用户名: 密码: 验证码:
裂殖酵母ING家族蛋白Png1p在DNA损伤应答过程中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ING家族蛋白(INhibitor of Growth)作为一类肿瘤生长抑制因子,在几乎所有的真核细胞中都含有保守的同源蛋白,并广泛参与细胞凋亡,衰老,细胞周期调控,DNA损伤应答,细胞分化,肿瘤生长,激素信号传递,基因表达和染色质重构等多种过程。对ING家族蛋白参与DNA损伤修复的过程已经进行了许多的研究,但是由于ING家族蛋白参与DNA损伤修复的分子机制比较复杂,对于ING家族蛋白在DNA损伤信号传导通路上发挥的具体功能至今还未能完全有效解析。
     裂殖酵母细胞含有两个ING家族蛋白:Png1p和Png2p。至今为止,在裂殖酵母细胞中还没有关于ING家族蛋白参与DNA损伤应答的报道。同源进化分析表明:Png1p和Png2p虽然同属ING家族,但两者位于系统发生树的不同分支上。进一步,我们通过同源重组的方法成功地敲除了两个基因的ORF,获得了突变体Δpng1和Δpng2。功能分析表明PNG1和PNG2在细胞生长和DNA损伤应答过程中执行了不同功能。
     细胞生长和流式细胞术分析表明PNG1基因不仅是细胞正常生长所必需的,同时也是DNA损伤修复所必需的,PNG1的缺失使细胞阻滞在了S期。酵母双杂交,Pull-down实验,Co-IP实验,荧光共定位实验表明Png1p与组蛋白乙酰转移酶Mst1p密切相关,但两者可能没有直接的相互作用。TSA拯救实验和western blot检测表明Png1p参与了组蛋白H4的乙酰化修饰。PNG1基因的缺失使DNA损伤条件下裂殖酵母H4K5、K8、K12位的乙酰化水平下降,并且这种乙酰化程度的下调直接抑制了DNA损伤修复相关基因(如RAD22,ASF1,SPT3),染色质重构相关基因(如SNF5),细胞周期相关基因(如CDC20, CDC22, ENG1,AGN1)的表达。更进一步的研究发现,在PNG1缺失突变体中分别过量表达DNA损伤修复核心基因RAD22可以拯救PNG1缺失带来的DNA损伤敏感的表型。因此,PNG1很可能通过RAD22途径参与了DNA损伤应答过程。
     DREB家族转录因子是一类参与调控植物体对干旱应答的重要的调节因子。这类转录因子可以特异性地结合到C-repeat/DRE顺式元件上(核心序列为A/GCCGAC),并以一种不依赖于ABA的方式,调控下游许多低温或干旱诱导基因的表达。在我们的研究中,我们在水稻中分离了3个新的水稻中的DREB家族转录因子:OsDREB1E、OsDREB1G和OsDREB2B。这三者与拟南芥中的DREB家族转录因子具有序列和结构上的高度同源性。酵母单杂交试验表明这三者可以特异性地结合到C-repeat/DRE顺式元件上。为了研究这三个基因在水稻中的功能,我们通过农杆菌介导的转基因方法将这三个基因在水稻中过量表达。对转基因水稻植株的分析表明,过表达OsDREB1G和OsDREB2B可以显著提高水稻对于干旱的耐受能力,但是过表达OsDREB1E只能稍微提高水稻对于干旱的耐受能力。这一实验结果表明,水稻中不同的DREB基因可能通过不同的方式参与干旱等压力应答的途径。
ING (INhibitor of Growth) tumor suppressor proteins are very important tumor inhibitors in species ranging from yeast to humans, and function in the process of cell apoptosis, senescence, cell cycle regulation, DNA damage response, cell proliferation, tumor growth, hormone signaling, gene transcription, chromatin remodeling and genome integrity. There are many studies about how ING family proteins function in the DNA damage response pathway. However, the molecular mechnism is so complicated that the blueprint of how ING family proteins function in the DNA damage signaling is still not very clear.
     There are two homolog proteins in fission yeast, Png1p and Png2p. Until now, there is no report about how ING family proteins function in the DNA damage pathway in fission yeast. Phylogenic assay indicates although Png1p and Png2p belong to the same ING family, but they located at different branch. Here, we knock out PNG1 and PNG2 respectively. The functional analysis reveals that Png1p and Png2p have different functions in the process of cell growth and DNA damage reponse.
     Cell growth and flow cytometry assay show PNG1 is not only required for normal cell growth, but also for DNA damage response.△png1 mutants get an intra-S-phase cell cycle arrest under DNA-damage induced conditions and are sensitive to DNA damage agents. Yeast-two-hybrid assay, Pull-down assay, Co-IP and fluorescent location assay indicate Png1p is collaborated with the fission yeast histone acetyltransferase Mst1p, but they might not have direct interaction。TSA rescue and western blot assay show Png1p is required for histone H4 acetylation at K5、K8、K12. The decrease of histone H4 acetylation at K5、K8、K12 leads to the down-regulation of many genes'expression, including DNA repair related genes (such as RAD22, ASF1, SPT3), chromatin remodeling related genes(such as SNF5), cell cycle related genes (such as CDC20, CDC22, ENG1, AGN1).
     Further study shows over-expression of the DNA damage repair central gene RAD22 can recuse the DNA damage sensitivity in the△png1 cells, respectively. So, PNG1 might function in the DNA damage response pathway through RAD22.
     The DREB transcription factors, which specifically interact with C-repeat/DRE (A/GCCGAC), play an important role in plant abiotic stress tolerance by controlling the expression of many cold or/and drought-inducible genes in an ABA-independent pathway. In our study, we have isolated three novel rice DREB genes, OsDREB1E, OsDREB1G, and OsDREB2B, which are homologous to Arabidopsis DREB genes. The yeast one-hybrid assay indicated that OsDREB1E, OsDREB1G, and OsDREB2B can specifically bind to the C-repeat/DRE element. To elucidate the function of respective OsDREB genes, we have stably introduced these to rice by agrobacterium-mediated transformation. Transgenic rice plants analysis revealed that over-expression of OsDREB1G and OsDREB2B in rice significantly improved their tolerance to water deficit stress, while over-expression of OsDREB1E could only slightly improved the tolerance to water deficit stress, suggesting that the OsDREBs might participate in the stress response pathway in different manners.
引文
[1]. Bertram, C. and R. Hass. Cellular responses to reactive oxygen species-induced DNA damage and aging. Biological Chemistry,2008,389(3): 211-220.
    [2]. Altieri, F., et al. DNA damage and repair:From molecular mechanisms to health implications. Antioxidants & Redox Signaling,2008,10(5):891-937.
    [3]. Rouse, J. and S.P. Jackson. Interfaces between the detection, signaling, and repair of DNA damage. Science,2002,297(5581):547-551.
    [4]. Wood, V., et al. The genome sequence of Schizosaccharomyces pombe. Nature, 2002,415(6874):871-880.
    [5]. Russell, M., et al. Grow-ING, Age-ING and Die-ING:ING proteins link cancer, senescence and apoptosis. Exp Cell Res,2006,312(7):951-961.
    [6]. Doyon, Y., et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell,2006,21(1):51-64.
    [7]. Shi, X.B. and O. Gozani. The fellowships of the INGs. J Cell Biochem,2005, 96(6):1127-1136.
    [8]. He, G.H.Y., et al. Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol,2005,22(1):104-116.
    [9]. Pena, P.V., et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature,2006,442(7098):100-103.
    [10]. Shi, X.B., et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature,2006,442(7098):96-99.
    [11]. Wysocka, J., et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature,2006,442(7098):86-90.
    [12]. Pandita, T.K. and C. Richardson. Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Research,2009,37(5): 1363-1377.
    [13]. van Attikum, H. and S.M. Gasser. Crosstalk between histone modifications during the DNA damage response. Trends in Cell Biology,2009,19(5): 207-217.
    [14]. Kadosh, D. and K. Struhl. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Molecul ar and Cellular Biology,1998,18(9):5121-5127.
    [15]. Altaf, M., N. Saksouk, and J. Cote. Histone modifications in response to DNA damage. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis,2007,618(1-2):81-90.
    [16]. Ikura, T., et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell,2000,102(4):463-473.
    [17]. Jenuwein, T. and C.D. Allis. Translating the histone code. Science,2001, 293(5532):1074-1080.
    [18]. Doyon, Y., et al. Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Molecular and Cellular Biology,2004,24(5):1884-1896.
    [19]. Martin, D.G.E., et al. The Ynglp plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3. Molecul ar and Cellular Biology,2006,26(21):7871-7879.
    [20]. Marmorstein, R. Structure of histone acetyltransferases. Journal of Molecular Biology,2001,311(3):433-444.
    [21]. Pile, L.A., E.M. Schlag, and D.A. Wassarman. The SIN3/RPD3 deacetylase complex is essential for G(2) phase cell cycle progression and regulation of SMRTER corepressor levels. Molecular and Cellular Biology,2002,22(14): 4965-4976.
    [22]. Nicolas, E., et al. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat Struct Mol Biol,2007, 14(5):372-380.
    [23]. Choy, J.S., et al. Yng2p-dependent NuA4 histone H4 acetylation activity is required for mitotic and meiotic progression. Journal of Biological Chemistry, 2001,276(47):43653-43662.
    [24]. Gregan, J., et al. High-throughput knockout screen in fission yeast. Nature Protocols,2006,1(5):2457-2464.
    [25]. Keeney, J.B. and J.D. Boeke. Efficient Targeted Integration at Leul-32 and Ura4-294 in Schizosaccharomyces-Pombe. Genetics,1994,136(3):849-856.
    [26]. Moreno, M.B., A. Duran, and J.C. Ribas. A family of multifunctional thiamine-repressible expression vectors for fission yeast. Yeast,2000,16(9): 861-872.
    [27]. Forsburg, S.L. and N. Rhind. Basic methods for fission yeast. Yeast,2006, 23(3):173-183.
    [28]. Sabatinos, S.A. and S.L. Forsburg, Measuring DNA Content by Flow Cytometry in Fission Yeast, in Methods in Molecular Biology.2009, Humana Press Inc.449-461.
    [29]. Pidoux, A., B. Mellone, and R. Allshire. Analysis of chromatin in fission yeast. Methods,2004,33(3):252-259.
    [30]. Lyne, R., et al. Whole-genome microarrays of fission yeast:characteristics, accuracy, reproducibility, and processing of array data. Bmc Genomics,2003, 4.
    [31]. Garkavtsev, I., et al. Suppression of the novel growth inhibitor p33(ING1) promotes neoplastic transformation. Nature Genetics,1996,14(4):415-420.
    [32]. Lazzaro, F., et al. Checkpoint mechanisms at the intersection between DNA damage and repair. DNA Repair,2009,8(9):1055-1067.
    [33]. Oustrin, M.L., et al. Effect of Phenylarsine Oxide on the Fission Yeast Schizosaccharomyces-Pombe Cell-Cycle. Biochimie,1995,77(4):279-287.
    [34]. Choy, J.S. and S.J. Kron. NuA4 subunit yng2 function in intra-S-phase DNA damage response. Molecular and Cellular Biology,2002,22(23):8215-8225.
    [35]. Gomez, E.B., et al. Schizosaccharomyces pombe histone acetyltransferase Mstl (KAT5) is an essential protein required for damage response and chromosome segregation. Genetics,2008,179(2):757-771.
    [36]. Doe, C.L., et al. DNA repair by a Rad22-Mus81-dependent pathway that is independent of Rhp51. Nucleic Acids Research,2004,32(18):5570-5581.
    [37]. Shi, X.B. and O. Gozani. The fellowships of the INGs. Journal of Cellular Biochemistry,2005,96(6):1127-1136.
    [38]. He, GH.Y, et al. Phylogenetic analysis of the ING family of PHD finger proteins. Molecular Biology and Evolution,2005,22(1):104-116.
    [39]. Nicolas, E., et al. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nature Structural & Molecular Biology,2007,14(5):372-380.
    [40]. Kim, W.J., et al. Rad22 protein, a Rad52 homologue in Schizosaccharomyces pombe, binds to DNA double-strand breaks. J Biol Chem,2000,275(45): 35607-35611.
    [41]. Martin-Cuadrado, A.B., et al. The Schizosaccharomyces pombe endo-1,3-beta-glucanase Engl contains a novel carbohydrate binding module required for septum localization. Molecular Microbiology,2008,69(1): 188-200.
    [42]. Dekker, N., et al. Role of the alpha-glucanase Agnlp in fission-yeast cell separation. Mol Biol Cell,2004,15(8):3903-3914.
    [43]. Sugino, A., et al. DNA polymerase epsilon encoded by cdc20(+) is required for chromosomal DNA replication in the fission yeast Schizosaccharomyces pombe. Genes to Cells,1998,3(2):99-110.
    [44]. Fernandez Sarabia, M.J., et al. The cell cycle genes cdc22+and suc22+of the fission yeast Schizosaccharomyces pombe encode the large and small subunits of ribonucleotide reductase. Mol Gen Genet,1993,238(1-2):241-51.
    [45]. Recht, J., et al. Histone chaperone Asfl is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proceedings of the National Academy of Sciences of the United States of America,2006,103(18):6988-6993.
    [46]. Monahan, B.J., et al. Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat Struct Mol Biol,2008,15(8):873-880.
    [47]. Minoda, A., et al. BAF53/Arp4 homolog Alp5 in fission yeast is required for histone H4 acetylation, kinetochore-spindle attachment, and gene silencing at centromere. Mol Bio Cell,2005,16(1):316-327.
    [1]. Ingram, J. and D. Bartels. The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology,1996, 47:377-403.
    [2]. Shinozaki, K., K. Yamaguchi-Shinozaki, and M. Seki. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology,2003,6(5):410-417.
    [3]. Yamaguchishinozaki, K. and K. Shinozaki. A Novel Cis-Acting Element in an Arabidopsis Gene Is Involved in Responsiveness to Drought, Low-Temperature, or High-Salt Stress. Plant Cell,1994,6(2):251-264.
    [4]. Stockinger, E.J., S.J. Gilmour, and M.F. Thomashow. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the United States of America,1997, 94(3):1035-1040.
    [5]. Shinozaki, K. and K. Yamaguchi-Shinozaki. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology,2000,3(3): 217-223.
    [6]. Liu, Q., et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell,1998,10(8):1391-1406.
    [7]. Medina, J., et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology,1999,119(2):463-469.
    [8]. Dubouzet, J.G., et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant Journal,2003,33(4):751-763.
    [9]. Tian, X.H., et al. OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration-responsive element. Journal of Integrative Plant Biology,2005,47(4):467-476.
    [10]. James, V.A., I. Neibaur, and F. Altpeter. Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Research,2008,17(1):93-104.
    [11]. Jaglo, K.R., et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology,2001,127(3):910-917.
    [12]. Shen, Y.G., et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theoretical and Applied Genetics,2003,106(5):923-930.
    [13]. Xue, G.P. An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif. Biochimica Et Biophysica Acta-Gene Structure and Expression,2002, 1577(1):63-72.
    [14]. Qin, F., et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant and Cell.Physiology,2004,45(8):1042-1052.
    [15]. Pellegrineschi, A., et al. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome,2004,47(3):493-500.
    [16]. Kim, H.J., et al. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nature Genetics,2004,36(2):167-171.
    [17]. Agarwal, P.K., et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports,2006,25(12):1263-1274.
    [18]. Riechmann, J.L. and E.M. Meyerowitz. The AP2/EREBP family of plant transcription factors. Biological Chemistry,1998,379(6):633-646.
    [19]. Hsieh, T.H., et al. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiology,2002, 130(2):618-626.
    [20]. Wang, Q.Y., et al. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology,2008,67(6):589-602.
    [1]. Neilson, C., et al. Chromatin modifications and their function. Febs Journal, 2006,273:22-22.
    [2]. Brownell, J.E., et al. Tetrahymena histone acetyltransferase A:A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell,1996,84(6): 843-851.
    [3]. Khan, A.U. and S. Krishnamurthy. Histone modifications as key regulators of transcription. Frontiers in Bioscience,2005,10:866-872.
    [4]. Turner, B.M. Histone acetylation and an epigenetic code. Bioessays,2000, 22(9):836-845.
    [5]. Jenuwein, T. and C.D. Allis. Translating the histone code. Science,2001, 293(5532):1074-1080.
    [6]. Shi, Y.J., et al. Histone demethylation mediated by the nuclear arnine oxidase homolog LSD1. Cell,2004,119(7):941-953.
    [7]. Rando, O.J. Global patterns of histone modifications. Current Opinion in Genetics & Development,2007,17(2):94-99.
    [8]. Avvakumov, N. and J. Cote. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene,2007,26(37):5395-5407.
    [9]. Grant, P.A. and S.L. Berger. Histone acetyltransferase complexes. Seminars in Cell & Developmental Biology,1999,10(2):169-177.
    [10]. Loury, R. and P. Sassone-Corsi, Analysis of histone phosphorylation:Coupling intracellular signaling to chromatin remodeling, in Chromatin and Chromatin Remodeling Enzymes, Pt C.2004, Academic Press Inc:San Diego. p.197-212.
    [11]. Yang, H.B. and C.A. Mizzen. The multiple facets of histone H4-lysine 20 methylation. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire, 2009,87(1):151-161.
    [12]. Kouzarides, T. Chromatin modifications and their function. Cell,2007,128(4): 693-705.
    [13]. Weake, V.M. and J.L. Workman. Histone ubiquitination:Triggering gene activity. Molecular Cell,2008,29(6):653-663.
    [14]. Devi, B.J. and R.N. Sharan. Progressive reduction in poly-ADP-ribosylation of histone proteins during Dalton's lymphoma induced ascites tumorigenesis in mice. Cancer Letters,2006,238(1):135-141.
    [15]. Aubin, R.J., et al. Hyper(Adp-Ribosyl)Ation of Histone H-1. Canadian Journal of Biochemistry,1982,60(12):1085-1094.
    [16]. Imschenetzky, M., M. Montecino, and M. Puchi. Poly(Adp-Ribosylation) of Atypical Cs Histone Variants Is Required for the Progression of S-Phase in Early Embryos of Sea-Urchins. Journal of Cellular Biochemistry,1991,46(3): 234-241.
    [17]. Rouse, J. and S.P. Jackson. Interfaces between the detection, signaling, and repair of DNA damage. Science,2002,297(5581):547-551.
    [18]. Altaf, M., N. Saksouk, and J. Cote. Histone modifications in response to DNA damage. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis,2007,618(1-2):81-90.
    [19]. Foster, E.R. and J.A. Downs. Histone H2A phosphorylation in DNA double-strand break repair. Febs Journal,2005,272(13):3231-3240.
    [20]. Fillingham, J., M.C. Keogh, and N.J. Krogan. gamma H2AX and its role in DNA double-strand break repair. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire,2006,84(4):568-577.
    [21]. Morrison, A.J., et al. Mecl/Tell phosphorylation of the INO80 Chromatin Remodeling Complex Influences DNA damage checkpoint responses. Cell, 2007,130(3):499-511.
    [22]. Wu, W.H., et al. N Terminus of Swrl Binds to Histone H2AZ and Provides a Platform for Subunit Assembly in the Chromatin Remodeling Complex. Journal of Biological Chemistry,2009,284(10):6200-6207.
    [23]. Doyon, Y., et al. Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Molecular and Cellular Biology,2004,24(5):1884-1896.
    [24]. Sterner, D.E. and S.L. Berger. Acetylation of histones and transcription-related factors. Microbiology and Molecular Biology Reviews,2000,64(2):435-459.
    [25]. Selleck, W., et al. The Saccharomyces cerevisiae Piccolo NuA4 histone acetyltransferase complex requires the enhancer of polycomb A domain and chromodomain to acetylate nucleosomes. Molecular and Cellular Biology, 2005,25(13):5535-5542.
    [26]. Galarneau, L., et al. Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Molecular Cell,2000,5(6):927-937.
    [27]. Verdone, L., M. Caserta, and E. Di Mauro. Role of histone acetylation in the control of gene expression. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire,2005,83(3):344-353.
    [28]. Downs, J.A., et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Molecular Cell,2004, 16(6):979-990.
    [29]. Wysocki, R., et al. Role of Dotl-dependent histone H3 methylation in G(1) and S phase DNA damage checkpoint functions of Rad9. Molecular and Cellular Biology,2005,25(19):8430-8443.
    [30]. Giannattasio, M., et al. The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Brel and H3 methylation by Dotl. Journal of Biological Chemistry,2005,280(11):9879-9886.
    [31]. Sanders, S.L., et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell,2004,119(5):603-614.
    [32]. Greeson, N.T., et al. Di-methyl H4 Lysine 20 Targets the Checkpoint Protein Crb2 to Sites of DNA Damage. Journal of Biological Chemistry,2008, 283(48):33168-33174.
    [33]. Pile, L.A., E.M. Schlag, and D.A. Wassarman. The SIN3/RPD3 deacetylase complex is essential for G(2) phase cell cycle progression and regulation of SMRTER corepressor levels. Molecular and Cellular Biology,2002,22(14): 4965-4976.
    [34]. Bernstein, B.E., J.K. Tong, and S.L. Schreiber. Genomewide studies of histone deacetylase function in yeast. Proceedings of the National Academy of Sciences of the United States of America,2000,97(25):13708-13713.
    [35]. Kadosh, D. and K. Struhl. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Molecular and Cellular Biology,1998,18(9):5121-5127.
    [36]. Ozdemir, A., et al. Histone H3 lysine 56 acetylation-A new twist in the chromosome cycle. Cell Cycle,2006,5(22):2602-2608.
    [37]. Recht, J., et al. Histone chaperone Asfl is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proceedings of the National Academy of Sciences of the United States of America,2006,103(18):6988-6993.
    [38]. Xhemalce, B., et al. Regulation of histone H3 lysine 56 acetylation in
    Schizosaccharomyces pombe. Journal of Biological Chemistry,2007,282(20): 15040-15047.
    [39]. Kaplan, T., et al. Cell Cycle-and Chaperone-Mediated Regulation of H3K56ac Incorporation in Yeast. Plos Genetics,2008,4(11).
    [40]. Kim, J.A. and J.E. Haber. Chromatin assembly factors Asfl and CAF-1 have overlapping roles in deactivating the DNA damage checkpoint when DNA repair is complete. Proceedings of the National Academy of Sciences of the United States of America,2009,106(4):1151-1156.
    [41]. Das, C., et al. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature,2009,459(7243):113-U123.
    [42]. Cheung, W.L., et al. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase Ⅱ in S-cerevisiae. Current Biology,2005,15(7): 656-660.
    [43]. Krishnamoorthy, T., et al. Phosphorylation of histone H4 Serl regulates sporul ation in yeast and is conserved in fly and mouse spermatogenesis. Genes & Development,2006,20(18):2580-2592.
    [44]. Yang, B., A. Miller, and A.L. Kirchmaier. HST3/HST4-dependent Deacetylation of Lysine 56 of Histone H3 in Silent Chromatin. Molecular Biology of the Cell,2008,19(11):4993-5005.
    [45]. Downs, J.A. Histone H3 K56 acetylation, chromatin assembly, and the DNA damage checkpoint. DNA Repair,2008,7(12):2020-2024.
    [46]. Shogren-Knaak, M., et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science,2006,311(5762):844-847.
    [47]. Ahn, S.H., et al. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell,2005, 120(1):25-36.
    [48]. Shi, X.B. and O. Gozani. The fellowships of the INGs. Journal of Cellular Biochemistry,2005,96(6):1127-1136.
    [49]. Martin, D.GE., et al. The Ynglp plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3. Molecular and Cellular Biology,2006,26(21):7871-7879.
    [50]. Winston, F. and C.D. Allis. The bromodomain:a chromatin-targeting module? Nature Structural Biology,1999,6(7):601-604.
    [51]. Marmorstein, R. Structure of histone acetyltransferases. Journal of Molecular Biology,2001,311(3):433-444.
    [52]. Filetici, P., P. Ornaghi, and P. Ballario. The bromodomain:A chromatin browser? Frontiers in Bioscience,2001,6:D866-D876.
    [53]. Zeng, L. and M.M. Zhou. Bromodomain:an acetyl-lysine binding domain. Febs Letters,2002,513(1):124-128.
    [54]. Thomas, T. and A.K. Voss. The diverse biological roles of MYST histone acetyltransferase family proteins. Cell Cycle,2007,6(6):696-704.
    [55]. Wixon, J. and V. Wood. Tools and resources for Sz. pombe:a report from the 2006 European Fission Yeast Meeting. Yeast,2006,23(13):901-903.
    [56]. Wood, V., et al. The genome sequence of Schizosaccharomyces pombe. Nature, 2002,415(6874):871-880.
    [57]. Deshpande, G.P., et al. Screening a genome-wide S. pombe deletion library identifies novel genes and pathways involved in genome stability maintenance. DNA Repair,2009,8(5):672-679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700