用户名: 密码: 验证码:
钝化剂和营养调控对高砷土壤中作物吸收砷的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选取人工合成水铁矿、针铁矿和水铝矿以及镁铝双金属氧化物(Mg/Al-LDO)四种化学钝化剂为材料,通过开展室内模拟培养试验和盆栽试验的方法,明确化学钝化措施对降低土壤中砷的生物有效性的效果;同时,结合低吸收作物调控和育苗期氮、磷、钾、钙、镁、铁和锰七种营养元素调控的盆栽试验,为高风险农田的安全利用提供新的方法和途径。本研究的主要结果如下:
     1.土壤中添加水铁矿和针铁矿对酸性土壤中砷的钝化效应较好,两种矿物作用效果相当,较水铝矿和Mg/Al-LDO效果好。添加铁铝矿物均降低了土壤有效砷的含量,下降幅度为1.89%-64.15%,而添加Mg/Al-LDO则使土壤有效砷含量增加;添加水铁矿和针铁矿各处理对提高土壤残留态砷含量的作用较明显。
     2.四种钝化剂的应用均在一定程度上降低了作物对砷的吸收,其中水铁矿的添加效果最佳,水铝矿次之,针铁矿最差。与对照相比,添加水铁矿、水铝矿和Mg/Al-LDO不仅能够明显的降低小白菜地上部和地下部砷含量、富集系数,还明显降低了小白菜植株砷的富集量,其中以水铁矿添加效果最佳;添加四种钝化剂均有效抑制砷由小白菜地下部向地上部的转运,其中水铁矿调控效果最佳,降低幅度达34.03%-69.44%;水铁矿、针铁矿和Mg/Al-LDO都在1.0%添加比例下对降低小白菜植株砷的富集量、各部分砷含量、富集系数以及转移系数表现出最优效果,而水铝矿的最佳投加比例则出现在0.25%或者0.5%添加处理下。
     3.小白菜对砷的敏感性大于玉米,高砷含量土壤中更适宜种植玉米。生长在总砷含量为194mg·kg-1土壤的小白菜可食部位砷含量高达0.80mg·kg-1,大大超过了食品安全国家标准规定的限量值,而生长在此浓度土壤中生长的玉米籽粒则可放心食用;随着土壤含砷量的增加,小白菜和玉米各器官中的砷含量及植株累积砷的总量随之增长,但增长规律不尽相同;小白菜地上部砷含量远低于根系,成熟期玉米体内砷的分布规律为:根系>叶片>茎秆>籽粒。
     4.育苗期添加氮、磷、钾、钙、镁、铁和锰七种营养元素能够有效抑制砷由玉米地下部向地上部的转移;除锰养分外,其余六种养分的添加均能够达到降低玉米籽粒中的砷含量、降低玉米植株富集量砷的总量以及抑制砷从玉米根系向地上部特别是玉米可食部位(籽粒)中的转运的效果;氮素添加1536mg·kg-1、磷素添加355mg·kg-1、钾素添加1071mg·kg-1、钙素添加549mg·kg-1、镁素添加220mg·kg-1、铁素添加25.60mg·kg-1等处理对降低玉米吸收砷的效果较好;氮、磷、钾、钙、铁与砷在作物中存在着双重效应,这与营养元素的添加量息息相关。
In this paper, in order to find new methods and ways in safe utilization of fields with high arsenic content, laboratory incubation experiments and pot culture experiments were conducted to investigate the regulating effects of several amendments (ferrihydrite, goethite, gibbsite and Mg/Al layered double oxides) and nutrient elements (N, P, K, Ca, Mg, Fe, Mn) addition during the seedling stage on the bioavailability of arsenic in contaminated soils. The main results were as follows:
     1. Goethite and ferrihydrite showed a better immobilization effect of arsenic (As) than Mg/Al-LDO and gibbisite, and could be applied as amendments to immobilize As in soils. The contents of available As in soils were decreased by1.89%-64.15%by adding goethite, ferrihydrite and gibbsite, while they were increased by adding Mg/Al layered double oxides. The contents of residual As in soils by adding goethite and ferrihydrite were obviously elevated.
     2. The application of four amendments reduced the contents of arsenic in crops, ferrihydrite showed the best effect, gibbisite was better, and goethite showed the worst results. Compared to the control pots, not only the enrichment of arsenic in pakchio cabbage, but also the arsenic concerntration and enrichment capacity of overground and underground part of pakchio cabbage were dropped dramatically when adding ferrihydrite, gibbsite and Mg/Al layered double oxides; In addition, the application of four amendments inhibited the transport of arsenic form underground part to the overground part in pakchio cabbage at the same time, it dropped greatest when adding ferrihydrite, and the range was34.03%-69.44%; Compared with four different adding proportion, the availability of the arsenic to crops showed the largest decline under the addition level of1.0%by adding ferrihydrite, goethite and Mg/Al layered double oxides, while0.25%or0.5%was proved to be the best addition level for gibbsite.
     3. The pakchoi cabbage showed a greater enrichment capacity of arsenic than maize, so pakchoi cabbage is more suitable than maize for planting in the soils with high arsenic concentration. The arsenic concentrations in the overground part (edible part) of the pakchoi cabbage were reached up to0.80mg·kg-1when grown in soils with190mg·kg-1of total arsenic concentration, which substantially exceeded the limited value of national food safety standards (0.5mg·kg-1), however, the grains of maize harvested from the same soils were safely edible; With the increasing concentration of total arsenic in soils, the arsenic concentrations in different organs and the enrichment of arsenic in plants both showed a corresponding growth, but they were presented different correlation. Arsenic concentrations in the overground part of pakchoi cabbage were significantly lower than that in the root, and the distribution trends of arsenic in mature maize was:root> leaf> straw> grain.
     4. The addition of different levels of N、P、K、Ca、Mg、Fe and Mn inhibited the transportation of arsenic upto the overground part from the underground part; Futher more, the addition of N、P、K、Ca、Mg and Fe was able to reduce the arsenic content in the grain of maize, the enrichment amount of arsenic in mazie, and inhibited the transportation of arsenic upto the grain from the root;The addition level of N1536mg·kg-1、P355mg·kg-1、K1071mg·kg-1、Ca549mg·kg-1, Mg220mg·kg-1and Fe25.60mg·kg-1showed a better results in reducing the absorption capacity; Arsenic with N、P、K、Ca and Fe existed a dual effect, it was closely related with the addition amount of the nutrients.
引文
[1]翁焕新,张宵宇,邹乐君,等.中国土壤中砷的自然存在状况及其成因分析[J].浙江大学学报(工学版),2000,34(1):88-92.
    [2]廖晓勇,陈同斌,肖细元,等.污染水稻田中土壤含砷量的空间变异特征[J].地理研究2003,22(5):635-643.
    [3]李银生,曾振灵,陈杖榴,等.洛克沙砷对养猪场周围环境的污染[J].中国兽医学报,2006,26(6):665-667.
    [4]曾希柏,李莲芳,白玲玉,等.山东寿光农业利用试对土壤砷累积的影响[J].应用生态学报,2007,18(2):310-316.
    [5]Beretka J G, Nelson P. The current state of utilization of fly ash in Australia[C]. Ash-a Valuable Resource. South African,1994:51-63.
    [6]Wang S, Mulligan C N. Occurrence of arsenic contamination in Canada:sources, behavior and distribution[J]. The Science of Total Environment,2006,366:701-721.
    [7]陈怀满,陈能场,陈英旭,等.土壤-植物系统中的重金属污染[M].北京:科学出版社.1996,22-35.
    [8]小山雄生.土壤和作物中的砷(杨郭治译)[M].土壤农化.1976,6:41-45.
    [9]Chen H M, Zheng C R, Tu C, et al. Chemical methods and phytoremediation of Soil contaminated with heavy metals[J]. Chemosphere,2000,41(1-2):229-234.
    [10]Cunningham S D, Berti W R, Huang J W. Phytoremediation of contaminated soils[J]. Trendsin Biotechnology,1995,13(9):393-397.
    [11]Kham A G, Knek C, Chaudhry T M, et al. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated and remediation[J]. Chemosphere,2000,41(1-2):197-207.
    [12]Karenlampi S, Schat H, Vangronsveld J, et al. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils[J]. Environmental Pollution,2000,107(2): 225-231.
    [13]Sachs R M, Michaels J L. Comparative phytotoxicity among four arsenical herbicides[J]. Weed Science,1971,19:558-564.
    [14]Knowles F C, Benson A A. The biochemistry of Arsenic[J]. Trends in Biochemical Sciences 1983,8:178-180.
    [15]Chatterjee A, Das D, Mandal B K, et al. Arsenic in ground water in six districts of West Bengal, India:the biggest arsenic calamity in the world. Part I. Arsenic species in drinking water and urine of the affected people[J]. Analyst,1995,120:643-650.
    [16]廖自基.微量元素的环境化学及生物效应[M].中国环境科学出版社,1992:124-162.
    [17]陈同斌,郑袁明,陈煌,等.北京市不同土地利用类型的土壤砷含量特征[J].地理研究,2005,24(2):229-235.
    [18]曾希柏,李莲芳,梅旭荣.中国农田土壤重金属含量及来源分析[J].中国农业科学,2007a,40(11):2507-2517.
    [19]李莲芳,曾希柏,白玲玉,等.石门雄黄矿周边地区土壤砷分布及农产品健康风险评估[J].应用生态学报,2010,21(11):2946-2951.
    [20]师荣光,赵玉杰,周启星,等.苏北优势农业区土壤砷含量空间变异性研究[J],农业工程学报,2008,24(1):80-84.
    [21]Pongratz R. Arsenic speciation in environmental samples of contaminated soil[J]. The Science of the Total Environment,1998,224:133-141.
    [22]阎秀兰,陈同斌,廖晓勇,等.土壤样品保存过程中无机砷的形态变化及其样品保存方法[J].环境科学学报,2005,25(7):976-981.
    [23]宣之强.中国砷矿资源概述[J].化工矿产地质,1998,20(3):205-210.
    [24]Sadiq M. Arsenic chemistry in soils:An overview of their dynamic predications and field observations[J]. Water, Air, and Soil Pollution,1997,93:117-136.
    [25]陈同斌.土壤溶液中的砷及其与水稻生长效应的关系[J].生态学报,1996,16(2):147-153.
    [26]Manning A, Suarez D L. Modeling arsenic(Ⅲ) adsorption and heterogeneous oxidation kinetics in soils[J]. Soil Science Society of America Journal,2000,64(1):128-137.
    [27]Garcia M S, Jimenez G, Padro A. Arsenic speciation in contaminated soils [J]. Talanta,2002, 58:97-109.
    [28]Brannon J M, Patrick Jr W H. Fixation, transformation, and mobilization of Arsenic in sediments[J]. Environmental Technology,1987,21:450-459.
    [29]Chatterjee A, Das D, Mandal B K, et al. Arsenic in ground water in six districts of West Bengal, India:the biggest arsenic calamity in the world. Part. I. Arsenic species in drinking water and urine of the affected people[J]. Analyst,1995,120:643-650.
    [30]蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展[J].土壤,2004,36(3):264-270.
    [31]谢正苗.砷的土壤化学[J].农业环境保护,1989,8(1):36-38.
    [32]张国祥,杨居荣,华珞.土壤环境中的砷及其生态效应[J].土壤,1996, (2):64-68.
    [33]Newton K, Amarasirivardena D, Xing B. Distribution of soil arsenic species, lead and arsenic bound to humic acid molarmass fractions in a comtaminated apple orchard[J]. Environmental Pollution,2006,143:197-205.
    [34]Yolcubal I, Akyol N H. Adsorption and transport of arsenate in carbonate-rich soils:coupled effects of nonlinear and rate-limited sorption[J]. Chemosphere,2008,73:1300-1307.
    [35]李学垣.土壤化学[M].北京:高等教育出版社,2001,167-211.
    [36]Chatherine A, Waltham, Matthew J. Eick. Kinetics of Arsenic adsorption on goethite in the presence of sorbed silicic acids[J]. Soil Science Society of America Journal,2002,66(3): 818-825.
    [37]Zhang H, Selim H M. Kinetics of arsenate adsorption-desorption in soils[J]. Environment science and Technololgy,2005,39(16):6101-6108.
    [38]Carina L, Maximiliano B, Marcelo A. Adsorption kinetics of phosphate and arsenate on goethite. A comparative study[J]. Journal of Colloid and Interface Science,2007,311(2): 354-360.
    [39]Zeng X B, Wu P P, Su S M, et al. Phosphate has a differential influence on arsenate adsorption by soils with different properties[J]. Plant Soil Environment,2012,58(9):405-411.
    [40]吴萍萍,曾希柏,自玲玉.不同类型土壤中As(V)解吸行为的研究[J].环境科学学报,2011,31(5):1004-1010.
    [41]吴萍萍,曾希柏.人工合成铁、铝矿对As(V)吸附的研究[J],中国环境科学,2011,31(4):603-610.
    [42]陈同斌.中国博士论文集:土壤中砷的吸附特点及其机理[C].北京:北京大学出版社,1991,564-570.
    [43]Goldberg S, GlaubigR A. Anion sorption on a calcareous, montmorillonitic soil-Arsenic[J]. Soil Science Society of America Journal,1988,52:1297-1300.
    [44]Elkhatib E A, Bennett O L, Wright T J. Arsenite sorption and desorption in soils[J]. Soil Science Society of America Journal,1984b,48:1025-1030.
    [45]Johnston S E, Barnard W M. Comparative effectiveness of fourteen solutions for extracting arsenic from four western New York soils[J]. Soil Science Society of America Journal,1979, 43:304-308.
    [46]Mello J W V, Talbott J L, Scott J, et al. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation[J]. Environmental Science and Pollution Research, 2007,14(6):388-396.
    [47]Raven K P, Jain A, Loeppert R H. Arsenite and arsenate adsorption on ferrihydrite:Kinetics, equilibrium, and adsorption envelopes[J]. Environmental Science & Technology,1998,32: 344-349.
    [48]Goldberg S. Competitive adsorption of arsenate and arsenite on oxides and clay minerals[J]. Soil Science Society of America Journal,2002,66:413-421.
    [49]谢正苗,黄昌勇,何振立.土壤中砷的化学平衡[J].环境科学进展,1998,6(1):22-37.
    [50]Alvarez-Benedi J, Bolado S, Cancillo I, et al. Adsorption-desorption of arsenic in three Spanish soil[J]. Vadose Zone Journal,2005,4:282-290.
    [51]范秀山,彭国胜.分子、离子对及离子状态在固液吸附中的作用浅析[J].土壤,2002,34(1):36-41.
    [52]赵其国.发展与创新现代土壤科学[J].土壤学报,2003,40.321-327.
    [53]Antonio V, Massimo P. Competitive of Arsenate and Phosphate on different clay minerals and soils[J]. Soil Science Society of America Journal,2002,66(6):1788-1796.
    [54]Mohapatra D, Singh P, Zhang W, et al. The effect of citrate, oxalate, acetate, silicate, and phosphate on stability of synthetic arsenic-loaded ferrihydrite and Al-ferrihydrite[J]. Journal of Hazardous Materials,2005,124:95-100.
    [55]周爱民,王东升,汤鸿霄.磷(P)在天然铁氧化物的吸附[J].环境科学学报,2005,25(1):64-69.
    [56]Ladeira A C Q, Ciminelli V S T, Duarte H A, et al. Mechanism of anion retention from EXAFS and density functional calculations:Arsenic(V) adsorbed on gibbsite[J]. Geochimica et Cosmochimica Acta,2001,65(8):1211-1217.
    [57]Luo L, Zhang S Z, Shan X Q, et al. Arsenate sorption on two Chinese red soils evaluated with macroscopic measurements and Extended X-Ray Absorption Fine-Structure Spectroscopy[J]. Environmental Toxicology and Chemistry,2006,25(12):3118-3124.
    [58]Dou X M, Zhang Y, Zhao B, et al. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: EXAFS study and surface complexation modeling[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,379:109-115.
    [59]Masscheleyn P H, DeLaune R D, Patrick W H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil[J]. Environmental Science and Technology, 1991,25:1414-1419.
    [60]Dixit T, Hering J G. Comparison of arsenic(Ⅴ)and arsenic(Ⅲ)sorption onto iron oxid minerals: implications for arsenic mobility[J]. Environmental Science and Technology,2003,37: 4182-4189.
    [61]谢正苗.铅锌砷复合污染对水稻生长的影响[J].生态学报,1994,14(2):215-217.
    [62]Chrenekva E. Power station fly ash applied to the soil and its effect on plants[J]. Soils & Fertilizers,1977,40(4):3220.
    [63]Crecelius E A. Contamination of soils near a copper smelter by arsenic, antimony and lead[J]. Water Air and Soil Pollution,1974,3(3):337-342.
    [64]许嘉琳,杨居荣,荆红卫.砷污染土壤的作物效应及其影响因素[J].土壤,1996,(2):85-89.
    [65]Bombach G, Pierra A, Klemm W. Arsenic in contaminated soil and river sediment[J]. Fresenius Journal of Analytical Chemistry,1994,350:49-53.
    [66]夏立江,华珞,韦东普.部分地区蔬菜中的含砷量[J].土壤,1996,(2):105-109.
    [67]王援高,陆景冈,潘洪明.茶园土壤砷的形态研究[J].浙江农业大学学报,1999,25(1)10-12.
    [68]常思敏,马新明,蒋媛媛,等.上壤砷污染及其对作物的毒害研究进展[J].河南农业大学报,2005,39(2):161-66.
    [69]韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2002,17(6):833-839.
    [70]Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic[J]. Nature,2001, 409(1):777-778.
    [71]陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):207-210.
    [72]杨清.砷对小麦生长的影响[J].上壤肥料,1992,(3):23-25.
    [73]Abedin M J, Feldman J, Meharg A A. Uptake kinetics of arsenic species in rice plants[J]. Plant Physiology,2002,128(3):1120-1128.
    [74]蒋彬,张慧萍.水稻精米中铅、镉、砷含量基因型差异的研究[J].云南师范大学报(自然科学版),2002,22(3):37-40.
    [75]Mehary A A, Macnair M R. Suppression of the high affinity phosphate uptake system: mechanism of arsenate tolerance in Holcus lanatus L.[J]. Journal of Experimental Botany,1992, 43:524-529.
    [76]Zhang W H, Cai Y, Tu C, et al. Arsenic speciation and distribution in an arsenic hyperaccumulating plant[J]. The Science of the Total Environment,2002,300:167-177.
    [77]陈玉成,赵中金,孙彭寿,等.重庆市土壤-蔬菜系统中重金属的分布特征及其化学调控研究[J].农业环境科学学报,2003,22(1):44-47.
    [78]陈同斌,宋波,郑袁明,等.北京市蔬菜和菜地土壤砷含量及其健康风险分析[J].地理学报,2006,61(3):297-310.
    [79]蔡保松,陈同斌,廖晓勇,等.土壤砷污染对蔬菜砷含量及食用安全性的影响[J].生态学报,2004,24(4):711-717.
    [80]陈忠余,陈玉谷,万秀林,等.砷对水稻田生态影响的试验研究[J].环境科学,1979,46(4):46-50.
    [81]谢正苗,朱祖祥,袁可能,等.土壤环境中砷污染防治的研究[J].浙江农业大学学报,1988,14(4):371-375.
    [82]郭观林,周启星,李秀颖.重金属污染土壤原位化学固定修复研究进展[J].应用生态学报,2005,16(10):1990-1996.
    [83]Guo G L, Zhou Q X, Ma LQ. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils:A review[J]. Environmental Monitoring and Assessment,2006,116:513-528.
    [84]Diels L, van der Lelie N, Bastiaens L. New developments in treatment of heavy metal contaminated soils[J]. Review of Environmental Science and Bio/Technology,2002,1:75-82.
    [85]唐世荣.污染环境植物修复的原理和方法[M].北京:科学出版社,2006.
    [86]刘文菊,朱永官.湿地植物根表的铁锰氧化膜[J].生态学报,2005,25(2):358-363.
    [87]朱立军,傅平秋,万国江.碳酸盐岩红土中氧化铁矿物表面化学特征及其吸附机理研究[J].环境科学学报,1997,17(2):174-178.
    [88]Orthman J, Zhu H Y, Lu G Q. Use of anion clay hydrotalcite to remove coloured organics from aqueous solutions[J]. Separation and Purification Technology,2003,31:53-59.
    [89]Grover K, Komameni S, Katsuki H. Uptake of arsenite by synthetic lyered double hydroxides[J]. Water Research,2009,43:3884-3890.
    [90]Zhu J, Huang Q Y, Pigna M, et al. Immobilization of acid phosphatase on uncalcined and calcined Mg/Al-CO3 layered double hydroxides[J]. Colloids and Surfaces B:Biointerfaces, 2010,77:166-173.
    [91]Lazaridis N K, Hourzemanoglou A, Matis K A. Flotation of metal-loaded clay anion exchangers. Part Ⅱ:The case of arsenates[J]. Chemosphere,2002,47(3):319-324.
    [92]Kiso Y, Jung Y J, Yamada T, et al. Removal properties of arsenic compounds with synthetic hydrotalcite compounds[J]. Water Science and Technology:Water Supply,2005,5(5):75-81.
    [93]孙媛媛,曾希柏,白玲玉.Mg/Al双金属氧化物对As(V)吸附性能的研究[J].环境科学学报,2011,31(7):1377-1385.
    [94]Dinesh Mohan, Charles U.Pittman Jr.Jr. Arsenic removal from water/wastewater using adsorbents-a critical review[J]. Journal of Hazardous Materials,2007,142:1-53.
    [95]豆小敏,于新,赵蓓,等.5种铁氧化物去除As(V)性能的比较研究[J].环境工程学报,2010,4(9):1889-1994.
    [96]吴佳,谢明吉,杨倩,等.砷污染微生物修复的进展研究[J].环境科学,2011,32(3):817-824.
    [97]Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic[J]. Nature,2001, 409:579.
    [98]喻龙,龙江平,李建军,等.生物修复技术研究进展及在滨海湿地中的应用[J].海洋科学进展,2002,20(4):99-108.
    [99]程旺大,张国平平.晚粳稻籽粒中As、Cd、Cr、Ni、Pb等重金属含量的基型与环境效应及其稳定性[J].作物学报,2006,32(4):573-579.
    [100]伍钧,吴传星,沈飞,等.重金属低积累玉米品种的稳定性和环境适应性分析[C].第四届全国农业环境科学学术研讨会论文集.内蒙古呼和浩特:37-46.
    [101]杭小帅,周健民,王火焰.常熟市高风险区水稻籽粒重金属污染特征及评价[J].中国环境科学,2009,29(2):130-135.
    [102]Qafoku N P, Kukier U, Sumner M E, et al. Arsenate displacement from fly ash in amended soils[J]. Water Air Soil Pollution,1999,114(12):185-198.
    [103]Tu C, MaLQ. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyper accumulator Pteris vittata L.[J]. Environmental Pollution,2005,135(2): 333-340.
    [104]Sharpies J M, MehasgA A, Chambers S M, et al. Arsenate sensitivity in ericoid and ectomycorrhizal fungi [J]. Environmental Toxicology Chemistry,1999,18(8):1848-1855.
    [105]郭再华,孟萌,侯彦琳.磷、砷双重胁迫对不同耐低磷水稻苗期生长及磷、砷吸收的影响[J].应用与环境生物学报,2009,15(5):596-601.
    [106]Sneller F E C, Van-Heerwaarden L M, Kraaijeveld-Smit F J, et al. Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate induced phytochelatins[J]. New Phytologist, 1999, (144):223-232.
    [107]Asher C J, Reay P F. Arsenic uptake by barley seedlings[J]. Plant Physiology,1979,6(4): 459-466.
    [108]杨文婕,刘更另.磷和硫对空心菜吸收砷的影响[J].环境化学,1996,15(4):374-380.
    [109]王萍,胡江,冉炜,等.提高供磷可缓解砷对番茄的胁迫作用[J].土壤学报,2008,45(3):503-509.
    [110]薛培英,刘文菊,段桂兰,等.外源磷对苗期小麦和水稻根际砷形态及其生物有效性的影响[J].生态学报,2009,29(4):2027-2034.
    [111]陈同斌,范稚莲,雷梅,等.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义[J].科学通报,2002,47(5):1156-1159.
    [112]Tu S, Ma L Q. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyper accumulator Ptefis vittata L. under hydroponic conditions [J]. Environmental and Experimental Botany,2003,50(4):243-251.
    [113]范稚莲,雷梅,陈同斌,等.砷对土壤-蜈蚣草系统中磷生物有效性的影响[J].生态学报.2006,26(2):536-541.
    [114]张广莉,宋光煜,赵红霞.磷影响下根际无机砷的形态分布及其对水稻生长的影响[J].土壤学报,2002,39(1):23-28.
    [115]耿志席,刘小虎,李莲芳,等.磷肥施用对土壤中砷生物有效性的影响[J].农业环境科学学报,2009,28(11):2338-2342.
    [116]Heeraman D A, Claassen V P, Zasoski R J. Interaction of lime, organic matter and fertilizer on growth and uptake of arsenic and mercury by Zorro fescue (Vulpia myuros L.) [J]. Plant and Soil,2001,234:215-231.
    [117]Cox M C. Arsenic characterization in soil and arsenic effects on canola growth[D]. Baton Rouge, LA:Louisiana State University,1995.
    [118]廖晓勇,肖细元,陈同斌.砂培条件下施加钙、砷对蜈蚣草吸收砷、磷和钙的影响[J].生态学报,2003,23(10):2057-2065.
    [119]Xie Z M, Huang C Y. Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil[J]. Communications in Soil Science and Plant Analysis,1998,29:2471-2477.
    [120]韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义[J].生态学杂志, 2005,24(12):1499-1502.
    [121]Schwertmann U, Cornell R M. Iron oxides in the laboratory:Preparation and characterization [M]. Germany:VCH, Weinheim,2000.
    [122]Sims J R, Bingham F T. Retention of boron by layer silicates, sesquioxides, and soil materials: II. Sesquioxides[J]. Soil Science Society of America Proceedings,1968,32:364-369.
    [123]鲁如坤.土壤农业化学常规分析方法[M].北京:中国农业科技出版社,2000.
    [124]Samuel V H, Rudy S, Carlo V, et al. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples[J]. Environmental Pollution,2003,122:323-342.
    [125]Datta R, Sarkar D. Arsenic geochemistry in three soils contaminated with sodium arsenite pesticide:An incubation study[J]. Environmental Geosciences,2004,11(2):87-97.
    [126]Sarkar D, Datta R. Arsenic fate and bioavailability in two soils contaminated with sodium arsenic pesticide:an incubation study[J]. Bulletin of Environmental Contamination and Toxicology,2004,72:240-247.
    [127]Nielsen S S, Petersen L R, Kjeldsen, et al. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment[J]. Chemosphere,2011,84: 383-389.
    [128]雷梅,陈同斌,范稚连,等.磷对土壤中砷吸附的影响[J].应用生态学报,2003,14(11):1989-1992.
    [129]Jambor J L, Dutrizac J E. Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide[J]. Chemical Reviews,1998,98:2549-2585.
    [130]王立群.镉污染土壤原位修复剂及其机理研究[D].北京:首都师范大学,2009:5-6.
    [131]Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review[J]. Waste Management,2008,28:215-225.
    [132]Guo G L, Zhou Q X, Ma L Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils:a review[J]. Environmental Monitoring and Assessment,2006,116:513-528.
    [133]Vangronsveld J, Ruttens A, Mench M, et al. In situ inactivation and phytoremediation of metal/metalloid contaminated soils:field experiments[M]. New York:Marcel Dekker,2000.
    [134]陈同斌,刘更另.土壤中砷的吸附和砷对水稻的毒害效应与pH值的关系[J].中国农业科学,1993,26(1):63-68.
    [135]Klocke A. Soil contamination by heavy metals. Proceedings of international work shop on risk assessment of contaminated soil [M]. Netherlands:Deventer,1986:42-54.
    [136]郝玉波,刘华琳,慈晓科,等.砷对玉米生长、抗氧化系统及离子分布的影响[J].应用生态学报,2010,21(12):3183-3190.
    [137]夏运生,陈保冬,朱永官,等.外加不同铁源和丛枝菌根对砷污染土壤上玉米生长及磷、砷吸收的影响[J].环境科学学报,2008,28(3):516-524.
    [138]刘小燕,曾清如,周细红,等.尿素施用对砷污染土壤pH值及砷活性的影响[J].土壤通报,2008,39(6):1441-1444.
    [139]张广莉,宋光煜,赵红霞.磷影响下根际无机砷的形态分布及其对水稻生长的影响[J].土壤学报,2002,39(1):23-28.
    [140]薛培英,刘文菊,段桂兰,等.外源磷对苗期小麦和水稻根际砷形态及其生物有效性的影响[J].生态学报,2009,29(4):2027-2034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700