61-72
    3. 周嫦,杨弘远.水稻的未传粉子房培养.武汉大学学报(自然科学版),1983,
     4:146-153
    4. 杨弘远,周 嫦编著. 植物有性生殖实验研究四十年,武汉大学出版社,
     2000,195-192
    5. 祝仲纯等.大叶黄烟未传粉子房培养及其细胞学研究.遗传学报,1984,11
     (4):281-287
    6. 杜胜利. 黄瓜雌核发育及染色体倍性鉴定与加倍研究. 南开大学博士研究
     生毕业(学位)论文 2002
    7. 陈学军 ,邢国明等. 西葫芦未授粉胚珠离体培养和植株再生. 浙江农业学
     报 2000,12(3):165-167
    8. 杜胜利,魏惠军等.通过辐射花粉授粉诱导获得黄瓜单倍体植株.中国农业科
     学,1999,32(2):107-110
    9. 阎华,杨弘远. 向日葵立体孤雌生殖的超微结构研究[J]. 植物学报,1989,
     21(1):1-5
    10. 魏正元,杨弘远. 向日葵离体孤雌生殖过程的组织化学研究. 植物学报,
     1986,28(2):117-122
    11. 崔凯荣,戴若兰主编. 植物体细胞胚发生的分子生物学. 科学出版社 2000
    12. 汪丽虹,王星等. 石刁柏及党参体细胞胚发生中的淀粉代谢动态. 植物学通
     报,1996,13(1):41-45。
    13. 崔凯荣,王晓哲等. 小麦体细胞胚发生中 DNA,RNA 和蛋白质的合成动态。
     核农学报,1997,11(4):209-214
    14. 倪德祥, 植物组织培养中酶的研究.自然杂志,1987,10(12):925-928
    15. 王晓哲,陈雄,王亚馥. 植物体细胞胚发生中基因表达调控研究的某些进展.
     遗传,1995,17(增刊):34-38
    16. 胡忠,丁嘉宾,王星等. 宁夏枸杞器官发生和体细胞胚胎发生过程中 DNA,
     RNA 和蛋白质合成动态的比较研究.实验生物学报,1998,31:403-412
    17. 庄东红,杜虹.大白菜子叶培养过程中 POD 同工酶和可溶性蛋白质含量的变
     化.汕头大学学报(自然科学版),2002,17(1)64-73
    
    
    34 黄瓜(Cucumis sativus L.)离体雌核发育早期生理生化特性的研究
    18. 杨艳丽. 青花菜组培中 POD 及 IAA 氧化酶与形态发生的关系. 华北农学报,
     1991,6(2):62-68
    19. 王亚馥,徐庆,刘志学. 红豆草胚性细胞系与非胚性细胞系 DNA 代谢动态的
     研究。核农学报,1991,5(1):55-59
    20. 陈以峰,周燮等.1998.水稻体细胞培养中胚性细胞出现与 IAA 的关系.植物
     学报,40(5):474-477
    21. 李雪梅,刘熔山.小麦幼穗胚性愈伤组织诱导及分化过程中内源激素的作用.
     植物生理通讯,1994,30(4):255-260
    22. 韩碧文,李颖章. 植物组织培养中器官建成的生理生化基础. 植物学报,
     1993,10(2):1-6
    23. 蒋选利,康振生,李振岐. 过氧化物酶与植物抗病性研究进展. 西北农林科
     技大学学报,2001,29(6):124-129
    24. 王英,樊拥军等.槐种子发育过程中子叶细胞显微结构的变化和过氧化物酶
     同工酶变化的动态.西北植物学报,1997,17(3):315-321
    25. 梁艳荣,胡晓红等.植物过氧化物酶生理功能研究进展.内蒙古农业大学学
     报,2003,2:110-113
    26. 吴明江,于萍.植物过氧化物酶的生理作用.生物学杂志,1994,62:14-16
    27. 唐锡华,潘国桢.高等植物胚胎发育生物学研究Ⅷ 稻胚发育过程中过氧化物
     酶的活性、出现位置及其同工酶谱的变化规律.植物生理学报,1983,9:
     357-364
    28. 余叔文,汤章城主编.植物生理与分子生物学(第二版).科学出版社,1999,
     93-112
    29. 路铁刚,郑国锠.红豆草体细胞胚胎发生早期 DNA、RNA 和蛋白质的合成动态
     变化.植物学报,1989,31(10):757-762
    30. 王亚馥,崔凯荣等. 小麦组织培养中体细胞胚胎发生细胞胚胎学及淀粉消长
     动态的研究. 实验生物学报,1993,26(3):259-267
    31. 郭季芳.介绍植物组织中几种酶的定位测定法. 植物生理通讯 1964.( 2 )
     52~55
    32. 田国伟,申家恒.1993.小麦胚珠在受精过程中 ATP 酶的超微细胞化学定位.
     植物学报,35(5)329-336
    33. 刘本叶,吴绎云等.紫罗兰体细胞胚胎发生过程中生化变化的研究.东北农业
     大学学报,1995,26(3):267-272
    34. 王亚馥,王仑山,陆卫等. 枸杞组织培养中 POD 和可溶性蛋白质变化. 实验
     生物学报,22(1):1-7
    
    
    参考文献 35
    35. 张志良 植物生理学实验指导. 第二版. 北京: 高等教育出版社 1991
    36. 曹翠玲,高俊凤. 小麦根质膜氧化还原系统及其对水分胁迫的反映(简报).
     植物生理学通讯 1996, 32(2):106-110
    37. 王异星,李明启. 光对豌豆细胞色素氧化酶活性的影响(简报). 热带亚热
     带植物学报,1998 ,6(1):78-80
    38. 沈文飚,徐朗莱等. 抗坏学酸过氧化物酶活性测定的探讨. 植物生理学通
     讯, 1996,32(3):203-205
    39. 黄爱缨,吴珍龄. 水稻谷胱甘肽过氧化物酶的测定法 1999,21(4):324~327
    40. 小川和郎,中根一穗主编,钟慈生主译.酶组织细胞化学技术. 上海医科大
     学出版社,1987
    41. 钱敬三,孙迎倩主编. 植物细胞学研究方法. 北京科学出版社,1987
    42. 初立业. 愈伤组织过氧化物酶活性及其同工酶变化 生物技术,2002,12(2):
     35-36
    43. 周 敏,庄东红,郑奕雄。过氧化物酶同工酶技术在花生种子纯度检测中的
     应用研究。花生学报 2001,30(3):27—29。
    44. 孟振农,陈永吉吉 等.大蒜苗端和花序发育与过氧化物酶变化的相互关系.西
     北植物学报,1998,18(3):366-372
    45. 林久生 王根轩.活性氧与植物细胞编程性死亡. 植物生理学通讯 第37卷
     第 6 期,2001 年 12 月
    46. 曹宛虹.作为叶绿体 H2O2 分解系统关键酶的抗坏血酸过氧化物酶.植物生理
     学通讯,1994,30(6):452-458
    47. 殷亚方,姜笑梅,魏令波. 毛白杨形成层的活动周期及其 POD 同工酶的变化.
     林业科学,2002,38(1):103-110
    48. 陈泽宪,徐辉碧 过氧化物酶催化吲哚-3-乙酸氧化的机理和影响因素. 湖北
     农业科学 2000 6:10-13
    49. 董合忠,傅振华 棉花组织培养胚状体发生的生理生化研究. 中国棉花,
     1997,24(2):10-11
    50. 韩碧文. 胚状体发生的细胞学和生理生化研究. 植物学通报,1989 ,6(1):
     1-4
    51. 董合忠,李维江等.棉花花芽分化过程中 IAA 含量与过氧化物酶活性变化趋
     势的研究. 棉花学报,1999,11(6):303-305
    52. 张丽欣,宗汝静. 四种叶菜衰老期间呼吸,乙烯产生 IAA 和 POD 的变化及其
     相互关系. 植物生理学报,1988,14(1):81-87。
    53. 罗盛国,刘元英等.硒对棚室黄瓜生物抗氧化能力的影响.北方园艺,2000,
    
    
    36 黄瓜(Cucumis sativus L.)离体雌核发育早期生理生化特性的研究
     132:10-11
    54. 严逸伦,范义荣. 月季切花水插期间的呼吸、乙烯和酶活性的变化. 福建林
     学院学,2000,20(3):280-282
    55. 沈宗英,曾佑,张志良等.花椰菜下胚轴培养过程中过氧化物酶活性和同工
     酶谱的变化.植物生理学报,1985,11(1):17-24
    56. 刘良式等 编著 植物分子遗传学 科学出版社 1997,307
    57. Blakeslee,A.F, Belling,J.et al. A haploid mutant in the jimson weed , Datura
     stramonium. Science ,1922, 55: 646-647
    58. Guha S & Maheshwari SC. In vitro production of embryos from anthers of
     Dutura. Nature. 1964, 204:497
    59. Guha S & Maheshwari SC . Cell division and differentiation of embryos in the
     pollen grains of Datura in viteo. Ibid. 1966 ,212:97-98
    60. Tulecke W,1964. A haploid tissue culture from the female gametophyte of Jinkgo
     biloba. Nature. 203:94-95
    61. Uchimiya H,Kameya T & Takahashi N,1971.In Vitro culture of unfertilized
     ovules in Solanum melongena and ovaries in Zea mays. Jap.J.Breed. 21:247-250
    62. San Noeum LH (1976) Haploides d’Hordeum vulgare L.par culture in vitro
     d’ovaies non fecondes. Ann. Amelio. Plant. 26:751-754
    63. Wenzel G,Granner A,Fadel F, Zitzlsperger J, Foroughi-Wehr J & Moss
     JP(1992)Production And use ofHaploids in crop improvement in Asia (pp
     169-179).ICRISAT, India
    64. Bohanec B, Javomik B, Bohanec B & Kreft I (1994) Induction of gynogenesis in
     agricultural crops : a review . In : Bohanec B & Javomik B (ed) Proc. Int.
     Colloquium Plant Biotechnology on Agriculture (PP43-55),Ljubljana,Slovenia
    65. Picard E, Crambes E,Liu CS & Mihamou-Ziyyat A. Evolution of haplodiploid-
     isation methods and prospects for plant breedling et de ses Filiales.1994, 188 :
     109-141
    66. Pavlova MK. Culture of unfertilized gunaecia and seedbuda:; Potential and
     prospects. Selskohozyaistvennaya Bilogiya Bilogiya. 1987,1:27-33
    67. Campion B & Alloni C , 1990.Induction of haploid plants in onion (Allium cepa
     L.) by in vitro culture unpollinated ovules. Plant Cell Tiss.Org.Cult.20:1-6
    68. Wernsman E A, Matzinger D F, Ruffu R C, Androgenetic vs. Gynogenetic
     doubled haploids of tobacco.Crop Sci,1989,29:1151-1155
    69. Thomas T D,Bhatnagar A K,et al A reproducible protoco for the production of
    
    
    参考文献 37
     gynogenic haploids of mulberry,Morus alba L.Euphytica, 1999, 110: 169 -173
    70. Ficcadenti N, Sestili S, Annibali S, et al. In vitro gynogenesis to induce haploid
     plants in melon (Cucumis melo L.).Journal of Genetics
     &Breeding ,1999,53(3):255-257
    71. Sachar RC & Kapoor M,1959. In vitro culture of ovules of Zephyranthes.
     Phytomorfology. 9:147-156
    72. Guha S & Johri BM, 1966.In vitro development of ovary and ovule of Allium
     cepa L. Phytomorfology. 16:353-364
    73. Meynet J & Sbib M, 1984. Haploid plants from in vitro culture of unfertilized
     ovules in Gerbera gameasonii. Z.Pflanzenzuchtg. 93:78-85
    74. Hoseman D & Bossoutrot D ,1983.Induction of haploid plants from in vitro
     culture of unpollinated beet (Beta vulgaris L.). Z.Pflanzenzucht. 91:74-77
    75. Lazarte J.E.and C.C.Sasser.Asexual embryogenesis and plantlet development in
     anther culture of Cucumis sativus L. Hort Science 1982,17:88
    76. Przyborowski J, Niemirowicz-Szczytt K (1994) Main factors affecting
     cucumber (Cucumis sativus L.) haploid embryo development and haploid plant
     characteristics. Plant Breeding 112: 70-75.
    77. Trong A, In vitro haloid plants derived from pollination by irradiated pollen on
     cucumber [C].Proceedings of the Europe meeting on cucurbita genetics and
     breeding ,Avignon-Montfavet,France,31 May-2 June.1988
    78. Dirks Robert.US Patent document.5492827
    79. A.Gemes-juhasz, P.B alogh, et al Effect of optimal of female gametophyte and
     heat treatment on in vitro gynogenesis induction in cucumber (cucumis sativus L.)
     Plant Cell Reports 2002,21(2):105-111.
    80. HU Shi-Yi.Development of plant embryology in china. Acta Botanica Sinica
     2002,44(9):1022-1042
    81. Zimmerman. J. Plant Cell,1993.5:1411
    82. Z.R.Sung,& R. Okimoto.1981.Embryogenic proteins in somatic embryos of
     carrot,Proc .Natl.Acad .Sci. USA,78:3683-3687
    83. L.Coopens & E.Gillis..1987. Isoenzyme eletrofocusing as a biochemical
     organogenesis in callus tissues of Hordeum vulgare L.J.Plant
     Physiol,127:153-158
    84. K.Cui,G.Xing & Y. Wang,1999.Effect of hydrogen peroxide on somatic
     embryogenesis of Lyium L.,Plant Sci-ence,146:9-16
    
    
    38 黄瓜(Cucumis sativus L.)离体雌核发育早期生理生化特性的研究
    85. Feirer R.P., Mignon G. et al. Arginine decarboxylase and polyamines required for
     embryogenesis in the wild carrot.Science,1984,223:1433-1435
    86. P.F.Franz,N.C.A. De Ruijter,& J.H.N.Schel. 1989.Isozyme as biochemical and
     cytological markers in embryogenic callus cultures of maize (Zea mavs L..)Plant
     Cell Rep,8:67-70
    87. S.Stizn, H.J.Jacobsen. 1987.Marker protems for embryognic differention parttems
     in pea callus, Plant Cell Rep.6:50-54
    88. R.W.Giroux & K.P.Pauls. 1996. Characterization of embryogenesis-related
     protein in alfalfa (Medieago sativa).Physiologia Plantarum,96(4):;585-`592
    89. S.Chanprame,J.M.Widholm.1996a.Comparison of oil, protein and sugars content
     insoybean(Glycine max) cv.Jack somatic and zygotic embryos. InVitro Cell.
     Dev..Biol..Plant,32(3):90
    90. Slocum RD,Kaur-Sawhney R,Galston AW,The physiology and biochemistry of
     polymines in plants.Arch Biochem Biophys,1984,275:283-330.
    91. Palavan N, Galston A.W.Polyamine biosysthesis and titerding various
     developmental stage of plaseolus vulgaris. Physiol Plant ,1982,55:483-444
    92. Hadramil L.E.. Auzac J. Effects of polyamine biosynthetic inhibitors on samatic
     embryogenesis and cellular polyamines in Hevea brasiliensis. J.Plant
     Physiol.1992,140:33-36
    93. Fienberg A A.,choi J.H.et al development regulation of polyamine metabolism in
     growth and differentiation of carrot culture.Planta,1984,162:532-537
    94. Altman A.,Levin N. et al Polysmine in growth and differentiation ofplant cell
     cultures:the effect of nitrogen nutrition ,salt stress and embryogenic media.In
     zappia V.,Pegg A.EEE.(eds).progress in polyamine research. New York: Plenum
     Press, p.559
    95. Thorpe,T.A.L.D.Owens (ed) Genetic Engineering: Applications to Agriculture,
     (eltsvill Symposium 7)Rowman &Allanheld,Totowa, pp.258-303
    96. Mol R, Betka A & Wojciechowicz M,1995. Induction of autonomous endosperm
     in Lupinus, Helleborous niger and Melandrijm album by in vitro culure of
     unpollinaed ovaries. Sexual Plant Reproduction.8:273-277
    97. Rewal S K,Mehta A R. Changes in enzyme activity and isoperoxidases in haploid
     tobacco callus during organogenesis[J]. Plant Sci Lett, 1982, 24: 67-77
    98. Siegel B Z, Galston A W. The isoperoxidase of Pisum satium L. Plant
     Physiol,1967,42:221-226
    
    
    参考文献 39
    99. Welinder K.C. Superfamily of plant, fungal and bacterial peroxidases Curr. Opin.
     Struct. Biol.1992,2:388-393
    100.Kunishima N, Fukuyama K, Matsubara H. Crystal structure of the fungal
     peoxidase from Arthromyces ramosus at 0.19nm resolution. J.Mol. Biol,
     1994,235(2):331-344
    101.Henriksen A, Smish A T, Gajihede M, The structures of the horseradish
     peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest
     how peroxidases oxidize small phenolic substances. Biol. Chem,
     1999,274:35005-35011
    102.Zhang X,Van Huystee A B.On tyrosine oxidation by cationic POD.Plant Cell Tiss
     Organ Culture,1991,25:35-44
    103.James L. Brewbaker, Yoichi Hasegawa. Multi-types of mostly peroxidases in corn,
     In Isozymes, Ⅲ, Developmental Biology,1975, 659-673
    104.Lee T T.Role of phenolic inhibitors in peroxidase mediated degradation of
     indole-3-acetic acid.Plant Physiol,1977,59:372-375
    105.Hausman S F. Changes in peroxidase activity,auxin level and ethylene production
     during root formation by poplar shoots raised in vitro. Plant Growth
     Regulation,1993,13:263-268
    106.Hu C, Krol M, Van Huystee R B. Comparison of anionic peroxidase from
     cultured peanut cells. Plant Cell Tiss Organ Culture,1990,22:65-70
    107.Galston,A W. Regulatory systems in higher plants. Am.Scientist,
     1967,55:144-160
    108.Roland Beffa, Hilary V. Martion ,and Paul-Emile Pilet . In vitro oxidation of
     indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots
     Plant Physiol. 1990,94,485-491
    109.Ario de Marco, Patricia Guzzardi, and élisabeth Jame ,Isolation of Tobacco
     Isoperoxidases Accumulated in Cell-Suspension Culture Medium and
     Characterization of Activities Related to Cell Wall Metabolism,Plant Physiol.
     1999 120: 371-382
    110.Marco-A-de,Roubelakis-Angelaakis-KA. The complexity of enzymic control of
     hydrogen peroxide concentration may affect the regenera- tion potential of plant
     protoplasts.Plant Physiology,1996, 110:1,137-145
    111.C.Sengupta,V .Raghavan.Somatic embryogenesis in carrot cell suspension,
     1.Pattern of protein and nucleic acid synthesis.J.Exper.Bot,1980,31:247-258
    
    
    40 黄瓜(Cucumis sativus L.)离体雌核发育早期生理生化特性的研究
    112.C.Sengupta,V .Raghavan.Somatic embryogenesis in carrot cell suspension, 11.
     Synthesis of ribosonal RNAand poly(A) RNA..J.Exper.Bot,1980,31: 259-268
    113.M.Lopez-Serrano, A.Ros Barcelo Histochemical localization and developmental
     expression of peroxidase and polyphenol oxidase in strawberries
     J.Amer.Soc.Hort.Sci, 2001,126(1):27-32
    114.Susummu Hiraga,Katsutomo, Sasaki et al; A Large Family of Class Ⅲ Plant
     Peroxidases Plant Cell Physiol.2001,42(5):462-468
    115.Yuval Eshdat,Doron Holland, et al.Plant Glutathione Peroxidases. Physiologia
     Plantarum, Denmark.1997,100:234-240
    116.Kedenbach B.regulation of respiration and ATP synthesis in higher
     organisms:Hypothesis. J.Bioenergy Biomemeber,1986,18:39-44
    117.Hossain M A,Asada K.Inactivivation of ascorbate peroxidase in spinach
     chloroplasts on dark addition of hydrogen peroxide:its protection by
     ascorbate.Plant Cell Physiol,1984,25:1285
    118.Lee T T.Role of phenolic inhibitors in peroxidase mediated degradation of
     indole-3-acetic acid.Plant Physiol,1977,59:372-375
    119.Liszkay A, Kenk B, Schopfer P. Evidence for the involvement of cell wall
     peroxidase in the generation of hydroxyl radicals mediating extension growth.
     Planta, 2003,217:658-667
    120.Galston,A.W. and P.J.Davics:Hormonal regulation in higher plants, Plant
     Science,1969,16(3) :1288-1297
    121.Ridge.L.et al.Regulation of peroxidase activity by ethylene in Pisum
     sativum:reguiments of protein and RNA Synthesis.J.Exp.Bot,1970,21:720-734
    122.Verma,D.P.S., Huystee,N.B., Cellular differentiation and peroxidase isoenzymes
     in ceel culture of peanut cotyledons.Can.J.Bot.,1970,48:429-431
    123.Reinecke D M, Bandurski R S. Auxin biosynthesis and metabolism. In: Davies P
     J. Plant Hormone and Their Role in Plant Growth and Development Dordrecht:
     Kluwer Academic Publishers, 1987, 24-42
    124.Steward, F. C. et al., Am. J. Bot., 1958 , 45: 705~708
    125.H.M. Peng, D. A. Dreyer, et al Gene structure and diffierential regulation of the
     Rhizobium-induced peroxidase gene ripl. Plant Physiol., 1996,112:1437-1446

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700