用户名: 密码: 验证码:
碳纳米材料的X射线吸收谱学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料研究是理论和实验领域的一个热门课题。碳纳米材料由于具有独特的结构和优异的物理化学性质,在复合材料、微电子器件、生物医学以及灵敏传感器等领域有着广泛的潜在应用。然而,在碳纳米材料走向实际应用的过程中,对其进行相应的功能化和电子结构调制是非常关键的一步。因此,在碳纳米材料的修饰改性以及掺杂方面的研究具有非常重要的研究和应用意义。
     本论文利用X射线近边吸收谱对碳纳米管的修饰和纯化以及石墨烯的掺杂和氧化还原进行了系统的研究,展示了X射线近边吸收谱在碳纳米材料结构表征和机理研究中的特殊功能。
     a、利用X射线近边吸收谱研究了碳纳米管的硝酸修饰过程以及在这个过程中所产生的碳碎片问题:
     1)通过X射线近边吸收谱对单壁碳纳米管的稀硝酸处理过程进行了系统的研究。实验结果清楚的表明了碳纳米管管壁吸附的碳碎片的存在,这种碳碎片将有效减少硝酸对碳纳米管管壁的直接氧化。吸收谱实验显示硝酸处理后产生的羧基基团同时存在于碳碎片和单壁碳纳米管管壁上,但单壁碳纳米管管壁只被轻微的氧化。硝酸氧化后的碳碎片可以通过氢氧化钠溶液清洗来去除,去除碳碎片之后,进一步的硝酸处理能够直接修饰单壁碳纳米管的侧壁。实验证明去除吸附的碳碎片才能够对单壁碳纳米管管壁进行有效的修饰。吸收谱还显示碳碎片主要来源于碳纳米管制备过程中所产生的无定形碳和在硝酸处理过程中被打碎的单壁碳纳米管。
     2)还利用X射线近边吸收谱对单壁碳纳米管和多壁碳纳米管的浓硝酸处理进行了对比研究。吸收谱结果表明,单壁碳纳米管很容易被浓硝酸破坏形成碳碎片,所产生的羧基基团主要存在于碳碎片上。而多壁碳纳米管结构相对比较稳定,而且管壁层数多,能够在侧壁上产生大量的共价氧化基团。前面的研究已经证明稀硝酸能够有效的修饰单壁碳纳米管。因此,对于不同结构的碳纳米管应当选择适当的硝酸处理条件,这样才能有效的提高碳纳米管的功能化程度。
     3)同时还用X射线近边吸收谱研究了退火处理对氧化碳碎片的去除效果。吸收谱结果证明在惰性气体中对硝酸处理过的单壁碳纳米管进行退火处理能够有效的去除吸附在碳纳米管上的氧化碳碎片,而这些氧化碳碎片是很难通过水的冲洗来去除的。除了以前所报道的氢氧化钠溶液清洗外,本实验提出了另外一种去除氧化碳碎片的办法。
     b、通过X射线近边吸收谱对碳纳米管的共价与非共价修饰进行了详细的研究:
     1)利用X射线近边吸收谱研究了不同温度下气态硝酸对多壁碳纳米管的氧化修饰。吸收谱结果表明,硝酸气体能够有效的氧化修饰多壁碳纳米管,通过对处理温度的控制能够有效的调节修饰到多壁碳纳米管表面的氧化基团的数量。更重要的是这种实验方法简单,样品不需要进行过滤和清洗,可以进行大批量的改性功能化。
     2)同时还利用X射线近边吸收谱研究了单壁碳纳米管的苯丙氨酸和甘氨酸吸附。吸收谱结果证实了氨基酸的吸附。吸附到单壁碳纳米管上的甘氨酸的C=0π*峰出现一个明显的能量位移,说明氨基酸和单壁碳纳米管间存在着相互作用。
     c、基于X射线近边吸收谱对石墨烯的N掺杂和氧化还原过程中电子结构及局域结构的变化进行了研究:
     1)结合X射线近边吸收谱和光电子能谱研究了氧化石墨烯在N掺杂过程中结构随温度的变化。N掺杂的石墨烯是通过把氧化石墨烯放到氨气气氛中退火得到的。吸收谱结果表明,石墨烯中主要存在三种N掺杂结构:吡啶型、氨基和石墨型。在低温下,掺杂的N主要是以氨基的形式存在,这些氨基会在高温下分解。而在高温下,N原子倾向于取代石墨层中的碳原子而形成吡啶型和石墨型结构。N的光电子能谱也证实了这个实验结果。从0的K边吸收谱上同时发现大量的氧化基团存在于氧化石墨烯上,并随着退火温度的升高而迅速减少。
     2)同时还利用X射线近边吸收谱研究了氧化石墨烯在氢气和水合肼中的还原过程。实验结果发现,这两种还原方法都能够实现氧化基团的大量减少。氢气需要在较高的温度下才能还原环氧基团,而水合肼则比较容易与环氧基团发生反应。此外,水合肼还原会在石墨烯中引入一些N原子。
Nano-materials researches represent a hot topic in both theoretical and experimental physics. Due to their unique structures extraordinary physical and chemical properties, carbon-based materials will make possible new applications in the field of composite materials, microelectronic devices, biomedicine, sensors etc. However, the route toward real applications needs the control of functionalization and of the electronic properties of carbon-based nano-materials and additional investigations are required to learn how modify and dope these materials.
     In this thesis, a systematic study on the modification and purification of carbon nanotubes (CNTs) as well as on the doping and redox of graphene has been performed by means of X-ray absorption fine structure (XANES) spectroscopy. It shows the unique capabilities of the XANES spectroscopy to characterize structures and bonding of carbon-based nano-materials.
     a) XANES spectroscopy has been applied to investigate the modification of CNTs by nitric acid and the production of carbonaceous fragments during the process.
     1. This local spectroscopy has been used to identify changes induced on single-walled carbon nanotubes (SWCNTs) treated by mild nitric acid. Experimental results confirm the occurrence of carbonaceous fragments absorbed on SWCNTs, and these fragments would reduce the direct modification of SWCNTs by nitric acid.
     XANES indicate the carboxyl groups created by the nitric acid treatment have been found on both carbonaceous fragments and the side-walls of SWCNTs. Moreover, these carbonaceous fragments can be removed by a washing treatment with sodium hydroxide. SWCNTs walls are weakly oxidized by the nitric acid treatment although, after the fragments removal a direct oxidation process of SWCNTs has been observed. Data address the removal of carbonaceous fragments on SWCNTs as an efficient method for side-wall modification of SWCNT. XANES also indicate that carbonaceous fragments are the result of the synthesis process and/or of the nitric acid treatment.
     2. A comparative XANES study of the modification of both SWCNTs and multi-walled carbon nanotubes (MWCNTs) via concentrate nitric acid has been performed. Data indicate that SWCNTs are easily destroyed by concentrate nitric acid treatment generating the carbonaceous fragments that contain the majority of carboxyl groups. However, due to their higher structural stability and thicker tube walls, high sidewall modification was observed on MWCNTs. An effective modification on SWCNTs by mild nitric acid treatment has been studied before. It was suggested that a proper selection of treatment conditions and CNTs type may effectively control the modifications of these materials.
     3. XANES spectroscopy was also used to investigate the removal of oxidative carbonaceous fragments absorbed on SWCNTs. Data show that the annealing treatment in an inert gas atmosphere may effectively remove these fragments hardly removed by water washing. Results point out an alternative procedure to separate the tightly adsorbed fragments from SWCNTs respect to the previously reported NaOH washing.
     b. XANES spectroscopy was applied to carefully investigate covalent and non-covalent modifications of CNTs.
     1) We investigated the modification of MWCNTs via gas nitric acid vs. temperature. XANES indicate that MWCNTs can be effectively modified by gas nitric acid and the amount of oxygen-functional groups can be controlled by the modulation of the temperature. If compared to the liquid nitric acid treatment this method is easy and modified samples do not need washing and filtration. This gas-phase route is also suitable for mass production.
     2) We studied also the adsorption of phenylalanine and glycine on SWCNTs and the adsorption of amino acids has been confirmed by XANES analysis. An observed energy shift of the C 1s to C=Oπ* peak for glycine absorbed on SWCNTs has been identified and assigned to the interaction between the amino acid and SWCNTs.
     c. The electronic and local structures of graphene after N-doping and redox have been also studied by XANES spectroscopy.
     1) In this study we combined XANES and X-ray photoelectron spectroscopy (XPS) to investigate the structural changes of N-doping graphene at different annealing temperatures. N-doping graphene samples were obtained by annealing the graphene oxide in an ammonia atmosphere. N K-edge XANES spectra indicate three different N-doping structures in the graphene layer:pyridine, amino and graphitic type. At low temperature, the doped nitrogens are of amino type and would decompose increasing the temperature. At high temperature, most of the doped nitrogens replace carbon atoms in the graphene layer forming both pyridine and graphitic doping structure. N 1 s XPS analysis is in good agreement with XANES data. In addition,O K-edge XANES spectra reveal that many oxygen-containing functional groups occur on the graphene oxide layer and are greatly reduced with temperature.
     2) The XANES spectroscopy has been also applied to investigate both chemical bonding and electronic structure of the graphene oxide layer after hydrogen and hydrazine reduction. Results indicate that both hydrogen and hydrazine may effectively reduce the graphene oxide. Hydrogen would react only at high temperature while hydrazine easily reacts with the epoxy groups. Actually, some N atoms are introduced in the graphene layers during the hydrazine reduction.
引文
[1]F. Diederich, and Y. Rubin, Angew. Chem.-Int. Edit. Engl.31,1101 (1992).
    [2]H. W. Kroto et al., Nature 318,162 (1985).
    [3]W. Kratschmer et al., Nature 347,354 (1990).
    [4]R. F. Curl, and R. E. Smalley, Science 242,1017 (1988).
    [5]J. L. Wragg et al., Nature 348,623 (1990).
    [6]M. Tomita et al., Applied Physics Letters 61,1171 (1992).
    [7]H. Kroto, Science 242,1139 (1988).
    [8]S. H. D. Koruga, J. Withers, R. Loutfy, M. Sundareshan, Fullerence C60-History, Physics, Nanobiology (Elsevier Science Publishers B. V., North-Halland,1993).
    [9]B. Schwarzschild, Phys. Today 49,19 (1996).
    [10]B. V. Derjaguin et al., Journal of Crystal Growth 2,380 (1968).
    [11]A. Oberlin, M. Endo, and T. Koyama, Carbon 14,133 (1976).
    [12]S. Iijima, Nature 354,56 (1991).
    [13]J. W. Mintmire, B. I. Dunlap, and C. T. White, Physical Review Letters 68,631 (1992).
    [14]N. Hamada, S.-i. Sawada, and A. Oshiyama, Physical Review Letters 68,1579 (1992).
    [15]R. Saito et al., Physical Review B 46,1804 (1992).
    [16]S. Iijima, and T. Ichihashi, Nature 363,603 (1993).
    [17]D. S. Bethune et al., Nature 363,605 (1993).
    [18]J. W. G. Wildoer et al., Nature 391,59 (1998).
    [19]T. W. Odom et al., Nature 391,62 (1998).
    [20]R. Satio, GDresselhaus, and M. S. Dresselhas, Physical Properties of Carbon Nanotubes
    (Imperial College Press, London,1998).
    [21]L. Chico et al., Physical Review Letters 76,971 (1996).
    [22]Z. Yao et al., Nature 402,273 (1999).
    [23]M. Menon, and D. Srivastava, Physical Review Letters 79,4453 (1997).
    [24]L. Chernozatonskii, J. Nanopart. Res.5,473 (2003).
    [25]F. A. Bulat, L. Couchman, and W. T. Yang, Nano Letters 9,1759 (2009).
    [26]L. X. Zheng et al., Nat Mater 3,673 (2004).
    [27]J. L. Hutchison et al., Carbon 39,761 (2001).
    [28]Z. Zhou et al., Carbon 41,2607 (2003).
    [29]A. Charlier et al., Carbon 37,1779 (1999).
    [30]D. T. Colbert et al., Science 266,1218 (1994).
    [31]Z.W.Pan et al.,Nature 394,631 (1998).
    [32]Y. Saito et al, Physical Review B 48,1907 (1993).
    [33]C. H. Kiang et al, Physical Review Letters 81,1869 (1998).
    [34]D. Ugarte, Microsc. Microanal. Microstruct.4,505 (1993).
    [35]S. Iijima, P. M. Ajayan, and T. Ichihashi, Physical Review Letters 69,3100 (1992).
    [36]S. Iijima, T. Ichihashi, and Y. Ando, Nature 356,776 (1992).
    [37]P. J. F. Harris, M. L. H. Green, and S. C. Tsang, J. Chem. Soc.-Faraday Trans.89,1189 (1993).
    [38]M. Liu, and J. M. Cowley, Materials Science and Engineering:A 185,131 (1994).
    [39]C. Journet et al, Nature 388,756 (1997).
    [40]T. Guo et al, Chemical Physics Letters 243,49 (1995).
    [41]H. Dai et al, Chemical Physics Letters 260,471 (1996).
    [42]C. Journet, and P. Bernier, Applied Physics a-Materials Science & Processing 67,1 (1998).
    [43]R. L. Vander Wal, T. M. Ticich, and V. E. Curtis, Chemical Physics Letters 323,217 (2000).
    [44]Y. M. Li et al, Nano Letters 4,317 (2004).
    [45]D. K. Smith, D. C. Lee, and B. A. Korgel, Chemistry of Materials 18,3356 (2006).
    [46]C. Liu et al, Carbon 37,1865 (1999).
    [47]Y. Saito et al, Chemical Physics Letters 294,593 (1998).
    [48]B. Liu et al, Chemical Physics Letters 320,365 (2000).
    [49]T. Guo et al, The Journal of Physical Chemistry 99,10694 (1995).
    [50]A. Thess et al, Science 273,483 (1996).
    [51]M. Yudasaka et al, Chemical Physics Letters 278,102 (1997).
    [52]A. G. Rinzler et al, Applied Physics a-Materials Science & Processing 67,29 (1998).
    [53]M.Monthioux et al,Carbon 39,1251 (2001).
    [54]M. Su, B. Zheng, and J. Liu, Chemical Physics Letters 322,321 (2000).
    [55]H. M. Cheng et al, Chemical Physics Letters 289,602 (1998).
    [56]H. M. Cheng et al, Applied Physics Letters 72,3282 (1998).
    [57]P. Nikolaev et al, Chemical Physics Letters 313,91 (1999).
    [58]L. Song et al, Advanced Materials 16,1529 (2004).
    [59]A. Barreiro et al, Carbon 45,55 (2007).
    [60]C. Muller et al, J. Phys. Chem. C 113,2736 (2009).
    [61]J. T. Hu et al, Nature 399,48 (1999).
    [62]S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393,49 (1998).
    [63]A. Bachtold et al, Science 294,1317 (2001).
    [64]H. W. C. Postma et al, Science 293,76 (2001).
    [65]Y.-K. Kwon, D. Tomanek, and S. Iijima, Physical Review Letters 82,1470 (1999).
    [66]J. Lefebvre et al, Applied Physics Letters 75,3014 (1999).
    [67]P. Jarillo-Herrero, J. A. van Dam, and L. P. Kouwenhoven, Nature 439,953 (2006).
    [68]P. C. Collins, M. S. Arnold, and P. Avouris, Science 292,706 (2001).
    [69]S. J. Tans et al, Nature 386,474 (1997).
    [70]L. Chico, M. P. Lopez Sancho, and M. C. Munoz, Physical Review Letters 81,1278 (1998).
    [71]X. Blase et al., Applied Physics Letters 70,197(1997).
    [72]G. H. Jeong et al., Physical Review B 68,075410 (2003).
    [73]U. D. Venkateswaran et al, Physical Review B 65,054102 (2002).
    [74]W. I. Choi, J. Ihm, and G. Kim, Applied Physics Letters 92,193110 (2008).
    [75]Z. H. Chen et al., Science 311,1735 (2006).
    [76]R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Review B 53,2044 (1996).
    [77]J. Kong et al., Science 287,622 (2000).
    [78]Y. Y. Wei, and G. Eres, Applied Physics Letters 76,3759 (2000).
    [79]W. A. Deheer, A. Chatelain, and D. Ugarte, Science 270,1179(1995).
    [80]A. Javey et al, Nature 424,654 (2003).
    [81]H. Murakami et al, Applied Physics Letters 76,1776 (2000).
    [82]G. Zhou, W. H. Duan, and B. L. Gu, Applied Physics Letters 79,836 (2001).
    [83]D. H. Kim et al., Chem. Phys. Lett.355,53 (2002).
    [84]K. S. Ahn et al., Carbon 41,2481 (2003).
    [85]X. Zheng et al., Physical Review Letters 92,4 (2004).
    [86]Y. Saito et al., Jpn. J. Appl. Phys. Part 2-Lett.36, L1340 (1997).
    [87]J. L. Kwo et al, Diamond and Related Materials 9,1270.
    [88]A. Peigney, C. Laurent, and A. Rousset, J. Mater. Chem.9,1167 (1999).
    [89]T. Kuzumaki et al, J. Mater. Res.13,2445 (1998).
    [90]R. Z. Ma et al., J. Mater. Sci.33,5243 (1998).
    [91]P.M.Ajayan et al.,Science 265,1212(1994).
    [92]O. Lourie, and H. D. Wagner, J. Mater. Res.13,2418 (1998).
    [93]H. J. Dai et al, Nature 384,147 (1996).
    [94]S. S. Wong et al, Journal of the American Chemical Society 120,603 (1998).
    [95]S. S. Wong et al, Journal of the American Chemical Society 120,8557 (1998).
    [96]P. Kim, and C. M. Lieber, Science 286,2148 (1999).
    [97]P. G. Collins et al., Science 287,1801 (2000).
    [98]J. A. Robinson et al., Nano Lett 6,1747 (2006).
    [99]G. H. Lu, L. E. Ocola, and J. H. Chen, Adv Mater 21,2487 (2009).
    [100]A. Modi et al., Nature 424,171 (2003).
    [101]E. S. Snow, and F. K. Perkins, Nano Lett 5,2414 (2005).
    [102]E. S. Snow et al., Science 307,1942 (2005).
    [103]A. Bianco, and M. Prato, Adv Mater 15,1765 (2003).
    [104]X. Yu et al., J Am Chem Soc 128,11199 (2006).
    [105]X. Chen et al., J Am Chem Soc 128,6292 (2006).
    [106]N. W. S. Kam, and H. Dai, J Am Chem Soc 127,6021 (2005).
    [107]N. W. S. Kam, Z. A. Liu, and H. J. Dai, Angew Chem Int Edit 45,577 (2006).
    [108]N. Nakayama-Ratchford et al., J Am Chem Soc 129,2448 (2007).
    [109]K. S. Novoselov et al.,2004), pp.666.
    [110]K. S. Novoselov et al., Proc. Natl. Acad. Sci. U. S. A.102,10451 (2005).
    [111]J. C. Meyer et al., Nature 446,60 (2007).
    [112]A. K. Geim, and K. S. Novoselov, Nat. Mater.6,183 (2007).
    [113]A. K. Geim, Science 324,1530 (2009).
    [114]G Brumfiel, Nature 458,390 (2009).
    [115]R. F. Service, Science 324,875 (2009).
    [116]A. H. C. Neto et al., Reviews of Modern Physics 81,109 (2009).
    [117]C. L. Kane, Nature 438,168 (2005).
    [118]K. S. Kim et al., Nature 457,706 (2009).
    [119]K. S. Novoselov et al, Science 315,1379 (2007).
    [120]A. A. Balandin et al., Nano Lett.8,902 (2008).
    [121]Y. Wang et al., Nano Lett.9,220 (2009).
    [122]K. S. Novoselov et al., Nature 438,197 (2005).
    [123]Y. B. Zhang et al., Nature 438,201 (2005).
    [124]C. Lee et al., Science 321,385 (2008).
    [125]H. C. Schniepp et al., ACS Nano 2,2577 (2008).
    [126]S. Ghosh et al., Applied Physics Letters 92,151911 (2008).
    [127]A. A. Balandin et al., Nano Lett.8,902 (2008).
    [128]S. Ghosh et al., New J. Phys.11,19 (2009).
    [129]X. K. Lu et al., Nanotechnology 10,269 (1999).
    [130]S. P. Liu et al., Acta Phys. Sin.54,4251 (2005).
    [131]X. K. Lu et al., Applied Physics Letters 75,193 (1999).
    [132]H. F. Hiura, Appl. Surf. Sci.222,374 (2004).
    [133]K. S. Novoselov et al., Science 306,666 (2004).
    [134]S. K. Srivastava et al., Thin Solid Films 492,124 (2005).
    [135]M. Zhu et al., Diamond and Related Materials 16,196 (2007).
    [136]J. Wang et al., Carbon 42,2867 (2004).
    [137]C. A. Di et al., Adv. Mater.20,3289 (2008).
    [138]C. Berger et al., J. Phys. Chem. B 108,19912 (2004).
    [139]C. Berger et al., Science 312,1191 (2006).
    [140]W. A. de Heer et al., Solid State Communications 143,92 (2007).
    [141]P. W. Sutter, J. I. Flege, and E. A. Sutter, Nat. Mater.7,406 (2008).
    [142]S. Stankovich et al., Carbon 45,1558 (2007).
    [143]H. B. Heersche et al., Nature 446,56 (2007).
    [144]S. Stankovich et al., Nature 442,282 (2006).
    [145]RamanathanT et al., Nat Nano 3,327 (2008).
    [146]J. Liang et al., The Journal of Physical Chemistry C 113,9921 (2009).
    [147]Z. Liu et al., J. Am. Chem. Soc.130,10876 (2008).
    [148]A. J. Patil et al., Adv. Mater.21,3159 (2009).
    [149]X. Y. Yang et al., J. Mater. Chem.19,2710 (2009).
    [1]王其武,刘文汉,X射线吸收精细结构及其应用(科学出版社,北京,1994).
    [2]马礼敦,杨福家,同步辐射应用概论(复旦大学出版社,上海,2001).
    [3]D. C. Koningsberger, and R. Prins, X-Ray Absorption-Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (John Willey, New York,1988).
    [4]C. Kittel, Introduction to Solid State Physics (J. wiely & Sons, New York,2004).
    [5]A. Bianconi, EXAFS and Near Edge Structure (Springer-Verlay, Berlin,1983).
    [6]J. Stohr, and R. Jager,26,4111 (1982).
    [7]A. Hirsch, Angewandte Chemie-International Edition 41,1853 (2002).
    [8]P. A. Lee et al., Reviews of Modern Physics 53,769 (1981).
    [9]L. I. Schiff, Quantum Mechanics (McGRAW-HILL, New Yord,1968).
    [10]J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Massachusetts,1967).
    [11]N. W. Ashcroft, and N. D. Mermin, Solid state physics (Saunders College, Fort Worth,1976).
    [12]M. O. Krause, Journal of Physical and Chemical Reference Data 8,307 (1979).
    [13]J. Stohr, NEXAFS Spectroscopy (Springer-Verlag, Berlin,1992).
    [14]B. Watts, L. Thomsen, and P. C. Dastoor, J Electron Spectrosc 151,105 (2006).
    [15]D. A. Fischer, and J. L. Gland, Proceedings of SPIE 733,504 (1986).
    [16]F. Zaera et al., Surface Science 194,205 (1988).
    [17]F. Q. Liu et al., J Electron Spectrosc 80,409 (1996).
    [18]A. G. Michette, and C. J. Buchley, X-ray Science and Technology (Institute of Physics Publishing, London,1993).
    [19]H. Ibach, In Electron Spectroscopy for Surface Analysis, Topics Curr. Phys. Vol.4 (Springer-Verlag, Berlin Heidelberg,1977).
    [20]Y. W. Chung, Practical Guide to Surface Science and Spectroscopy (Academy Press, San Diego,2001).
    [1]S. Iijima, Nature 354,56 (1991).
    [2]R. Satio, GDresselhaus, and M. S. Dresselhas, Physical Properties of Carbon Nanotubes (Imperial College Press, London,1998).
    [3]M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes:Synthesis, Structure, Properties, and Applications (Springer-Verlag Berlin, Heidelberg,2001).
    [4]R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science (2002), pp.787.
    [5]A. G Rinzler et al., Applied Physics a-Materials Science & Processing 67,29 (1998).
    [6]F. Pompeo, and D. E. Resasco, Nano Letters 2,369 (2002).
    [7]Y. Wang et al., Chemical Physics Letters 432,205 (2006).
    [8]Y. Wang, Z. Iqbal, and S. Mitra, Journal of the American Chemical Society 128,95 (2006).
    [9]J. Liu et al., Science (1998), pp.1253.
    [10]H. Hu et al., Journal of Physical Chemistry B (2003), pp.13838.
    [11]A. Hirsch, Angewandte Chemie-International Edition 41,1853 (2002).
    [12]S. Niyogi et al., Accounts of Chemical Research 35,1105 (2002).
    [13]S. Banerjee, T. Hemraj-Benny, and S. S. Wong, Advanced Materials (2005), pp.17.
    [14]R. Verdejo et al., Chemical Communications,513 (2007).
    [15]C. G. Salzmann et al., Advanced Materials (2007), pp.883.
    [16]L. Shao et al., Chemical Communications,5090 (2007).
    [17]J. Chen et al., Science 282,95 (1998).
    [18]A. M. Rao et al., Science 275,187 (1997).
    [19]S. Banerjee et al., Chemical Communications,772 (2004).
    [20]S. Banerjee et al., Chemphyschem 5,1416 (2004).
    [21]T. Hemraj-Benny et al., Small 2,26 (2006).
    [22]J. Stohr, NEXAFS Spectroscopy (Springer-Verlag, Berlin,1992).
    [23]Z. Y. Wu et al., Physical Review Letters 77,2101 (1996).
    [24]J. Zhong et al., Carbon 44,866 (2006).
    [25]J. G. Zhou et al., Chemical Physics Letters 437,229 (2007).
    [26]A. Kuznetsova et al., Journal of the American Chemical Society 123,10699 (2001).
    [27]P. E. Batson, Physical Review B 48,2608 (1993).
    [28]D. A. Fischer et al., Physical Review B 44,1427 (1991).
    [29]C. L. Yueh et al., Applied Physics Letters 79,3179 (2001).
    [30]J.T. Titantah, K. Jorissen, and D. Lamoen, Physical Review B 69 (2004).
    [31]M. Abbas et al., Applied Physics Letters 87,051923 (2005).
    [32]Y. H. Tang et al., Applied Physics Letters 79,3773 (2001).
    [33]J. Zhong et al., Radiat Phys Chem 75,1861 (2006).
    [34]A. Kuznetsova et al., The Journal of Chemical Physics 112,9590 (2000).
    [35]Y. Yang et al., Journal of Physical Chemistry B (2002), pp.7160.
    [36]J. Zhang et al., Journal of Physical Chemistry B 107,3712 (2003).
    [37]M. Zhang, M. Yudasaka, and S. Iijima, Journal of Physical Chemistry B (2004), pp.149.
    [1]S. Niyogi et al., Accounts of Chemical Research 35,1105 (2002).
    [2]S. Banerjee, T. Hemraj-Benny, and S. S. Wong, Advanced Materials (2005), pp.17.
    [3]A. Hirsch, Angewandte Chemie-International Edition 41,1853 (2002).
    [4]M. G. C. Kahn, S. Banerjee, and S. S. Wong, Nano Letters 2,1215 (2002).
    [5]K. A. Williams et al., Nature 420,761 (2002).
    [6]S. Qin et al., Journal of the American Chemical Society 126,170 (2003).
    [7]D. Tasis et al., Chem Rev 106,1105 (2006).
    [8]J. Liu et al., in Science1998), pp.1253.
    [9]H. Hu et al., Journal of Physical Chemistry B (2003), pp.13838.
    [10]C. G. Salzmann et al., Advanced Materials (2007), pp.883.
    [11]R. Verdejo et al., Chemical Communications,513 (2007).
    [12]J. Stohr, NEXAFS Spectroscopy (Springer-Verlag, Berlin,1992).
    [13]Z. Y. Wu et al., Physical Review Letters 77,2101 (1996).
    [14]R. Larciprete et al., Physical Review B 66 (2002).
    [15]J. Zhong et al., Carbon 44,866 (2006).
    [16]J. G. Zhou et al., Chemical Physics Letters 437,229 (2007).
    [17]P. E. Batson, Physical Review B 48,2608 (1993).
    [18]A. Kuznetsova et al., Journal of the American Chemical Society 123,10699 (2001).
    [19]S. Banerjee et al., Chemical Communications,772 (2004).
    [20]M. Abbas et al., Applied Physics Letters 87,051923 (2005).
    [21]T. Hemraj-Benny et al., Small 2,26 (2006).
    [22]Y. H. Tang et al., Applied Physics Letters 79,3773 (2001).
    [23]J. Zhong et al., Radiat Phys Chem 75,1861 (2006).
    [24]S. C. Ray et al., J Phys-Condens Mat 16,5713 (2004).
    [1]S. Iijima, Nature 354,56 (1991).
    [2]R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science (2002), pp.787.
    [3]M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes:Synthesis, Structure, Properties, and Applications (Springer-Verlag Berlin, Heidelberg,2001).
    [4]E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277,1971 (1997).
    [5]A. Bachtold et al., Science 294,1317(2001).
    [6]M. S. Gudiksen et al., Nature 415,617 (2002).
    [7]A. Goldoni et al., Journal of the American Chemical Society 125,11329 (2003).
    [8]R. Verdejo et al., Chemical Communications,513 (2007).
    [9]C. G. Salzmann et al., Advanced Materials (2007), pp.883.
    [10]Z. H. Yu, and L. E. Brus, J Phys Chem A 104,10995 (2000).
    [11]J. P. Rueff et al., J Phys-Condens Mat 14,11635 (2002).
    [12]T. Hemraj-Benny et al., Small 2,26 (2006).
    [13]J. Stohr, NEXAFS Spectroscopy (Springer-Verlag, Berlin,1992).
    [14]Z. Y. Wu et al., Physical Review Letters 77,2101 (1996).
    [15]Y. H. Tang et al., Applied Physics Letters 79,3773 (2001).
    [16]S. Banerjee et al., Chemical Communications,772 (2004).
    [17]P. E. Batson, Physical Review B 48,2608 (1993).
    [18]A. Kuznetsova et al., Journal of the American Chemical Society 123,10699 (2001).
    [19]J. Zhong et al., Carbon 44,866 (2006).
    [20]S. Banerjee et al., Chemphyschem 5,1416 (2004).
    [21]S. Stankovich et al., Carbon 45,1558 (2007).
    [1]J. B. Gao et al., Journal of the American Chemical Society 128,7492 (2006).
    [2]J. N. Coleman, U. Khan, and Y. K. Gun'ko, Adv Mater 18,689 (2006).
    [3]H. Park, J. Zhao, and J. P. Lu, Nano Letters 6,916 (2006).
    [4]J. Zhu et al., Nano Letters 3,1107 (2003).
    [5]S. J. V. Frankland et al., The Journal of Physical Chemistry B 106,3046 (2002).
    [6]T. W. Ebbesen et al., Nature 367,519 (1994).
    [7]O. Byl, J. Liu, and J. T. Yates, Langmuir 21,4200 (2005).
    [8]Y. H. Wang et al., Journal of Physical Chemistry B 111,1249 (2007).
    [9]G. Tobias et al., Journal of Physical Chemistry B 110,22318 (2006).
    [10]J. M. Yuan et al., Carbon 46,1266 (2008).
    [11]J. Zhang et al., Journal of Physical Chemistry B 107,3712 (2003).
    [12]H. Hu et al., Journal of Physical Chemistry B (2003), pp.13838.
    [13]Y. Wang, Z. Iqbal, and S. Mitra, Journal of the American Chemical Society 128,95 (2006).
    [14]F. Jacquot et al., Carbon 40,335 (2002).
    [15]R. Verdejo et al., Chemical Communications,513 (2007).
    [16]C. G. Salzmann et al., Advanced Materials (2007), pp.883.
    [17]J. Stohr, NEXAFS Spectroscopy (Springer-Verlag, Berlin,1992).
    [18]T. Hemraj-Benny et al., Small 2,26 (2006).
    [19]Z. Y. Wu et al., Physical Review Letters 77,2101 (1996).
    [20]R. Larciprete et al., Physical Review B 66 (2002).
    [21]J. Zhong et al., Carbon 44,866 (2006).
    [22]J. G. Zhou et al., Chemical Physics Letters 437,229 (2007).
    [23]S. Banerjee et al., Chemical Communications,772 (2004).
    [24]A. Kuznetsova et al., Journal of the American Chemical Society 123,10699 (2001).
    [25]P. E. Batson, Physical Review B 48,2608 (1993).
    [26]D. A. Fischer et al., Physical Review B 44,1427 (1991).
    [27]M. Abbas et al., Applied Physics Letters 87,051923 (2005).
    [28]J. Zhong et al., Radiat Phys Chem 75,1861 (2006).
    [29]S. Banerjee et al., Chemphyschem 5,1416 (2004).
    [1]R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science (2002), pp.787.
    [2]H. Hu et al., Nano Lett 4,507 (2004).
    [3]W. R. Yang et al., Nanotechnology 18 (2007).
    [4]D. Tasis et al., Chem Rev 106,1105 (2006).
    [5]D. A. Heller et al., Science 311,508 (2006).
    [6]V. Z. Poenitzsch et al., J Am Chem Soc 129,14724 (2007).
    [7]M. A. Herranz et al., J Am Chem Soc 130,66 (2007).
    [8]S. Gotovac et al., Nano Lett 7,583 (2007).
    [9]A. Mavrandonakis, S. C. Farantos, and G. E. Froudakis, J Phys Chem B 110,6048 (2006).
    [10]T. Roman et al., Eur Phys J D 38,117 (2006).
    [11]J. Stohr, NEXAFS Spectroscopy (Springer-Verlag, Berlin,1992).
    [12]T. Hemraj-Benny et al., Small 2,26 (2006).
    [13]Z. Y. Wu et al., Physical Review Letters 77,2101 (1996).
    [14]A. P. Hitchcock et al., J. Biomater. Sci.-Polym. Ed.13,919 (2002).
    [15]M. L. Gordon et al., The Journal of Physical Chemistry A 107,6144 (2003).
    [16]Y. Zubavichus et al., J. Electron Spectrosc. Relat. Phenom.134,25 (2004).
    [17]K. Kaznacheyev et al., J Phys Chem A 106,3153 (2002).
    [18]L. Song et al., Advanced Materials 16,1529 (2004).
    [19]G. Cooper et al., J. Electron Spectrosc. Relat. Phenom.137,795 (2004).
    [20]P. E. Batson, Physical Review B 48,2608 (1993).
    [21]A. Kuznetsova et al., Journal of the American Chemical Society 123,10699 (2001).
    [22]S. Banerjee et al., Chemical Communications,772 (2004).
    [23]M. Abbas et al., Applied Physics Letters 87,051923 (2005).
    [24]B. M. Messer et al., J Phys Chem B 109,5375 (2005).
    [1]K. S. Novoselov et al., Science 306,666 (2004).
    [2]K. S. Novoselov et al., Proc. Natl. Acad. Sci. U. S. A.102,10451 (2005).
    [3]A. K. Geim, and K. S. Novoselov, Nat. Mater.6,183 (2007).
    [4]A. K. Geim, Science 324,1530 (2009).
    [5]G. Brumfiel, Nature 458,390 (2009).
    [6]C. N. R. Rao et al., Angew. Chem.-Int. Edit.48,7752 (2009).
    [7]J. T. Robinson et al., Nano Lett.8,3137 (2008).
    [8]X. Wang, L. J. Zhi, and K. Mullen, Nano Lett.8,323 (2008).
    [9]F. Schedin et al., Nat. Mater.6,652 (2007).
    [10]Y. P. Dan et al., Nano Lett.9,1472 (2009).
    [11]J.D. Fowler et al., ACS Nano 3,301 (2009).
    [12]E. Yoo et al., Nano Lett.8,2277 (2008).
    [13]S. M. Paek, E. Yoo, and I. Honma, Nano Lett.9,72 (2009).
    [14]H. B. Heersche et al., Nature 446,56 (2007).
    [15]G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol.3,270 (2008).
    [16]A. Lherbier et al., Phys Rev Lett 101 (2008).
    [17]M. Deifallah, P. F. McMillan, and F. Cora, J. Phys. Chem. C 112,5447 (2008).
    [18]Y. F. Li et al., ACS Nano 3,1952(2009).
    [19]D. C. Wei et al., Nano Lett.9,1752 (2009).
    [20]L. S. Panchokarla et al., Adv. Mater.21,4726 (2009).
    [21]N.Li et al., Carbon 48,255.
    [22]X. R. Wang et al., Science 324,768 (2009).
    [23]X. L. Li et al., J. Am. Chem. Soc.131,15939 (2009).
    [24]R. Gago et al., Phys Rev B 71 (2005).
    [25]S. S. Roy et al., Journal of Applied Physics 100,053703 (2006).
    [26]J. Stohr, NEXAFS Spectroscopy (Springer-Verlag, Berlin,1992).
    [27]Z. Y. Wu et al., Physical Review Letters 77,2101 (1996).
    [28]S. Bhattacharyya, M. Lubbe, and F. Richter, J. Appl. Phys.88,5043 (2000).
    [29]I. Jimenez et al., Physical Review B 62,4261 (2000).
    [30]S. Bhattacharyya et al., Diamond and Related Materials 11,8 (2002).
    [31]W. S. Hummers, and R. E. Offeman, J. Am. Chem. Soc.80,1339 (1958).
    [32]X. M. Sun et al., Nano Res.1,203 (2008).
    [33]Y. Li, and Y. Wu, J. Am. Chem. Soc.131,5851 (2009).
    [34]T. Hemraj-Benny et al., Small 2,26 (2006).
    [35]P. E. Batson, Physical Review B 48,2608 (1993).
    [36]D. A. Fischer et al., Physical Review B 44,1427 (1991).
    [37]M. Abbas et al., Applied Physics Letters 87,051923 (2005).
    [38]H. K. Jeong et al., Chem Phys Lett 460,499 (2008).
    [39]S. Banerjee et al., Chemical Communications,772 (2004).
    [40]A. Kuznetsova et al., Journal of the American Chemical Society 123,10699 (2001).
    [41]S. E. Rodil, and S. Muhl, Diamond and Related Materials 13,1521 (2004).
    [42]Q. Zhu et al., Langmuir 13,2149 (1997).
    [43]P. Leinweber et al., J. Synchrot. Radiat.14,500 (2007).
    [44]J. M. Ripalda et al., Phys Rev B 60, R3705 (1999).
    [45]N. Hellgren et al., Applied Physics Letters 79,4348 (2001).
    [46]I. Shimoyama et al., J. Electron Spectrosc. Relat. Phenom.114,841 (2001).
    [47]Y.-H. La et al., Langmuir 19,9984 (2003).
    [48]L. H. Chan et al., Phys Rev B 70 (2004).
    [49]H. K. Jeong et al., Epl-Europhys Lett 82 (2008).
    [50]A. Kuznetsova et al., The Journal of Chemical Physics 112,9590 (2000).
    [1]K. S. Novoselov et al., Science 306,666 (2004).
    [2]C. Lee et al., Science 321,385 (2008).
    [3]A. A. Balandin et al., Nano Lett.8,902 (2008).
    [4]S. Stankovich et al., Nature 442,282 (2006).
    [5]K. S. Novoselov et al., Nature 438,197 (2005).
    [6]K. S. Novoselov et al., Science 315,1379 (2007).
    [7]Y. B. Zhang et al., Nature 438,201 (2005).
    [8]C. Berger et al., Science 312,1191 (2006).
    [9]A. K. Geim, and K. S. Novoselov, Nat. Mater.6,183 (2007).
    [10]G. Brumfiel, Nature 458,390 (2009).
    [11]A. K. Geim, Science 324,1530 (2009).
    [12]C. N. R. Rao et al., Angew. Chem.-Int. Edit.48,7752 (2009).
    [13]S. Park, and R. S. Ruoff, Nat. Nanotechnol.4,217 (2009).
    [14]M. J. McAllister et al., Chem. Mat.19,4396 (2007).
    [15]S. Stankovich et al., Carbon 45,1558 (2007).
    [16]D. W. Boukhvalov, and M. I. Katsnelson, J. Am. Chem. Soc.130,10697 (2008).
    [17]J. Stohr, NEXAFS Spectroscopy (Springer-Verlag, Berlin,1992).
    [18]Z. Y. Wu et al., Physical Review Letters 77,2101 (1996).
    [19]T. Hemraj-Benny et al., Small 2,26 (2006).
    [20]W. S. Hummers, and R. E. Offeman, J. Am. Chem. Soc.80,1339 (1958).
    [21]Y. Li, and Y. Wu, J. Am. Chem. Soc.131,5851 (2009).
    [22]X. M. Sun et al., Nano Res.1,203 (2008).
    [23]P. E. Batson, Physical Review B 48,2608 (1993).
    [24]D. A. Fischer et al., Physical Review B 44,1427 (1991).
    [25]M. Abbas et al., Applied Physics Letters 87,051923 (2005).
    [26]H. K. Jeong et al., Chem Phys Lett 460,499 (2008).
    [27]S. Banerjee et al., Chemical Communications,772 (2004).
    [28]H. K. Jeong et al., Epl-Europhys Lett 82 (2008).
    [29]A. Kuznetsova et al., Journal of the American Chemical Society 123,10699 (2001).
    [30]D. Li et al., Nat. Nanotechnol.3,101 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700