用户名: 密码: 验证码:
模糊可重构设计关键技术研究及其在转向架中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转向架是机车车辆中最重要的组成部件之一,担当着运行、导向、承载、减振的任务,同时也是牵引和制动最终执行者,是一个典型的复杂机械系统,其设计具有模糊性、耦合性和递归性等特点。目前的设计方法主要针对现有运行转向架存在的问题,进行局部改进和优化,很少有涉及转向架结构设计理论和方法的研究。同时,现代社会的高效率同样影响着产品开发设计。在日趋激烈的市场竞争下,如何充分利用现有资源,实现产品的快速重构设计是复杂机械产品研究的重点。本文基于这两方面的现状,以快速创新设计理论最新研究成果为基础,结合我国转向架设计实际,展开模糊可重构设计理论与方法及其在列车转向架设计的应用研究。
     1.可重构设计作为21世纪制造业关键技术之一,相对其他的设计方法能够同时解决设计的继承性和创新性两个问题,但是其设计理论基础为独立公理设计理论,仍然难以支撑复杂产品重构设计。本文在详细论述传统可重构理论及其设计方法的基础上,提出了模糊可重构设计理论和设计方法。分析了设计输入信息的模糊性、设计域关系的模糊性和设计求解过程的模糊性,给出了模糊可重构设计的定义及其模糊可重构性的定理,并证明了复杂机械产品设计具有可重构性。针对传统可重构设计采用的层次分析和“Z”字映射方法,在复杂机械产品可重构设计方面存在效率低和风险大的问题,给出了模糊可重构设计方法。将传统的设计域进行细化,提出了性能域概念,将物理域分为结构域和参数域,采用模糊数描述设计域及其映射关系,通过模糊矩阵变化、模糊相似识别和再设计实现产品的重构。
     2.论述了模糊可重构设计相关模糊集理论及其方法。介绍了模糊集定义和λ-截集的概念,给出了机械产品设计中设计参数的常用隶属度函数。详细论述了基于多参数的模糊识别加权贴近度方法,并将其应用于模糊可重构设计构件的模糊优选。论述了机械结构的模糊优化方法,以许用应力为模糊约束和转向架构架质量最小为优化目标,采用Hypermesh的OptiStruct工具对构架进行了优化分析。
     3.研究了基于质量屋(HOQ)的产品重构设计矩阵分析方法及其在转向架总体设计中的应用。论述了结构化分析工具(HOQ)的构建过程和关联矩阵及其耦合性分析方法。以转向架设计为例,构建了转向架的“功能—结构”映射矩阵,分析了其可重构性。在此基础上,构建了转向架”性能—参数“关联矩阵,给出了主要设计参数及其重要度排序,为确定目标设计参数提供了理论指导,同时为构件的模糊识别提供了依据。
     4.针对转向架构架结构的复杂性,研究了构架广义模块化设计方法及其性能仿真。结合焊接构架的结构特征,给出了广义模块定义及其函数表达,分析了参数化模块、柔性模块和虚拟模块的划分方法及其特点,论述了广义模块化产品重构设计方法。以某构架设计为例,实现了构架广义模块化设计以及性能仿真的自动化。
     5.研究了模糊可重构设计系统(BFRDS)关键技术,实现了其系统开发。产品可重构设计系统关键技术包括产品数据模型、配置设计和自动装配等技术。根据复杂机械产品性能的复杂性,提出了多软件协同仿真技术。在此基础上,详细分析了高速列车转向架的结构特征和设计过程,构建了转向架模糊可重构设计系统的结构体系,给出了系统功能模块和重构设计流程,开发了设计系统软件。
     综上所述,本文针对复杂机械产品可重构设计问题,以传统可重构设计为基础,基于并行工程和数字样机技术,研究了模糊可重构理论与方法,并以某型转向架为典型应用,探索了转向架设计继承与创新问题。开发的模糊可重构设计系统实现了转向架的模糊重构设计及其产品数据的集成管理,为转向架快速设计和资源重用提供了重要手段和软件平台。
The bogie is one of the most important components of rolling stock, which is a typical and complicated mechanical system, not only takes charge of moving, guiding, supporting, damping, but also is the final executor of traction and brake. The design has the characteristics of fuzziness, coupling and recursive, etc. The current design methods mainly aim at local improvement and optimization for the existing problems of the bogie, and there are few innovative design theories and methods of the bogie structure. At the same time, the high efficiency of modern society has the same impact on product development and design. In the increasingly fierce market competition, how to make full use of existing resources to achieve the rapid reconfiguration design of the product is the focus of the study of complex mechanical products. To solve the two issues, this paper deals with the research of fuzzy reconfigurable design theory and methods, and its application in the train bogie, combined with the reality of domestic bogie design on the basis of the latest research results of rapid innovation design theory.
     1. As one of the key manufacturing technologies in the21st century, reconfigurable design is able to solve the design problem of the inheritance and innovation compared with other design methods, but its design theory is based on independent axiomatic design theory, and is still difficult to support complex product reconfiguration design. In this paper, On the basis of the detailed discussion of traditional reconfigurable theory and its design method, fuzzy reconfigurable design theory and method are put forward. The paper analyzes the fuzziness of the design input, fuzziness of relationship between design domains and fuzziness of the design solution procedure, proposes the fuzzy definition of the reconfigurable design and fuzzy reconfigurable theorem, and proves the reconfiguration of complex mechanical product design. Fuzzy reconfigurable design methodology is put forward as the design method of traditional reconfigurable design-the Analytic hierarchy process and the "z" word mapping method-are inefficient and risky in complex mechanical products. The original design domain is refined, that is, the performance domain is put forward, and the original physical domain is divided into structure domain and parameter domain. Then the design domains and their mapping are described by use of fuzzy numbers and the reconfiguration of the product is achieved by fuzzy matrix changes, fuzzy similarity identification and re-designs.
     2. The fuzzy set theory and its methods of fuzzy reconfigurable design are discussed. The paper introduces the definition of fuzzy sets and the concept ofλ-cut sets, and gives the common membership function of the design parameters in the mechanical product design. Also, it discusses in detail the weighted closeness degree fuzzy recognition method based on multiple parameters, and its application to the fuzzy choice of the components of fuzzy reconfigurable design. The mechanical structure of the fuzzy optimization method is discussed; the allowable stress for the fuzzy constraints and the minimum quality of the bogie frame for the optimization objectives, the frame is optimized with Hypermesh OptiStruct tools.
     3. The analysis method of product reconfiguration design matrix based on the House of Quality (HOQ) and its application in the overall design of the bogie are studied. The building process of structure analysis tools (HOQ) and the method of the associated matrix and its coupling analysis are discussed. Take bogie design as an example, the "function-structure" mapping matrix of the bogie is built, and its reconfigurability is analyzed. On this basis, the "performance-parameters" correlation matrix of the bogie is constructed, and the main design parameters and their important degree of sorting are given, which provides the theoretical guidance for the target design parameters, and at the same time provides the basis for fuzzy identification of the components.
     4. For the complex of bogie frame structure, the generalized modular design method and the performance simulation of frame are studied. Combine the characteristics of the welded frame, a generalized module defines and its function expression is given, structural characteristics and classification method of parameterized modules, flexible modules and virtual modules are analyzed, and the generalized modular reconfigurable design method is discussed. Taken the frame of bogie design as an example, and achieves generalized modular design of the frame, and the automation of performance simulation.
     5. The key technologies of fuzzy reconfigurable design system (BFRDS) are studied to achieve its system development. The key technologies of reconfigurable design system include product data model, configuration design and automated assembly technology, etc. According to the complexity of the complex mechanical product performance, the co-simulation technology based on multi-software is put forward. On these bases, the structural features and the design process of high-speed train bogie are discussed in detail, the structure system of the bogie fuzzy reconfigurable design is built, the system function modules and reconfigurable design process are given, and the software of the design system are developed.
     In summary, to solve complex mechanical product reconfigurable design issues, based on the traditional reconfigurable design, concurrent engineering and digital prototyping technology, fuzzy reconfigurable theory and methods are studied, and the design inheritance and innovation of bogie are explored with the typical application of the bogie. The fuzzy reconfigurable design system achieves the bogie fuzzy reconfiguration design and the integration management of product data, which provides an important means and a software platform for the bogie rapid design and reuse of resources.
引文
[1]张卫华.高速转向架技术的创新研究[J].中国工程科学,2009,11(10):8-17
    [2]路甬祥.工程设计的发展趋势和未来.机械工程学报.1998,33(1):1-8
    [3]魏喆.性能驱动的复杂机电产品设计理论和方法及其在大型注塑装备中的应用[D].浙江大学博士论文,2009
    [4]邢德强,复杂机械产品性能驱动设计方法及其典型应用研究[D].天津大学博士论文,2010
    [5]贾延林.模块化设计[M].北京机械工业出版社,1993
    [6]Suh N P. The Principle of Design. Oxford:Oxford university press,1990
    [7]PAHL G, BEITZ W. Engineering design:a systematic approach [M]. London:Springer-Verlag,1996
    [8]Ulrich K, Tung K. Fundamentals of product Modularity [C]. ASME Design Engineering Division.1991,39:73-79
    [9]ERIXON G, YXKULL V A, ARNSTROM A. Modularity-the basis for product and factory reengineering [J]. CIRP Annals-Manufacturing Technology, 1996,45(1):1-4
    [10]STONE R B, WOOD K L, Crawford R H. Using quantitative functional models to develop product architecture [J]. Design Studies,2000,21(3): 239-260.
    [11]GU P, SOSALE S. Product modularization for life cycle engineering [J]. Robotics and Computer Integrated Manufacturing.1999,15(5):387-401
    [12]O'GRADY P, LIANG W Y. An Internet-based search formalism for design with modules[J]. Computers & Industrial Engineering,1998,35(1-2):13-16
    [13]TSAI Y T, WANG K S. The development of modular-based design in considering technology complexity[J].European Journal of Operation Research,1999,119(3):692-703.
    [14]侯亮,唐任仲,徐燕申.产品模块化设计理论、技术与应用研究进展[J].机械工程学报.2004,40(1):56-61
    [15]HILLSTROM F. Applying axiomatic design to interface analysis in modular product development [C]. ASME Design Engineering Division.1994,69-2: 363-371
    [16]Sutherland I E. SketchPad:a man-machine graphical communication System Thesis, MIT,1963
    [17]R. A. Light & D. C. Gossard. Modification of Geometric Models through Variational Geometry. Computer-Aided Designs.1982,14(4):209-214
    [18]Erens F, Verhulst K. Architectures for Product families [J]. Computers in Industry.1997,33(2):165-178
    [19]McAdams D. Stone R. Wood K. Functional interdependence and Product similarity based on customer needs [J]. Research in Engineering Design. 1999.11(I):1-19.
    [20]Simpson T, Maier J, Mistree F. Product Platform design:method and application [J]. Research in Engineering Design.2001,13(6):2-22
    [21]Dai Z., Scott M.. Product Platform design through sensitivity analysis and cluster analysis [J]. Journal of Intelligent Manufacturing.2007,18(1):97-113
    [22]Tseng M, Du Xuehong. Design by customers in the manufacturing firm [J]. Research Policy.1998,24(3):419-440.
    [23]Hegge H, WorTRann J. Generic bill-of-material:A new product model [J]. International Journal of Production Economies.1991,23(1):117-128
    [24]祁国宁,顾新建,谭建荣.大批量定制技术及其应用[M].北京:机械工业出版社,2003.
    [25]Jiao Jianxin, Tseng M. An information modeling frame work for Product families to support mass. Customization manufacturing [J]. CIRP Annals. 1999,48(1):93-98
    [26]Nomaguchi Y, Taguchi T, Fujita K. Proposal of knowledge model for designing Product architecture and Product family[C]. IJCC Workshop 2006 on Digital Engineering,2006.
    [27]Nanda J, Simpson T. Kumara S, Shooter S. A methodology for Product family ontology development using formal concept analysis and web ontology language [J]. Journal of Computing and Information Science in Engineering,2006,6(2):103-112
    [28]高鹏,林兰芬,蔡铭,董金祥.基于本体映射的产品配置模型自动获取[J].计算机集成制造系统.2003,9(9):810-81
    [29]Siddique Z, Adupala R. Product family architecture reasoning [C]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2005,5:413-421
    [30]朱斌,江平宇.面向产品族的设计方法学[J].机械工程学报.2006,42(3):1-8
    [31]Koren Y, Ulsoy A. Reconfigurable manufacturing systems[R]. Engineering Research Center for Reconfigurable Machining Systems Report No.1, AnnArbor, The University of Michigan,1997.
    [32]Koren Y, heisel U, et al. Reconfigurable system [J]. Annals of CIRP,1999, 48(2):1-14
    [33]R. M. Setchi, Nikolaos. Reconfigurability and Reconfigurable Manufacturing Systems-State-of-the-art Review. Manufacturing Engineering Centre. Cardiff University,2004
    [34]A. Siddiqi, O. L. de Weck. Modeling Methods and Conceptual Design Principles for Reconfigurable Systems [J]. Journal of Mechanical Design, 2008,130(10):101102-1-15.
    [35]罗振璧,于学军,刘阶萍,等.可重构性和可重构设计理论[J].清华大学学报.2004,44(5):577-580
    [36]梁福军,宁汝新.可重构制造系统中基于相似性理论的虚拟制造单元生成方法[J].计算机集成制造系统.2004,10(11):1370-1376
    [37]楼洪梁,杨将新,林亚福,胡建坤等.基于图论的可重构制造系统重构策略[J].机械工程学报.2006,42(3):22-29
    [38]楼洪梁,杨将新,林亚福,吴昭同,等.面向多品种变批量的可重构制造系统的设计方法研究[J].中国机械工程.2006,17(13):1360-1370
    [39]王素欣,高利,王丽杰,崔小光.基于粒子群优化的制造单元重构研究[J].现代制造工程,2007(1):76-79
    [40]刘溪涓,蒋寿伟.产品重构设计中基于最小损失函数的零件选择算法[J].计算机辅助设计与图形学学报.2002,14(10):967-971
    [41]刘世平,饶运清.面向单元重构的一种设备选择与聚类方法[J].机械与电子,2006(1):6-8
    [42]D. M. Tilbury, S. Kota. Integrated Machine and Control Design for Reconfigurable Machine Tools[J]. Proceedings of the 1999 IEEE/ASME: International Conference on Advanced Intelligent Mechatronics.
    [43]冯宁,宾鸿赞.基于运动学的可重构方法及其应用[J].华中科技大学学报.2003,31(4):4-6
    [44]许虹,王庆明.可重构机床设计[J].中国机械工程.2005,16(7):588-593
    [45]R. Hui, N. Kircanski, A. Goldenberg, C. Zhon, PKuzan, J. Wiercienski, D.Gershon And P. Sinha. Design of the IRIS Facility:A modular,Reconfigurable and Expandable Robot Test Bed. IEEE Proceeding of the IEEE International Conference on Robotics & Automation,1993: 155-160
    [46]C. J. J. Paredis, H. B. Brown and P. K. Khosla. A Rapidly Deployable Manipulator System. IEEE Proceeding of the IEEE International Conference on Robotics&Automation,1996:1434-1439
    [47]赵广涛,郑浩峻.产品化机器人拓扑重构规划研究[J].微计算机信息.2006,22(10-2):1-3
    [48]于海波,于靖军,毕树生等.基于图论的可重构机器人构型综合[J].机械工程学报.2005,41(8):79-83
    [49]魏延辉,赵杰,蔡鹤皋.基于任务的可重构产品机器人构形确定方法[J].机械工程学报.2006,42 Supp.(5):93-97
    [50]李树军,张艳丽,赵明扬.可重构产品化机器人产品及构形设计[J].东北大学学报(自然科学版).2004,25(1):78-81
    [51]龚京忠,邱静,李国喜,等.基于可拓理论的产品配置设计[J].计算机集成制造系统.2007,13(9):1700-1708.
    [52]李国喜,吴建忠,张萌,等.基于功能-原理-行为-结构的产品模块化设计方法[J].国防科技大学学报.2009,31(5):75-80.
    [53]熊文平,孙宗禹.先进制造技术及其发展趋势[J].机械研究与应用.2003.9(3):10-11
    [54]孟明辰,韩向利.并行设计[M].北京:机械工业出版社,1999.12
    [55]胡光忠,基于GIS的产品全生命周期管理技术研究[D].四川大学硕士论文,2004
    [56]朱文海.并行工程关键使能技术及其发展趋势[J].现代防御技术.2001.4(2):56-64
    [57]刘晓冰,米小珍,关宏志.基于PDM的并行设计开发环境的实现与管理[J].计算机集成制造系统-CIMS.2001.9(9):20-26
    [58]FanDai, Wolfgang Feiger, Martin Gobel. Applying Virtual to Electronic Prototyping-Concept and First Results Virtual Prototyping:Virtual environments and the Product design Process [C]. ChapMan and Hall Press, 1995
    [59]Kerttula M, Salmela M, Heikkinen M. Virtual reality prototyping a , framework for the development of electronics and telecommunications products [A]. Proceedings of 8th IEEE International Workshop on Rapid System prototyping [C].1997.
    [60]Tseng M.M., Jianxin Jiao, et al. A Frame work of virtual Design for Product Customization[A]. Proceedings of IEEE Intel Conference on Emerging Technologies and Factory Automation[C],1997
    [61]Bloor MS, McKay A. Product and shape Representation for Virtual Prototyping [M]. Book of Virtual Prototyping:Virtual environments and the Product design Process, ChaPMan and Hall Press,1995.
    [62]Defense Systems Management College. Virtual Prototyping:Concept to Production [M]. DSMC Press,1994.
    [63]肖田元,赵银燕,等.多自由度机械臂系统的虚拟样机开发[J].系统仿真学报.2004,16(2):264-267
    [64]丁国富,张卫华,等.铁路机车车辆虚拟样机工程[C].中国铁道学会车辆委员会2004年度铁路机车车辆动态仿真学术会议论文集,2004.
    [65]熊光楞,李伯虎,柴旭东.虚拟样机技术[J].系统仿真学报.2001,11(1):114-117
    [66]王栋.基于PC的虚拟样机集成仿真平台及其关键技术的研究[D],上海大学博士论文,2007
    [67]马思群.铁路机车车辆虚拟样机管理及支撑技术研究[D],大连交通大学博士论文,2006
    [68]邵立,钟廷修.虚拟制造及其应用[J].上海交通大学学报.1999,33(7):906-911
    [69]James A. Fulton. Strategy for the integration of knowledge-based engineering data. Boeing Information and Support Services Research and Technology,1995
    [70]Clemens August. SIM-VR:Interactive Crash Simulation, Simulation and Visualization on the Grid. New York:Spring.1999
    [71]H. Tramberend etc. AVOCADO:A Distributed Virtual Real Framework. IEEE Virtual Reality Proceedings,1999.14-21
    [72]Juji Nomura, Kazuya Sawada. Virtual Reality Technology and Its Industrial Applications. Control Engineering Pratice,1999(7):1381-1394
    [73]王克明,熊光楞,等.基于产品信息重用的设计仿真协同技术研究[J].清华大学985学科重大项目“轿车数字化工程”学术研讨会论文集.2002,3
    [74]苟凌怡,熊光楞.支持参考样车性能分析及新车目标性能确定的协同开发平台技术研究[J].清华大学985学科重大项目“轿车数字化工程”学术研讨会论文集.2002,3
    [75]谢金崇,熊光楞.支持虚拟产品开发全过程的轿车信息模型框架研究[J].清华大学985学科重大项目“轿车数字化工程”学术研讨会论文集,2002,3
    [76]赵雯等.武器系统虚拟样机技术研究[J].国防科技大学学报.1999,21(1)
    [77]柴旭东.复杂产品虚拟样机工程工具集的研究与初步实践.清华大学博士后出站报告.2002
    [78]韦有双,王飞,冯允成.虚拟现实与系统仿真[J].计算机仿真1999,16(2):63-66
    [79]赵建卫,唐硕.飞行器虚拟样机分布仿真实现[J].计算机仿真.2002,2:39-42
    [80]王立权,王晓东,陈德望,等.基于虚拟样机的控制系统仿真研究[J].哈尔滨工程大学学报,2000,6
    [81]李艳,刘少军.深海采矿系统虚拟样机及联动特性研究[J].系统仿真学报.2006,18(8):2192-2202
    [82]李芾,傅茂海.高速客车转向架发展模式[J].交通运输工程学报,2002,2(3):7-14.
    [83]傅小日,李金森,程冰等.我国铁路客车转向架技术发展概述[J],铁道车辆.2005,43(8):1-9
    [84]X. Lei, N. A. Noda. Analyses of Dynamic Response of Vehicle and Track Coupling System with Random Irregularity of Track Vertical Profile. Journal of Sound and Vibration,2002,258(1),147-165.
    [85]A1 Shaera, D. Duhamela, K. Saba, G. Foreta, L. Schmitt. Experimental settlement and dynamic behavior of a portion of ballasted railway track under high speed trains. Journal of Sound and Vibration,2008,316: 211-233.
    [86]J.T. Pearson, R.M. Goodall, T.X. Mei, G. Himmelstein. Active stability control strategies for a high speed bogie. Control Engineering Practice,2004, (12):1381-1391
    [87]S. N. Verichev, A. V. Metrikine. Instability of A Bogie Moving on a Flexibly Supported Timoshenko Beam. Journal of Sound and Vibration,2002,253(3): 653-668
    [88]翟婉明.车辆轨道耦合动力学(第三版)[M].科学出版社出版,北京,2007
    [89]金新灿,孙守光,陈光雄.车辆通过道岔时转向架结构系统振动特性研究[J].工程力学,2007,24(1):178-185
    [90]翟婉明,金学松,赵永翔.高速铁路工程中若干典型力学问题[J].力学进展,2010,40(4):358-374
    [91]肖守讷,阳光武,张卫华,赵永祥.基于谱密度函数的轨道随机不平顺仿真[J],2008,29(2):28-32
    [92]B H Park and K Y Lee. Bogie frame design in consideration of fatigue strength and weight reduction. Proc. IMechE Vol.220 Part F:J. Rail and Rapid Transit:201-206.
    [93]Jung-Seok Kim. Fatigue assessment of tilting bogie frame for Korean tilting train:Analysis and static tests. Engineering Failure Analysis,2006,13: 1326-1337
    [94]Goo, B.C. and Seo, J.W.. Probabilistic estimation of the fatigue life of an electric car bogie frame. Second International Conference on Physics and Chemistry,2004,1281-1286
    [95]肖守讷.高速列车关键部件频域疲劳可靠性理论研究[J].学术动态.2009(1):20-24
    [96]缪炳荣,肖守讷,张卫华,等.应用多体有限元混合法对复杂结构疲劳寿命仿真[J].机械强度.2008,30(1):137-143
    [97]王文静,刘志明,李强,缪龙秀,等.CRH2动车转向架构架疲劳强度分析[J],北京交通大学学报.2009,33(1):5-9
    [98]Jihua Hu. Metadata-driven Framework of Management of Information Resources in Railway Industry.2004, IEEE(0-7803-8742-2/04):2929-2932
    [99]丁彦闯,兆文忠.基于有限元仿真的转向架构架集成优化设计[J].大连交通大学学报.2008,29(5):64-67
    [100]闫开印,张卫华,丁国富,等.铁路机车车辆虚拟样机工程研究[J].铁道学报,2005,27(5):54-60
    [101]Weihua Zhang, Pingbo Wu, Xuejie Wu, Jing Zeng. An investigation into structural failures of Chinesehigh-speed trains. Engineering Failure Analysis, 2006,13:427-441
    [102]张红军,黄成荣,陈国胜,封全保.高速列车转向架技术[J],机车电传动,2004,3:1-4
    [103]李中凯.产品族可重构设计理论与方法及其在大型空分装备中的应用[D],浙江大学博士论文,2009
    [104]罗振璧,于学军.创新设计与管理(五):现代公理设计理论之一[J].世界制造技术与装备市场.2006(2):87-92
    [105]谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中科技大学出版社,2005.
    [106]GUPTA A P, HARBOE R, TABUCANON M T. Fuzzy multi-criteria decision making for crop area planning in Narmada river basin [J]. Agricultural Systems,2000,63:1-8.
    [107]任彬,张树有,等.基于模糊多属性决策的复杂产品配置方法[J],机械工程学报.2010,46(19):108-116..
    [108]Bellman R E and Zadeh L A. Decision making in a fuzzy environment [J]. Management Science,1970,17 (B):141-164
    [109]Ishibuchi H, Yamamoto N, Murata T and Tanaka H. Genetic algorithms and neighborhood search algorithm for fuzzy flowshop schedul2ing problems [J]. Fuzzy Sets and Systems,1994,67(1):81-100
    [110]Wang D. An inexact approach for linear programming with fuzzy objective and resource [J]. Fuzzy Sets and Systems,1997,89(1):61-68
    [111]Zimmermann H J. Fuzzy Set Theory and Its Applications [M], Hinghum: Kluwer-Nijhoff Pub.,1985
    [112]Lai Y J and Hwang C L. Fuzzy Mathematical Programming [M]. Berlin Springer Verlag,1992
    [113]Sakawa M and Yano H. An interactive fuzzy satisfacing method for multiobjective nonlinear programming problems with fuzzy parameters [J]. Fuzzy Sets and Systems,1989,30(10):221-238
    [114]Trappey J F C, et al. Fuzzy non-linear programming:theory and pplication in manufacturing [J]. Int. J. of Production Research,1988,26(5):957-985
    [115]赖一楠,张广玉,等.具有模糊约束的机械结构优化设计[J],哈尔滨理工大学学报.2002,7(5):76-86
    [116]JACQUES RAISON.法国TGV高速列车焊接转向架构架的设计[J].国外铁道车辆.1999,(4):16-19.
    [117]张斌瑜,赵洪伦.基于有限元分析的地铁车辆转向架构架优化设计[J].计算机辅助工程.2011,20(2):82-85
    [118]丁彦闯,兆文忠.基于有限元仿真的转向架构架集成优化设计[J],大连交通大学学报,2008,29(2):7-11
    [119]米彩盈,李芾,高速动力车转向架焊接构架优化设计[J].机车电传动. 2005(1):46-49
    [120]荆志勇,马思群.CRH5动车组转向架焊接构架优化设计[J].铁道机车车辆工人[J],2009(1):25-28
    [121]Yoji Akao. New product development and quality assurance-Quality Deployment System [J]. Standardization and Quality Control.1972, 25(2):7-14
    [122]崔勇,孙枫.基于质量功能配置的模糊设计方案优选模型[J].计算机集成制造系统[J].2006,12(2):50-54
    [123]苏强,陈剑.质量管理层次结构模型[J].清华大学学报(自然科学版).1999,39(10):124-127
    [124]瞿丽.质量功能展开技术与其应用综述[J].管理工程学报.2000,14(1):52-60
    [125]American Supplier institute. Quality function deployment for service implementation manual[M]. Dearborn, MI:ASI Press,1992
    [126]Cohen L.. Quality function deployment-how to make QDF for you M]. Addison-Wesley Publishing Company, Reading, MA,1995.
    [127]Akao Y. Quality Function Deployment:Integrating Customer Requirements into Product Design [M]. Cambridge:Productivity Press,1990.
    [128]Day R G. Quality Function Deployment:Linking a Company with its Customers[M]. Milwaukee, WI:ASQC Quality Press,1993.
    [129]王日君,张进生,葛培琪等,面向设计的产品模块划分方法[J].武汉理工大学学报.2010,32(1):174-178
    [130]钟毅芳,陈柏鸿,王周宏,著.多学科综合优化设计原理与方法[M].武昌:华中科技大学出版社,2007
    [131]陈柏鸿,刘继红,钟毅芳等.多领域优化设计中耦合因素的一种协调方法[J].机械科学与技术.2000,19(6):872-876
    [132]任尊松.车辆系统动力学[M],中国铁道出版社,北京:2007
    [133]阳光武,机车车辆零部件的疲劳寿命仿真[D],西南交通大学博士论文,2005
    [134]崔晓芳,马君,兆文忠.高速动力车转向架构架焊接变形的数值分析研究[J].铁道学报.2004,26(3):31-35
    [135]王文静,刘志明,李强,缪龙秀.CRH2动车转向架构架疲劳强度分析[J].北京交通大学学报.2009,33(1):5-9
    [136]缪龙秀,孙守光,刘志明,等.提速客车转向架焊接构架应力谱的试验研 究[J].铁道车辆.1998,36(12):30-34
    [137]秦国栋,刘志明,崔二光,缪龙秀,等.中国铁道科学[J].2004,25(1):46-51
    [138]侯亮.机械产品广义模块化设计理论研究及其在液压机产品中的应用[D],天津大学博士论文,2002
    [139]高卫国,徐燕申,陈永亮,章青.广义模块化设计原理及方法[J].机械工程学报.2007,43(6):48-53
    [140]刘溪涓,可重构产品设计理论及其关键技术研究[D],上海交通大学博士论文,2002.
    [141]Tseng M M, Jiao J X. Case-based Evolutionary Design for Mass Customization [J]. Computers Ind. Engnd.,1997,33(1):319-323
    [142]Wang Shiwei, Tan Jianrong, Zhang Shuyou, et al. Case-based Product Configuration and Reuse in Mass Customization [J]. Chinese Journal of Mechanical Engineering.2004,17(2):233-236
    [143]王世伟,谭建荣,张树有,等.产品配置模型的演化与再配置[J].计算机辅助设计与图形学学报,2005,17(2):347-352
    [144]凌卫青,赵艾萍,谢友柏.基于实例的产品设计知识获取方法及实现[J].计算机辅助设计与图形学学报.2002,14(11):1014-1019
    [145]刘晓冰,袁长峰,邢英杰,等.基于类和特征的产品配置建模[J].计算机集成制造系统.2005,11(8):1057-1063
    [146]李长春.机械产品虚拟装配信息建模的研究[D],苏州大学硕士论文,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700