用户名: 密码: 验证码:
日光温室保温性能的试验研究及小气候模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日光温室是具有中国特色、面向广大农民用户的一种新型温室,其中节能型日光温室可以实现冬季不加热生产,已在我国华北、东北南部和西北地区大面积应用推广。温室引入要考虑本地区的气候特点,结合当地气候资源优势对温室结构进行改造,使其更好适应当地生产,如果盲目照搬外地温室结构及配套技术则会引起能源浪费,生产效益低下。
     江苏丰县引入山东寿光地区的翼优改进型日光温室,生产中在冬季连阴低温天气时室内作物发生冻害现象。针对这一问题,作者采用试验方法测定温室内外温度、光照、室内地温等环境因子,初步了解当地温室的采光、保温状况。数据分析显示,由于温室薄膜不清洁、灰尘多,透光率下降,使温室阴天的采光性较差,且阴天日间室内地温偏低,影响作物生长;晴天温室夜间保温性比阴天的差,室内最低温度在5℃左右,低于作物生长的下限温度;温室的生产管理较差,通风不及时造成室内日间最高温度超出35℃,远远高出作物生长的上限温度,同时保温被揭盖时间没有统一标准,造成揭盖过早或过晚,影响作物的光合作用和温室的夜间保温性。
     根据当地温室状况,结合日光温室保温原理,作者采取了在后墙内侧加PPC保温泡沫板、在温室前屋面底脚挖造防寒沟、选择保温性能强的保温被、确定适宜的保温被揭盖时间、加强生产管理(清洗薄膜、适时通风)等措施。试验表明改进措施效果明显,室内温、光环境有了很大改善,温室晴天透光率提高了20%左右,阴天提高了6%~10%,室内最低温度提高了4~6℃,且室内最高温度不超过28℃,温度变化在作物生长所需范围内。作者根据热平衡及多元回归推导出确定保温被揭盖时间的数学公式,改变了以往根据经验揭盖保温被的状况,给出了具体的揭盖时间,最大限度地增加了作物光照时数,提高了温室夜间保温性能
     为分析当地温室的改进效果及在线确定保温被揭盖时间,作者编制了丰县日光温室小气候模拟程序。该程序采用MatLab6.1编写,主要面向温室生产管理者和技术人员,既可以用来向参观者展示温室的性能,也可以指导管理者进行实际生产。程序主要演示日光温室的保温性、透光性及保温被揭盖时间的计算,采用图形显示,简洁直观,可以根据用户需要输入输出,交互性强。
The solar greenhouse is a kind of new-type greenhouse with distinct Chinese characteristics, which is used by the masses of peasant's users. The energy-saving solar greenhouse can work naturally without heating in winter and has popularized at North, Northwest and Northeast in China. Greenhouse introduction should consider the weather characteristics of local area and combine local weather advantages with the structure of the greenhouse to meet local production. If unsuitable greenhouse structure and relevant technology are introduced blindly, they can cause energy waste and bring low productivity effect.
    The improving Yiyou type solar greenhouse of Shouguang area in Shandong was introduced totally to the area of Fengxian and brought indoor crops freeze injury in a continuous cloudy weather with low temperature. To resolve this problem, the author determined greenhouse internal and external temperature, illumination, indoor soil temperature, etc. environmental factors via experiment to understand the daylighting and heat preservation of local greenhouses. The data analysis shows light transmittance of membrane drops because of much dust and accordingly the daylighting quality of local greenhouses on cloudy day is relatively bad. The soil temperature indoors is low in the daytime on cloudy day, influencing crops to grow. The heat preservation at fine night is worse than that at the cloudy night. The minimum temperature indoors is about 5℃, lower than the temperature of crops' growing lower limit. The production management of local greenhouses is relatively bad. Because of unventilating in time, the maximum tem
    perature indoors goes beyond 35℃ in the daytime, far higher than the temperature of crops' growing upper limit. At the same time cover or take off heat curtain has no unity of standard, too early or too late will influence heat preservation of greenhouse at night and the photosynthesis of the crop.
    According to the local greenhouses' current situation and the heat preservation principle of solar greenhouse, the author took measures such as adding PPC foam board to back wall, digging cold-proof ditch, choosing heat curtain with strong warm performance, determining suitable time to cover or take off covering curtain, strengthening production
    
    
    management, etc. Experiments had been done to verify the result of above measures, indicating that warm and light environment indoors has been improved obviously. The result shows light transmittance of local greenhouses has been improved by about 20% on sunny day and by 6% to 10% on cloudy day. The minimum temperature indoors has been improved by 4~6 癈 and the maximum temperature indoors does not exceed 28 癈. The temperature change is in the crop necessary range. According energy balance and plural return, author derived the math formula to determine suitable time of covering or taking off heat curtain, changing the method used to determine time by experience in the past. Concrete time given by math formula can increase the photosynthesis of the crop furthest and improve heat preservation of greenhouse at night.
    In order to demonstrate the improvement result of local greenhouses and determine time to cover or take off heat curtain online, the author developed the micro-climate simulation program of solar greenhouse in Fengxian. This program, which is written by MatLab 6.1, mainly facing the production administrator and technician of greenhouse, can be used to not only show the performance of greenhouse to the visitor, but also instruct the administrator to work actually. The program mainly demonstrates heat preservation, daylighting of solar greenhouse and the calculation of covering or taking off heat curtain time. It adopts the graphical display, directly perceived through the senses succinctly. According to the needs of user input and output, the interaction is strong.
引文
[1] 陈贵林.我国设施农业的现状与展望.农业.1999(1):23-25
    [2] D.L.Critten, B.J.Bailey. A review of greenhouse engineering developments during the 1990s. Agricultural and Forest Meteorology, 112(2002): 1-22
    [3] Kurata K. Effects of greenhouse orientation and latitude on direct solar radiation transmissivity. Trans. of the Chinese Society ofAgric. Engg 1993, 9(2): 52-56
    [4] Malquori L, Pellegrini P, Tesi R. Determination of solar energy transmitted by different greenhouse geometries. ColtureProtette 1993, 22(5): 81-5
    [5] Mathala J.Gupta, Pitam Chandra. Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control. Energy 27(2002): 777-794
    [6] Chandra P, Srivastava PC. Maheshwari RC. Solar greenhouse design consideration. In: ISAE XIX Annual Convention 1982 held at College of Tech. and Agri. Engg, University of Udaipur.
    [7] Brun R. Ville-o-de. Orientation of greenhouses in the Mediterranean Zone. Acta Horticulturae 1974, 42: 43-54
    [8] Chandra P. Predicting the effects of greenhouse orientation and insulation on energy conservation. Unpublished M.Sc.thesis.department of Agricultural Engineering University of Manitoba,Winnipeg, Manitoba, Canada, 1976.
    [9] Kurata K, Quan Z, Nunomura O. Optimal shapes of east-west oriented single-span tunnels with respect to direct light transmissivity. Journal of Agric. Engng. Res 1991, 48(2): 89-100
    [10] Hartz TK, Lewis AJ. Reflective wall reduces energy consumption. American Vegetable Grower 1982, 30(2): 22-4
    [11] Tiwari GN, Dhiman NK. Periodic theory of a greenhouse. Energy Convers and Manage 1985, 25(2): 17-33
    [12] Pirard G, Dellour J, Nijskens J. Controlled operation of thermal screens in greenhouses. Plasticulture 1994, 103:11-22
    [13] C handra P, Albright LD. Analytical determination of the effect on greenhouse heating requirements of using night curtains. Trans of Amer Soc Agric Eng 1980, 23(4): 994-1000.
    [14] Newell A. Improved production with new plastics and fabrics. Australian Horticulture 1986, 84(3): 48-52
    [15] Meyer J. The influence of thermal screens on energy consumption of greenhouse. Garten Dauwissen Schaft 1984, 49(2): 74-6
    [16] Coulon G, Wacquant C. Greenhouse climate management. Infos-CTIFL 1984, 4:13-23
    
    
    [17] Jolliet O, Bourgeosis M, Danloy L, Gay JB, Mantilleri S, Moncousin C. Test of a greenhouse using low temperature heating. Acta Horticulturae 1985, 170:219-25
    [18] Abak KA, Bascetincelik N, Baytorun O, Alluntas HH, Ozlurk KE, Cockshulled Y, Tuzel Gul A. Influence of double plastic cover and thermal screens on greenhouse temperature, yield and quality of tomato.Acta Horticuiturae 1994, 366:149-54
    [19] Landgren B. Aging tests with covering materials for greenhouse. Acta Horticulturae 1985, 170: 119-25
    [20] Mielsch W. Development and production of new energy efficient greenhouses, In: Proceedings of a conference held in Dresden-GDR, 13-15 May, 1985
    [21] Gonzales D, Hanan JJ. Effect of radiation, wind velocity and temperature differential on natural gas consumption of greenhouses: Preliminary report, Research Bulletin no. 454: 1-4, Colorado Greenhouse Growers' Association, 1988
    [22] Christensen MH. Production and energy consumption in various types of greenhouses, Gartner-Tidende 1986, 102(24): 782-3
    [23] 潘文维等.我国温室产业现状及发展建议.北方园艺.2002(3):4-5
    [24] 张玄兵等.我国温室发展概况.北方园艺.2001(2):1-2
    [25] Chen Duansheng. Theory and Practice of Energy-Saving Solar Greenhouse in China.. Transactions of the CSAE, 2001, 17(1): 22-26
    [26] 宋敏丽,王俊花.高效节能日光温室的结构.太原师范专科学校学报.2002(1):26-27
    [27] 邢禹贤等.单坡面塑料日光温室优化结构模拟设计——日光温室采光优化初探.山东农业大学学报.1997,28(2):97-101
    [28] 王静,崔庆法等.不同结构日光温室光环境及补光研究.农业工程学报,2002,18(4):86-89
    [29] 周长吉.温室维护结构——墙体保温性能.设施园艺,1999(4):7
    [30] 林维申.一个好温室的结构.山东蔬菜.1998(3):8-11
    [31] 周新群等.日光温室外保温蜂窝结构覆盖材料的研究.农业工程学报,1998,12(4):159-163
    [32] 周长吉等.几种日光温室复合保温被保温性能分析.农业工程学报,1999,15(2):168-171
    [33] 李化龙,刘新生等.日光温室反射式保温被的开发与特性研究.陕西气象,2001(1):24-27
    [34] 于海业等.发达国家温室设施自动化研究的现状.农业工程学报,1997,13(增):253-257
    [35] 杨其长.中国设施农业的现状与发展趋势.西藏农业科技,2001,1:36-37
    [36] 齐玉春,陈端生.我国东部淮河以北地区节能型日光温室蔬菜生产的气候分区.农业工程学报,1998(增):42-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700