用户名: 密码: 验证码:
蜂窝热管平板式太阳能热水器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究设计了一种新型的蜂窝热管平板式太阳能热水器,其特点是同时应用了热管技术和蜂窝技术的平板式太阳能热水器。首先分析了目前国内太阳能热水器现状及它们的优缺点以及今后的发展趋势,在此基础上提出了本文的研究课题。本研究中用到的热管是重力热管。重力热管具有热二极管特性,并且具有较强的传热能力和较高的等温性,这使得热管在太阳能的热利用中得到应用。而在透明玻璃盖板和吸热板之间放置蜂窝结构,基本上能消除吸收表面和盖板之间的空气自然对流热损失,并可大大降低辐射损失,显著提高集热器的热转换效率。
     通过大量的实验,对蜂窝热管平板式太阳能热水器和全玻璃真空管式太阳能热水器的热性能进行比较,包括瞬时效率、日平均效率、热损系数等。蜂窝热管平板式太阳能热水器的非稳态效率曲线是一条负斜率的直线,而全玻璃真空管式太阳能热水器的非稳态效率曲线是一条先下降后上升的曲线。蜂窝热管平板式太阳能热水器在低温的情况下(一般小于60℃)具有优势,其日平均效率为48.3%,而真空管式太阳能热水器的日平均效率为42.2%。高温段(一般大于60℃)的时候,平板式太阳能热水器日平均效率比真空管式太阳能热水器日平均效率低。这主要是由于在温度较高的时候,平板式太阳能热水器的热量损失比真空管式太阳能热水器热量损失的大,另外两者吸热体形状也不相同,平板式太阳能热水器的接收为一平面,而真空管式太阳能热水器的接收表面是圆柱面,所以平板式太阳能热水器日平均效率为29.8%,而真空管式太阳能热水器日平均效率为35%。蜂窝热管平板式太阳能热水器晚上的热损系数比真空管式太阳能热水器小很多,为1.16,而真空管式热水器为2.24,这进一步从实验上证明了太阳能热水器应用热管和蜂窝后使得热水器的集热性能和保温性能得到了提高。
     在对蜂窝热管平板式太阳能热水器用丙酮热管和水热管的对比中得出,热管的性能对太阳能热水器的性能有很大的影响,由于此次实验中丙酮热管做的比水热管差,因此丙酮热管的热阻比水热管大,这在一定程度上影响了热水器的热性能。
     同时建立了蜂窝热管平板式太阳能热水器的理论传热模型,通过对实验值和
    
    理论值的比较,得出进行简化后的理论模型在一般情况下与实际的情况是符合
    的,因此可以用理论计算公式对蜂窝热管平板式太阳能热水器的热性能进行估
    算。
In the paper, a flat plate solar water heater of honeycomb and heat pipe (abbreviated as HHCHP) is studied and designed. Its characteristic is that it is a flat plate solar water heater applying heat pipe technology and honeycomb technology simultaneously. At fist, actuality and development of solar water heater at domestic are analyzed and then researching contents are put forward. In the design, heat pipe is gravity heat pipe. A gravity heat pipe possesses heat diode characteristics and excellent transfer heat ability and equality temperature characteristics. The above features enable gravity heat pipes to use in the field of solar heat. Between glass-cover board and endothermic board, honeycomb is placed, which can eliminate heat loss caused by air natural convection and greatly reduce heat loss caused by radiation, and hence a better transfer heat efficiency.
    Through experimentation, we compare the heat performance of HHCHP with that of a solar water heater of glass vacuum tube (abbreviated as HGVT). The heat performance of a solar water heater includes instantaneous efficiency, average heat efficiency and heat loss coefficient. The instantaneous efficiency curve of HHCHP is a negative slope beeline, while that of HGVT isn't. On condition of low temperature, commonly below 60℃, the average efficiency of HHCHP is 48.3%, while that of HGVT is 42.2%. On condition of high temperature, commonly above 60℃, the average efficiency of HHCHP is 29.8%, while that of HGVT is 35%. The heat loss of HHCHP being much less than that of HGVT at night, then the heat loss coefficient of HHCHP is 1.16, while that of HGVT is 2.24. The preceding comparisons prove that collecting heat efficiency and heat preservation performance are improved because of simultaneous application of heat pipe technology and honeycomb technology.
    Copper-acetone heat pipe and copper-water heat pipe of solar water heater compared, we also find in the experimentation that the performance of heat pipe greatly affects the heat performance of solar water heaters. In the experiment, the heat
    
    
    
    resistance of copper-acetone heat pipe was more than that of copper-water heat pipe.
    In the paper, theoretic transfer heat model of HHCHP is established. After comparing experimental value and estimative value, we deduce that theoretic transfer heat model accords with actual condition, so we can estimate the heat performance of HHCHP by theoretic calculation formula.
引文
1、杨金焕,陆钧,黄晓橹.太阳能发电地面应用的前景及发展动向.新能源.1995,Vol.17,No.2
    2、赵缓,越慧.我国太阳能资源及其开发利用.经济地理.1998,Vol.18,No.1
    3、陆维德.我国太阳热水器产业的发展.太阳能.1999,No.4
    4、奚阳.平板式热管太阳能集热器冬季运行性能研究.江西学报.1999,NO.5
    5、宋爱国,栗加顺.平板式与真空管式太阳热水器热性能分析比较.太阳能.2000,NO.5
    6、宋爱国.平板式与真空管式太阳热水器瞬时效率实验曲线分析.首都师范大学学报.2000,Vol.21.No.3
    7、丁敬芝.塑料蜂窝结构重力热管太阳能集热器性能的理论和实验研究.浙江大学硕士学位论文.1989
    8、庄骏,张红.热管技术及其工程应用.化学工业出版社.2000
    9、杨世铭.陶文铨.传热学(第三版).高等教育出版社.1998
    10、faghri A. Heat pipe science and technology. Taylor &Francis Press, 1995
    11、MEHMET AKYURT. Development Of Heat Pipes For Solar Water Heaters. Solar Energy. 1984, Vol. 32, No. 5
    12、Hull J R. Analysis of heat transfer factors for a heat pipe absorber array connected to a common manifold. ASME Trans. J, Solar Energy Engineering, 1986, 108
    13、T Y Bong, K C Ng, H. Bao. Thermal performance of a flat-plate beat-pipe collector array. Solar Energy. 1993, VOL. 50, NO. 6
    14、R. D. Evans and D. N. Greely. A Preliminary Assessment of A Heat Pipe Flat-Plat Collector, Proc. of 1977 Flat Plat Solar Collctor Conf.
    15、J. D. Francken, A Heat Pipe for Low Temperatures, SUN-Mankind's Future Source of Energy, Proc. of ISES, New Delhi, 1978, Vol. 2
    16、Bienert, W. B., Wolf D. A. Heat Pipe Applied to Flat Plat Solar Collectors. NSF Report. AER74-09164
    17、H. F. W. de vries, W. Kamminga. Fluid Circulation Control in Conventional and Heat Pipe Planar Solar Collectors. Solar Energy. 1980, VOL. 24, NO. 2
    18、陆维德,过慧芬,李小苏.重力热管平板集热器的热性能研究.太阳能学报.1983,4(2)
    19、H. M. S. Hussein, Optimization of a wickless heat pipe flat solar collector. Energy conversion&management. 1999, NO. 40
    20、H. M. S. Hussein. Theoretical analysis of laminar-film condensation heat transfer inside inclined wickless heat pipes flat-plate solar collector. RENEWABLE ENERGY. 2001, 23
    
    
    21、Wongee Chun. An experimental study of the utilization of heat pipe for solar water heaters. Applied Thermal Engineering. 1999, NO. 19
    22、奚阳.平板式热管太阳能集热器冬季运行性能研究.江西学报.1999,NO.5
    23、江晴.新型热管式平板集热器的设计.新能源.1995,Vol 17,No 2
    24、张诗针.蜂窝结构太阳能集热器的机理及试验研究.太阳能学报.1982,vol.3,No.3.
    25、郑宏飞,刘德修.窄缝高真空平面玻璃作为太阳能集热器盖板的实验研究.太阳能学报.2001,Vol.22,No.3
    26、郑宏飞,吴裕远.窄缝高真空平面玻璃的研制.西安交通大学学报.2001,Vol.35,No.3
    27、黄护林,葛新石,张寅平.窗户覆盖透明蜂窝对房间热环境的影响高校工程热物理第六届全国学术会议论文集.1996
    28、Charters W W S. Solar Energy. A viable pathway towards ecologically sustainable development. Solar Energyl. 994, Vol.52, No. 5
    29、P. B. L. CHAURASIA. Collector Cum Storage Solar Water Heaters With And Without Transparent Insulation Material. Solar Energy. 2000, Vol. 70, No. 5
    30、Hollands K G T. Couple Radiative And Conductive Heat Transfer Across Honeycomb Panels And Through Single Cells. Int J of Heat And Mass Transfer. 1984, 27
    31、M. ARULANAANTHAM. Solar Gain Characteristic Of Absorber Parallel Transparent Insulation Materials. Energy Convers .Mgmt. 1998, Vol. 39, No. 15
    32、李戬洪,江晴.一种高效平板太阳能集热器试验研究.太阳能学报.2001 Vol.22,No.2
    33、张寅平,邱国权.蜂窝材料有效导热系数的通用计算法.太阳能学报.1997,Vol.18,No.4
    34、邱国权,张寅平,葛新石.蜂窝型透明隔热材料有效导热系数的实验研究.太阳能学报.1999,Vol.20,No.1
    35、曹惠玲,俞颐秦.加内部透明隔膜提高平板型太阳能集热器效率的条件.新能源.1997,19 (7)
    36、李业发,杨远佳,王贵兵.不同深径比的透明蜂窝热性能实验研究.新能源.1999,21(6)
    37、袁卫星,袁修干,杨春信,梅志光.蜂窝平板太阳能集热器研制及闷晒性能实验.北京航空航天大学学报.1997,Vol.23,No.5
    38、陈则韶,陈熹,葛新石.关于平板集热器的最佳间距和蜂窝结构热性能的实验研究.太阳能学报.1991,v0ol.12,No.2
    39、张诗针,孙志坚.三角塑料蜂窝中自然对流换热的实验研究.太阳能学报.1990,vol.11.No.3
    40、张诗针,孙志坚.三角塑料蜂窝结构的优化设计研究.太阳能学报.1990,vol.11,No.4
    41、孙志坚.蜂窝结构中的自然对流实验研究及集热器的优化设计.浙江大学硕士学位论文.1988
    42、张诗针,张平.蜂窝结构太阳能集热器吸收长波辐射损失的数值计算方法.浙江大学学报.1989,Vol.23,No.6
    
    
    43、张平.蜂窝结构太阳能集热器中辐射换热问题的数值和实验研究.浙江大学硕士学位论文.1987
    44、季杰,陈雁南,何立群.TIMs双层窗传热特性研究.太阳能学报.1997,18(3)
    45、焦小浣,胡文旭,陈玲.光窗透明材料的实验研究.太阳能学报.1997,18(4)
    46、庄骏,张红.热管技术及其工程应用.2000
    47、Streltsov A I. Theoretical and experimental investigation of optimum filling for heat pipes. 1975,7 (1)
    48、Imura H, Sasaguchi K, Kozai H. Critical heat flux in a closed two-phasethermosyphon. J. Heat Mass Transfer. 1983,26(8):1181-1188
    49、Harada K, Inoue S, Fujita J, Suematsu U, Wakiyama Y. Heat transfer characteristics of large heat pipe (in Japanese).Hitachi Zosen Tech. Rev. 41.1980.167
    50、Feldman Jr K T ,Srinivasan R. Investigation of heat transfer limits in two-phase closed thermosyphon. Proc. 5th Int. Heat Pipe Conf. 1984
    51、K. N. Marshall etal, Optimization of thinfilm Transparent Plastic Honeycomb Covered Flat-plate Solar Collector ,SAN/1256-76/1, semiannual Report, for ERDA Contract E(04-3)-1256, Palo Atlo, California, 1976
    52、葛新石,龚保,陆维德.太阳能—热能转换过程科学出版社.1980,vol.8
    53、J. G Symon. Calculation of the Transmittance-absorptance Product for Flat Plat Collector with Suppression Devices. Solar Energy ,vol.33. pp637-640,1984
    54、GB/T 12915—91 家用太阳热水器热性能试验方法
    55、GB 4271—84 平板型太阳集热器热性能试验方法

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700