用户名: 密码: 验证码:
低密度奇偶校验(LDPC)码改进译码算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低密度奇偶校验(LDPC)码具有描述简单、译码复杂度低、可以并行实现、使用灵活、错误平台低等优点,在实际系统中得到了广泛的应用。随着LDPC码的潜力不断被挖掘,可以预见其将在宽带无线通信、卫星通信、以太网传输等方面有更为广泛的应用前景。因此,近年来LDPC码成为纠错码领域的研究热点。
     LDPC码的研究重点之一是LDPC码的构造。LDPC码的构造涉及减少码组中短环的数量来提升码的性能,因此需要对其二分图的环数进行检测。研究的另一个重点是译码算法的改进。改进可以从两个方面展开,一是在计算复杂度基本不变的情况下,提升译码性能;二是在译码性能基本不变的情况下,降低计算复杂度。
     本文主要围绕LDPC码的环数检测算法改进以及译码算法改进展开研究,研究的目的是提出更快的环数检测算法以及性能更优的译码算法。本文的主要学术贡献在于:
     (1)提出了三种改进的修正加权位翻转译码算法,分别为组合修正加权位翻转(CM-WBF)译码算法,混合修正加权位翻转(MM-WBF)译码算法,可靠性修正加权位翻转(RA-WBF)译码算法。
     CM-WBF译码算法是针对FG-LDPC码提出的。该算法利用现有加权位翻转译码算法在译码过程中定位错误比特顺序不同的特点,选取两种现有的加权位翻转译码算法进行组合构造而成。与现有的M-WBF、LC-WBF及RR-WBF等译码算法相比,CM-WBF译码算法在总体计算复杂度相差不大的情况下,译码性能提升了0.15~0.3dB,平均译码时间缩短近一半。
     MM-WBF译码算法主要是针对非正则LDPC码提出的。该算法在CM-WBF译码算法的基础上进行了改进,提出主算法和辅助算法概念,并制定两者译码优先策略,从而实现性能的提升。与IM-WBF、LC-WBF及RR-WBF算法相比,MM-WBF译码算法在总体计算复杂度相差不大的情况下,译码性能提升了0.3~2.0dB,平均译码时间缩短近一半。此外,仿真结果表明,MM-WBF译码算法对正则LDPC码同样能够有效提升译码性能。
     RA-WBF译码算法提出在解码过程中动态调整接收码字部分比特的可靠性,以便于更加准确地定位、纠正错误比特,从而得到更佳的性能。该算法能够应用到现有的几种修正加权位翻转译码算法中,有效提升现有算法的译码性能,具有广泛应用意义。
     研究成果在Journal of Computational Information Systems (JCIS)期刊、2012International Conference on Wireless Communications and Signal Processing (WCSP’2012)会议及2013International Conference on Computational Intelligence and Security (CIS’2013)会议上发表。
     (2)提出了三种改进的置信传播译码算法,分别为振荡梳洗置信传播(OS-BP)译码算法、Tchebyshev-Padé逼近置信传播译码算法(TPA-BP)、有理函数逼近置信传播译码算法(RFA-BP)。
     OS-BP译码算法以Shuffled BP算法为基础进行改进,进一步优化了校验节点与信息节点之间的消息传递方式。在总体计算复杂度与Shuffled BP算法基本相同的情况下,有效提升译码性能0.15dB以上,平均迭代次数为Shuffled BP算法的70%。此外,为了解决硬件实现中时延较大的问题,我们进一步提出分组振荡梳洗置信传播(GOS-BP)译码算法;GOS-BP算法通过分组处理,能够解决硬件实现中译码时延较大的问题。
     TPA-BP译码算法和RFA-BP译码算法针对标准对数似然比置信传播(LLR BP)译码算法计算复杂度较高的缺点,分别通过Tchebyshev-Padé多项式和有理函数多项式逼近置信传播消息传递公式,在几乎没有任何译码性能损失的情况下,大大降低了计算复杂度。并且由于其通用性,能够广泛地应用在各类BP译码算法中。
     研究成果在Journal of Computational Information Systems (JCIS)期刊上发表。
     (3)提出了一种快速检测LDPC码环数的新算法。该算法根据LDPC码校验矩阵对应Tanner图的特点,基于Dijkstra算法进行构造。该算法不需依次检测环长为4、6、8等长度的环数,而是通过一次检测得到所有环数,从而实现了LDPC码环数的快速检测。与传统的环分析检测算法相比,新算法极大降低了计算复杂度,提升了检测速度;仿真表明,快速检测环数的新算法比环分析检测算法减少检测时间1~2个数量级。
     研究成果在《计算机应用》期刊上发表。
Low-density parity-check (LDPC) codes have been widely used in the real systembecause of its outstanding metrics, such as simple description, low decoding complexity,possible parallel implementation, flexible to be used, low error floor, etc. With the potential ofLDPC codes being continuously excavated, the codes are expected to have broaderapplications in broadband wireless communications, satellite communications, Ethernettransmission, etc. That is why LDPC codes have been a hot research field in recent years.
     We focus on the construction of LDPC codes. In code construction, it is necessary toreduce the number of short cycles to achieve better code performance. Therefore we need todetect the number of cycles in the Tanner graph of the corresponding LDPC code. Anotherfocus of our research is to improve decoding performance. The improvement could be carriedout in two ways. One is to improve the decoding performance and speed of convergencewithout increasing the total computational complexity. The other is to reduce the totalcomputational complexity without performance loss.
     In this dissertation, we focus on the improved algorithms for counting the number ofcycles and decoding for LDPC codes. The target of this study is to propose a faster algorithmfor counting the number of cycles and better decoding algorithms. The major contributions ofthis dissertation are as follows:
     (1) Three new modified weighted bit-flipping (WBF) decoding algorithms have beenproposed to achieve better performance. They are combined modified weighted bit-flipping(CM-WBF) decoding algorithm, mixed modified weighted bit-flipping (MM-WBF) decodingalgorithm and reliability adjustment weighted bit-flipping (RA-WBF) decoding algorithm.
     CM-WBF is proposed for finite geometry low-density parity-check (FG-LDPC) codes. Itis constructed by combining two WBF algorithms and makes use of the feature that two WBFalgorithms often select different error bits in decoding process. Simulation results show thatby carefully choosing the two WBF algorithms to be combined, the new algorithm can offer abetter trade-off among performance, complexity, and convergence compared with M-WBF,LC-WBF and RR-WBF algorithms for FG-LDPC codes. With almost the same complexity,CM-WBF performs about0.15dB~0.3dB better and reduces the average convergence numberof iterations by half compared with other WBF algorithms.
     MM-WBF is proposed mainly for irregular LDPC codes. Based on CM-WBF algorithm,MM-WBF innovatively proposes the concepts of the main and assistant algorithms, anddevelops priority strategies of the two algorithms to achieve performance improvements. Simulation results show that with almost the same computational complexity, MM-WBFperforms about0.3dB~2.0dB better and reduces the average convergence number of iterationsby half compared with RR-WBF, IM-WBF and LC-WBF algorithms. Moreover, MM-WBFachieves similar improvement for regular LDPC codes.
     RA-WBF is an innovative WBF algorithm. It locates and corrects the error bits moreaccurately to obtain better performance by adjusting the reliability of some bits of a receivedcodeword in the decoding process. This idea of RA-WBF algorithm can be easily extended toexisting WBF decoding algorithms and improve the decoding performance effectively.
     The research productions are published in Journal of Computational InformationSystems (JCIS),2012International Conference on Wireless Communications and SignalProcessing (WCSP’2012) and2013International Conference on Computational Intelligenceand Security (CIS’2013).
     (2) Three new belief propagation decoding algorithms have been proposed to achievebetter performance or lower complexity. They are Oscillating Shuffled BP (OS-BP),Tchebyshev-Padé approximation BP (TPA-BP) and rational function approximation BP(RFA-BP) decoding algorithms.
     OS-BP is based on shuffled BP decoding algorithm and optimizes the messagetransmission route from check nodes to bit nodes. It improves performance by0.15dB andreduces the average number of iterations for convergence by about30%without increasingthe total complexity compared with the shuffled BP algorithm. Furthermore, to solve theproblem of relatively large delay in hardware implementation, we propose group oscillatingshuffled BP (GOS-BP) decoding algorithm, which solves the problem by the groupingprocess.
     TPA-BP and RFA-BP decoding algorithm are proposed to reduce the high computationalcomplexity in the standard LLR BP algorithm. TPA-BP and RFA-BP use Tchebyshev-Padéapproximation polynomial and rational functions approximation polynomial respectively toreplace tanh(x) function to reduce complexity. Compared with the standard LLR BP decodingalgorithm, the proposed algorithms significantly reduce computational complexity withoutnoticeable performance loss. These approximation ideas can be easily extended to othervariations of BP decoding.
     The research productions are published in Journal of Computational InformationSystems (JCIS), etc.
     (3) A new fast algorithm for counting the number of cycles in LDPC codes is proposedin this dissertation. The existing typical counting algorithm called cycle shape analysis counting algorithm counts the number of cycles sequentially, such as4-cycle first, then6-cycle, next8-cycle, etc., which is not efficient. The proposed algorithm, which is based onDijkstra algorithm in graph theory and the nature of the Tanner graph of LDPC codes, countsthe number of cycles once detected. The new algorithm greatly improves counting efficiency.Simulation results show that the new algorithm reduces counting time by1to2orders ofmagnitude compared with the typical counting algorithm.
     The research productions are published in Journal of Computer Applications.
引文
[1]Shannon C.E.. A Mathematical theory of Communication [J], Bell System TechnicalJournal,1948,27(6):379-423,625-656.
    [2]Hamming R.W.. Error Detecting and Error Correcting Codes [J]. Bell System TechnicalJournal,1950,29(2):147-160.
    [3]Slepian D. A Class of Biliary Signaling Alphabets [J]. Bell System Technical Journal,1956,35(1):203-234.
    [4]Prange E.. Cyclic Error-Correcting codes in two symbols [M]. Air Force CambridgeResearch Center,1957.
    [5]Golay M.. Binary coding [J]. IRE Professional Group on Information Theory,1954,4(4):23-28.
    [6]Elias P.. Coding for noisy channels [J]. IRE Conv. Rec,1955,3(4):37-46.
    [7]Bose R C, Ray-Chaudhuri D K. On a class of error correcting binary group codes[J].Information and control,1960,3(1):68-79.
    [8]Reed I.S., Solomon G.. Polynomial codes over certain finite fields [J]. Journal of theSociety for Industrial&Applied Mathematics,1960,8(2):300-304.
    [9]Gallager R.G.. Low-density Parity-check Codes. IRE Transactions on Information Theroy[J],1962,8(1):21-28.
    [10]R. G. Gallager, Low-density Parity-check Codes [M], Cambridge: MIT Press,1963.
    [11]Massey J.L.. Threshold Decoding [M]. Cambridge, MA: MIT Press,1963.
    [12]R. C. Bose and D. J. Ray-Chaudhuri. On a Class of Error Correcting Binary Group Codes[J]. Information and Control,1960,3(3):68-79.
    [13]Forney G.D.. Concatenated codes [M]. Cambridge: MIT press,1966.
    [14]Viterbi A. Error bounds for convolutional codes and an asymptotically optimum decodingalgorithm [J]. IEEE Transactions on Information Theory,1967,13(2):260-269.
    [15]E. R. Berlekamp. Algebraic Coding Theory [M]. New York: McGraw-Hill,1968.
    [16]Gallager R.G.. Information Theory and Reliable Communication [M]. New York: Wiley,1968.
    [17]Peterson W.W. and Weldon E.J., Jr. Error-Correcting Codes [M],2nd ed., Cambridge,MA.: MIT Press,1972.
    [18]Slepian D., Wolf J.. Noiseless coding of correlated information sources [J]. IEEETransactions on Information Theory,1973,19(4):471-480.
    [19]Lin S. and Costello D. J., Jr. Error Control Coding: Fundamentals and Applications [M].New Jersey: Prentice-Hall, Englewood Cliffs,1983.
    [20]Goppa V D. Algebraico-geometric codes [J]. Izvestiya Rossiiskoi Akademii Nauk. SeriyaMatematicheskaya,1982,46(4):762-781.
    [21]Goppa V D. Geometry and codes [M]. Springer,1988.
    [22]Berrou C., Glavieux A., Thitimajshima P.. Near Shannon limit error-correcting coding anddecoding: Turbo-codes.1[A]. IEEE International Conference on Communications,1993.ICC93[C].1993,2:1064-1070.
    [23]Berrou C, Glavieux A. Near optimum error correcting coding and decoding: Turbo-codes[J]. IEEE Transactions on Communications,1996,44(10):1261-1271.
    [24]M. Sipser and D. Spielman. Expander Codes [J]. IEEE Transactions on InformationTheory,1996.11,42(6):1710-1722.
    [25]D. Spielman. Linear-time Encodable Error-correcting Codes [J]. IEEE Transactions onInformation Theory,1996.11,42(6):1723-1731.
    [26]D. J. C. Mackay, R. M. Neal. Near Shannon Limit Performance of Low-densityParity-check Codes [J]. Electronics Letters,1996,32(18):1645-1646.
    [27]S. Y. Chung, G. D. Forney, Jr., T. J. Richardson and R. Urbanke. On the Design ofLow-density Parity-check Codes within0.0045dB of the Shannon Limit [J]. IEEECommunication Letters,2001,5(2):58-60.
    [28]Chen J. and Fossorier M.P.C.. Near Optimum Universal Belief Propagation BasedDecoding of Low-density Parity-check Codes [J]. IEEE Transactions on Communications,2002.3,50(3):406-414.
    [29]王育民,王新梅.差错控制编码:基础和应用[M].北京:人民邮电出版社,1986.
    [30]王新梅.纠错码浅说[M].北京:人民邮电出版社,1976.
    [31]王新梅.纠错码与差错控制[M].北京:人民邮电出版社,1989.
    [32]金连文,韦岗.现代数字信号处理简明教程[M].北京,清华大学出版社.2004.
    [33]赵晓群.现代编码理论[M].武汉:华中科技大学出版社,2007:229-262.
    [34]王新梅.纠错码——原理与方法[M].西安:西安电子科技大学出版社,2002.
    [35]袁东风,张海刚等. LDPC码理论与应用[M].北京:人民邮电出版社,2008.
    [36]N. Wiberg, H. A. Loeliger and R. K tter. Codes and Iterative Decoding on GeneralGraphs [J]. European Transactions on Telecommunications,1995,6:513-526.
    [37]R. J. McEliece, D. J. C. MacKay and J. F. Cheng. Turbo Decoding as an Instance ofPearl’s Belief Propagation Algorithm [J]. IEEE Journal on Selected Areas,1998,16(2):140-152.
    [38]F. R. Kschischang and B. J. Frey. Iterative Decoding of Compound Codes by ProbabilityPropagation in General Models [J]. IEEE Journal on Selected Areas in Communications,1998.2,16(12):219-230.
    [39]R. Lucas, M. Fossorier, Y. Kou and S. Lin. Iterative Decoding of One-Step MajorityLogic Decodable Codes Based on Belief Propagation [J]. IEEE Transactions onCommunications,2000,48(6):931-937.
    [40]R. M. Tanner. A Recursive Approach to Low Complexity Codes. IEEE Transactions onInformation Theory [J],1981,27(5):533-547.
    [41]M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi and D. A. Spielman. PracticalLoss-resilient Codes [A]. Proceedings of the29th Annual Symposium on Theory ofComputing [C]. ACM,1997:150-159.
    [42]D. J. C. Mackay. Good Error-Correcting Codes Based on Very Sparse Matrices [J]. IEEETransactions on Information Theory,1999,45(3):399-431.
    [43]D. J. C. Mackay, S. T. Wilson and M. C. Davey. Comparison of Constructions of IrregularGallager Codes [J]. IEEE Transactions on Communications,1999,47(10):1449-1454.
    [44]Wiberg N. Codes and decoding on general graphs [D]. Ph.D. thesis, Linkoping University,Sweden,1996.
    [45]T. J. Richardson, A. Shokrollahi, and R. Urbanke. Design of Capacity-ApproachingIrregular Codes [J]. IEEE Transactions on Information Theory,2001,47(2):619-637.
    [46]T. J. Richardson and R. L. Urbanke. The Capacity of Low-density Parity-check CodesUnder Message-passing Decoding [J]. IEEE Transactions on Information Theory,2001,47(2):599-618.
    [47]M. C. Davey and D. J. C. MacKay. Low Density Parity Check Codes over GF(q)[J].IEEE Communications Letters,1996,2(6):165-167.
    [48]Yu Kou, Shu Lin and M. P. C. Fossorier. Low Density Parity Check Codes: ConstructionBased on Finite Geometries [A]. Global Telecommunications Conference,2000. IEEEGLOBECOM’00[C],2000,2:825-829.
    [49]G. D. Forney Jr.. Codes on Graphs: Normal Realizations [J]. IEEE Transactions onInformation Theory,2001,47(2):520-548.
    [50]T. Etzion, A. Trachtenberg and A. Vardy. Which Codes Have Cycles-free Tanner Graphs[J]. IEEE Transactions on Information Theory,1999.9,45(6):2173-2181.
    [51]Abhiram Prabhakar, Krishna Narayanan. Pseuorandom Construction of Low-densityParity-check Using Linear Congruential Sequences [J]. IEEE Transactions OnCommunications,2002.9,50(9):1389-1396.
    [52]Jorge Campello, Dharmendra S. Modha and Sridhar Rajagopalan. Designing LDPCCodes Using Bit-filling [A]. IEEE International Conference on Communications,2001.ICC2001. IEEE [C],2001,1:55-59.
    [53]Jorge Campello and Dharmendra S. Modha. Extended Bit-filling and LDPC Code Design
    [A]. Global Telecommunications Conference,2001. IEEE GLOBECOM'01[C],2001,2:985-989.
    [54]Yongyi Mao and Amir H.Banihashemi. A Heuristic Search for Good Low-densityParity-check Codes at Short Block Lengths [A]. IEEE International Conference onCommunications,2001. IEEE ICC2001[C],2001,1:41-44.
    [55]Xiaoyu Hu, Evanglos Eleftheriou and Dieter Michael Arnold. Progressive Edge-growthTanner Graphs [A]. Global Telecommunications Conference,2001. IEEEGLOBECOM'01[C],2001,2:995-1001.
    [56]Hua Xiao, Amir H.Banihashemi. Improved Progressive-Edge-Growth (PEG)Construction of Irregular LDPC Codes [J]. IEEE Communications Letters,2004,8(12):715-717.
    [57]Xiaoyu Hu, Evangelos Eleftheriou and Dieter M.Arnold. Regular and IrregularProgressive Edge-Growth Tanner Graphs [J]. IEEE Transactions on Communications,2005,51(1):386-398.
    [58]Yazdani M R, Hemati S, Banihashemi A H. Improving belief propagation on graphs withcycles [J]. IEEE Communications Letters,2004,8(1):57-59.
    [59]E. J. Weldon, Jr. Euclidean Geometry Cyclic Codes [M]. Hawaii University HonoluluDepartment of Electrical Engineering,1967.
    [60]Yu Kou, Shu Lin and Marc P.C.Fossorier. Low-density Parity-check Codes Based onFinite geometries: Codes Based on Balanced Incomplete Block Designs [J]. IEEETransactions on Information Theory,2001,47(27):2711-2736.
    [61]Ammar B, Honary B, Kou Y, et al. Construction of Low-density Parity-check CodesBased on Balanced Incomplete Block Designs [J]. IEEE Transactions on InformationTheory,2004,50(6):1257-1269.
    [62]Bane Vasic, Olgica Milenkovic. Combinatorial Constructions of Low-densityParity-check Codes for Iterative Decoding [J]. IEEE Transactions on Communications,2004,50(6):1156-1176.
    [63]D. J. C. Mackay and M. C. Davey. Evaluation of Gallager codes for short block lengthand high rate applications [A]. Codes, Systems, and Graphical Models [M]. New York:Springer,2001:113-130.
    [64]S. J. Johnson and S. R. Welle. Regular Low-density Parity-check Codes fromCombinatorial Design [A]. Information Theory Workshop,2001. IEEE Proceedings.2001[C],2001:90-92.
    [65]S. J. Johnson and S. R. Welle. Construction of Low-density Parity-check Codes fromKirkman Triple Systems [A]. Global Telecommunications Conference,2001. IEEEGLOBECOM'01[C], San Antonio,2001,2:970-974.
    [66]B. Vasic, E. M. Kurtas and A. V. Kuznetsov. Kirkman Systems and Their Application inPerpendicular Magnetic Recording [J]. IEEE Transactions on Magnetics,2002,38(4):1705-1710.
    [67]B. Vasic, E. M. Kurtas and A. V. Kuznetsov. LDPC Codes Based on Mutually OrthogonalLatin Rectangles and Their Application in Perpendicular Magnetic Recording. IEEETransactions on Magnetics,2002,38(5):2346-2348.
    [68]B. Vasic. High-rate Low-density Parity-check Codes Based on anti-Pasch AffineGeometrieds [A]. IEEE International Conference on Communications,2002. IEEE ICC2002[C],2002,3:1332-1336.
    [69]J. Hagenauer. Rate-compatible Punctured Convolutional Codes (RCPC codes) and TheirApplications [J]. IEEE Transactions on Communications,1988,36(4):389-400.
    [70]F. Babich, G. Montorsi, and F. Vatta. Some Notes on Rate-compatible Punctured TurboCodes (RCPTC) Design [J]. IEEE E Transactions on Communications,2004,52(5):681-684.
    [71]J. Li and K. Narayanan. Rate-compatible Low-density Parity-check Codes for CapacityApproaching ARQ Scheme in Packet Data Communication [A]. Communications,Internet, and Information Technology [C].2002:201-206.
    [72]Jeongseok Ha, Jaehong Kim and S. W. McLaughlin. Rate-compatible Puncturing ofLow-density Parity-check Codes [J]. IEEE Transactions on Information Theory,2004,50(11):2824-2836.
    [73]T. Tian, C. Jones, and J. D. Villasenor. Rate-compatible Low-density Parity-check Codes[A]. International Symposium on Information Theory,2004. ISIT2004. IEEEProceedings. IEEE [C],2004:152
    [74]M. R. Yazdani and A. H. Banihashemi. On Construction of Rate-compatible Low-densityParity-check Codes [J]. IEEE Communications Letters,2004,8(3):159-161.
    [75]L. Dinoi, F. Sottile and S.Benedetto. Design of Variable-rate Irregular LDPC Codes withLow Error Floor [A]. IEEE International Conference on Communications,2005. IEEEICC2005[C],2005,1:647-651.
    [76]D. Bi and L. C. Perez. Rate-compatible Low-density Parity-check Codes withRate-compatible Degree Profiles [J]. Electronics Letters,2006,42(1):41-43.
    [77]N. Varnica, E. Soljanin, and P. Whiting. LDPC Code Ensembles for IncrementalRedundancy Hybrid ARQ [A]. International Symposium on Information Theory,2005.ISIT2005. IEEE Proceedings [C],2005:995-999.
    [78]G. J. Foschini and J. Salz. Digital Communication over Fading Radio Channels [J]. BellSystem Technical Journal,1983,62(2):429-456.
    [79]M. G. Luby, M. Mitzenmacher, M. A. Shokrollah and D.A.Spielman. ImprovedLow-density Parity-check Codes Using Irregular Graphs [J]. IEEE Transactions onInformation Theory,2001,47(2):585-598.
    [80]Hao Zhong and Tong Zhang. Block-LDPC: A Practical LDPC Coding System DesignApproach [J]. IEEE Transactions on Circuits and Systems,2005,52(4):766-775.
    [81]M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman. ImprovedLow-Density Parity-Check Codes Using Irregular Graphs and Belief Propagation [A].Proceedings of IEEE International Symposium on Information Theory,1998[C].Cambridge, MA.1999:171.
    [82]Y. Kou, S. Lin and M. P. C. Fossorier. Low-density Parity-check Codes based on FiniteGeometries: A Rediscovery [A]. Proceedings of IEEE International Symposium onInformation Theory,2000[C], Italy:2000:200.
    [83]L. D. Rudolph. A Class of Majority Logic Decodable Codes [J]. IEEE Transactions onInformation Theory,1967,13(4):305-307.
    [84]V. D. Kolesnik. Probability Decoding of Majority Codes [J]. Prob. Peredachi Inform.,1971,7(7):3-12.
    [85]Y. Kou, S. Lin, and M. P. C. Fossorier. Low-density Parity-check Codes Based on FiniteGeometries: A Rediscovery and New Results [J]. IEEE Transactions on InformationTheroy,1999,47(5):2711-2736.
    [86]Nouh A, Banihashemi A. H. Bootstrap decoding of low-density parity-check codes [J].IEEE Communications Letters,2002,6(9):391-393.
    [87]J. Zhang and M. P. C.Fossorier. A Modified Weighted Bit-Flipping Decoding ofLow-density Parity-check Codes [J]. IEEE Communications Letters,2004,8(3):165-167.
    [88]J. Chen, M. P. C. Fossorier. Decoding low-density parity check codes with normalizedAPP-based algorithm [A]. Global Telecommunications Conference,2001. IEEEGLOBECOM'01[C].2001,2:1026-1030.
    [89]Z. Liu and D. A. Pados. Low Complexity Decoding of Finite Geometry LDPC Codes [J].IEEE Transactions on Communications,2005,53(3):415-421.
    [90]M. Shan, C. M. Zhao and M. Jiang. Improved Weighted Bit-Flipping Algorithm forDecoding LDPC Codes [A]. IEE Proceedings Communications, IET,2005[C].2005,152(6):919-922.
    [91]Ming Jiang, Chunming Zhao, Zhihua Shi and Yu Chen. An Improvement on the ModifiedWeighted Bit-Flipping Decoding Algorithm for LDPC Codes [J]. IEEE CommunicationsLetters,2005,9(9):814-816.
    [92]F. Guo and L. Hanzo. Reliability ratio based weighted bit-flipping Decoding forLow-density Parity-check Codes [J]. Electronic Letters,2004,40(21):1356-1358.
    [93]C. H. Lee and W. Wolf. Implementation-efficient reliability ratio based weightedbit-flipping decoding for LDPC Codes [J]. Electronic Letters,2005,40(13):755-757.
    [94]Li G, Feng G. Improved parallel weighted bit-flipping decoding algorithm for LDPCcodes [J]. IET Communications,2009,3(1):91-99.
    [95]Qian D, Jiang M, Zhao C, et al. A modification to weighted bit-flipping decodingalgorithm for LDPC codes based on reliability adjustment [A]. IEEE InternationalConference on Communications,2008. ICC'08. IEEE [C],2008:1161-1165.
    [96]Wu X, Jiang M, Zhao C, et al. Fast weighted bit-flipping decoding of finite-geometryLDPC codes [A]. Information Theory Workshop,2006. ITW'06[C].2006:132-134.
    [97]谢东觉,张兴敢,唐岚.一种改进的LDPC码多比特翻转译码算法[J].现代电子技术,2011,34(3):11-13.
    [98]Li J, Zhang X D. Hybrid iterative decoding for low-density parity-check codes based onfinite geometries [J]. IEEE Communications Letters,2008,12(1):29-31.
    [99]F. R. Kschischang, B. J. Frey and H. A. Loeliger. Factor Graphs and the Sum-ProductAlgorithm [J]. IEEE Transactions on Information Theory,2001,47(2):498-519.
    [100]Chen Jinghu. Reduced Complexity Decoding Algorithms for Low-density Parity-checkCodes and Turbo Codes [D]. University of Hawaii at Manoa,2003.
    [101]S. Y. Chung, T. J. Richardson and R. Urbanke. Analysis of Sum-product decoding oflow-density parity-check codes using a Gaussian approximation [J]. IEEE Transactions onInformation Theory,2001,47(2):657-670.
    [102]F. R. Kschischang, B. J. Frey. Iterative Decoding If Compound Codes by ProbabilityPropagation in Graphical Models [J]. IEEE Journal on Selected Areas in Communications,1998,16(2):219-230.
    [103]M. P. C. Fossorier, M. Mihaljevic and H Imai. Reduced complexity iterative decoding ofLow-density Parity-check Codes based on belief propagation [J]. IEEE Transactions onCommunications,1999,47(5):673-680.
    [104]Kim N, Park H. Modified UMP-BP decoding algorithm based on mean square error [J].Electronics Letters,2004,40(13):816-817.
    [105]M. P. C.Fossorier. Iterative reliability-based decoding of Low-density Parity-checkCodes [J]. IEEE Journal on Selected areas in communications,2001,19(5):908-917.
    [106]C.H. Lee, W. Wolf. Implementation-efficient reliability ratio based weighted bit-flippingdecoding for LDPC codes [J]. Electronics Letters,2005,41(13):755-757.
    [107]N. Varnica, M. P. C. Fossorier, A. Kavcic. Augmented belief propagation decoding oflow-density parity check codes [J]. IEEE Transactions on Communications,2007,55(7):1308-1317.
    [108]Lechner G. Convergence of sum-product algorithm for finite length low-densityparity-check codes [J]. Winter School on Coding and Information Theory,2003:24-27.
    [109]Gounai S, Ohtsuki T, Kaneko T. Modified belief propagation decoding algorithm forlow-density parity check code based on oscillation [A], Vehicular Technology Conference,2006. VTC2006[C].2006,3:1467-1471.
    [110]Gounai S, Ohtsuki T. Decoding algorithms based on oscillation for low-density paritycheck codes [J]. IEICE Transactions on Fundamentals of Electronics, Communicationsand Computer Sciences,2005,88(8):2216-2226.
    [111]Zheng X, Lau F C M, Tse C K, et al. Study of nonlinear dynamics of LDPC decoders[A]. Proceedings of the2005European Conference on Circuit Theory and Design,2005[C].2005,2(2):157-160.
    [112]Zheng X, Lau F C M, Tse C K, et al. Techniques for improving block error rate of LDPCdecoders [A].2006IEEE Proceedings International Symposium on Circuits and Systems,2006. ISCAS2006[C].2006,4:2264.
    [113]Jiang M, Zhao C, Xu E, et al. Reliability-based iterative decoding of LDPC codes usinglikelihood accumulation [J]. IEEE Communications Letters,2007,11(8):677-679.
    [114]Isaka M, Fossorier M, Imai H. On the suboptimality of iterative decoding for finitelength codes [A].2002IEEE International Symposium on Information Theory,2002.Proceedings. IEEE [C].2002:4.
    [115]H. Kfir, I. Kanter. Parallel versus sequential updating for belief propagation decoding [J].Physica A: Statistical Mechanics and its Applications,2003,330(1):259-270.
    [116]Varnica N, Fossorier M. Improvements in belief-propagation decoding based onaveraging information from decoder and correction of clusters of nodes [J]. IEEECommunications Letters,2006,10(12):846-848.
    [117]刘晓健,吴晓富,赵春明.准循环LDPC码的两种典型快速译码算法研究[J].电子与信息学报,2009,31(1):79-82.
    [118]刘向楠,赵洪林,张佳岩,等.一种改进的LDPC码译码算法研究[J].科学技术与工程,2011,11(24):5817-5822.
    [119]尹晓琦,殷奎喜,李忠慧.一种简化的LDPC码BP译码算法的研究[J].现代电子技术,2006,29(14):148-151.
    [120]H. Kfir, I. Kanter. Parallel versus sequential updating for belief propagation decoding [J].Physica A: Statistical Mechanics and its Applications,2003,330(1):259-270.
    [121]J. Zhang and M. P. C. Fossorier. Shuffled Belief Propagation Decoding [A]. Proceedingsof36th Annual Asilomar Conference on Signals, Systems and Computers [C].2002:8-15.
    [122]J. Zhang, M. P. C. Fossorier. Shuffled iterative decoding [J]. IEEE Transactions onCommunications,2005,53(2):209-213.
    [123]J. Zhang, Y. Wang, M. P. C. Fossorier, et al. Replica shuffled iterative decoding [A].Proceedings. International Symposium on Information Theory,2005. ISIT2005. IEEE[C].2005:454-458.
    [124]J. Zhang, Y. Wang, M. P. C. Fossorier, et al. Iterative decoding with replicas [J]. IEEETransactions on Information Theory,2007,53(5):1644-1663.
    [125]R. M. Tanner, D. Sridhara, T. Fuja. A class of group-structured LDPC codes [A].Proceedings of ICSTA2001[C]. England: Ambleside,2001.
    [126]E. Yeo, P. Pakzad, B. Nikolic and V. Anantharam. High throughput low-densityparity-check decoder architectures [A]. Proceedings of Global TelecommunicationsConference [C].2001,5(11):3019-3024.
    [127]L. Bahl, J. Cocke, F. Jelinek and J. Raviv. Optimal decoding of linear codes forminimizing symbol error rate [J]. IEEE Transactions on Information Theory,1974,20(2):284-287.
    [128]Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference[M]. San Mateo, CA: Morgan Kaufmann,1988.
    [129]Sharon E, Litsyn S, Goldberger J. An efficient message-passing schedule for LDPCdecoding [A]. Electrical and Electronics Engineers in Israel,2004. Proceedings.200423rd IEEE Convention of. IEEE [C],2004:223-226.
    [130]Berrou C, Saouter Y, Douillard C, et al. Designing good permutations for turbo codes:towards a single model [A]. ICC’2004[C].2004:341-345.
    [131]Ten Brink S. Convergence behavior of iteratively decoded parallel concatenated codes[J]. IEEE Transactions on Communications,2001,49(10):1727-1737.
    [132]Tuechler M, Ten Brink S, Hagenauer J. Measures for tracing convergence of iterativedecoding algorithms [A]. Proc.4th IEEE/ITG Conference on Source and Channel Coding[C].2002:53-60.
    [133]S. ten Brink, G. Kramer, A. Ashikhmin. Design of low-density parity-check codes formodulation and detection [J]. IEEE Transactions on Communications,2004,52(4):670-678.
    [134]Tong S, Wang X. Convergence analysis of Gallager codes under differentmessage-passing schedules [J]. IEEE Communications Letters,2005,9(3):249-251.
    [135]Hagenauer J., Offer E. and Papke L.. Iterative decoding of binary block andconvolutional codes [J]. IEEE Transactions on Information Theory,1996,42(2):429-445.
    [136]Viterbi A J. An intuitive justification and a simplified implementation of the MAPdecoder for convolutional codes [J]. IEEE Journal on Selected Areas in Communications,1998,16(2):260-264.
    [137]Richardson T, Shokrollahi A, Urbanke R. Design of provably good low-density paritycheck codes [A] IEEE International Symposium on Information Theory,2000.Proceedings. IEEE [C].2000:199.
    [138]Biglieri E.. Coding for wireless channels [M]. Springer,2005.
    [139]Fan Jun, Xiao Yang. A Method of Counting the Number of Cycles in LDPC codes [A].Signal Processing,20068th International Conference [C], Washington: IEEE ComputerSociety,2006,3:2183-2186.
    [140]张志亮,刘英,周红.基于二分图低密度奇偶校验码围长计算方法[J].信息与电子工程,2009,7(2):119-122.
    [141]李博,王钢,杨洪娟,魏民.一种LDPC码双向图环路检测新算法[J].哈尔滨工业大学学报,2010,42(7):1051-1055.
    [142]李建中,骆吉洲.图论导引[M].北京:机械工业出版社,2006:76-77.
    [143]殷剑宏,吴开亚.图论及其算法[M].合肥:中国科学技术大学出版社,2006:67.
    [144]王战红,孙明明,姚瑶. Dijkstra算法的分析与改进[J].湖北第二师范学院学报,2008,25(8):12-14.
    [145]王智广,王兴会,李妍.一种基于Dijkstra最短路径算法的改进算法[J].内蒙古师范大学学报,2012,41(2):195-200.
    [146]D. J. C. Mackay. Encyclopedia of Sparse Graph Codes [EB/OL].http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.
    [147]李炯城,李桂愉,肖恒辉,黄海艺.快速检测低密度奇偶校验码围长的新算法[J].计算机应用,2012,11:3100-3101.
    [148]Huang H, Wang Y, Wei G. Combined Modified Weighted Bit-Flipping Decoding ofLow-Density Parity-Check Codes [A].2012International Conference on WirelessCommunications&Signal Processing (WCSP2012)[C].2012:1-5.
    [149]Huang H, Wang Y, Wei G. Combined Modified Weighted Bit-flipping Decoding ofFG-LDPC Codes [J]. Journal of Computational Information Systems,2013,9(14):5853-5860.
    [150]X. Zheng, F. C. M. Lau, C. K. Tse. Performance evaluation of irregular low-densityparity-check codes at high signal-to-noise ratio [J]. IET Communications,2011,5(11):1587-1596.
    [151]Cui Z, Wang Z, Zhang X. Reduced-complexity column-layered decoding andimplementation for LDPC codes [J]. IET Communications,2011,5(15):2177-2186.
    [152]Papaharalabos S, Sweeney P, Evans B G, et al. Modified sum-product algorithms fordecoding low-density parity-check codes [J]. IET Communications,2007,1(3):294-300.
    [153]Gong Y, Liu X, Yecai W, et al. Effective informed dynamic scheduling for beliefpropagation decoding of LDPC codes [J]. IEEE Transactions on Communications,2011,59(10):2683-2691.
    [154]Jie H, Lijun Z. Relative-residual-based dynamic schedule for belief propagationdecoding of LDPC codes [J]. China Communications,2011,8(5):47-53.
    [155]C. W. Clenshaw, Chebyshev Series for Mathematical Functions, London: H. M.Stationery Off.,1962.
    [156]Fox L, Parker I B. Chebyshev polynomials in numerical analysis [M]. London: OxfordUniversity Press,1968.
    [157]Lanczos C. Tables of Chebyshev Polynomials [J]. Applicable Mathematics Series USBureau Standards,1952,9.
    [158]Maehly H J. Rational approximations for transcendental functions [A]. IFIP Congress[C].1959:57-61.
    [159]Clenshaw C W, Lord K. Rational approximations from Chebyshev series [J]. Studies inNumerical Analysis,1974:95-113.
    [160]Geddes K O. Block structure in the Chebyshev-Padé table [J]. SIAM Journal onNumerical Analysis,1981,18(5):844-861.
    [161]Albert C T, Moore J R, Glaser S D. Wavelet Denoising Techniques with Applications toExperimental Geophysical Data [J]. Signal Processing,2009,89(2):144-160.
    [162]Donoh D L. De-noising by Soft-thresholding [J]. IEEE Transactions on InformationTheory,1995,41(3):613-627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700