用户名: 密码: 验证码:
等离子焊接气体保护效果数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子焊接焊缝深宽比大,能直接穿透被焊工件,实现单面焊双面成形,焊接质量好,在造船、航空航天等众多领域有着广泛的应用。焊枪是等离子焊接的关键技术,是保证焊接质量的基础,但是国内等离子焊枪的设计依然停留在模仿或经验设计的阶段,科学性不高,用此方法设计的焊枪技术含量低,稳定性较差,高质量的焊枪依然需要进口。本文针对苏州华焊科技有限公司提供的不同结构的等离子焊枪,采用数值模拟的方法模拟了焊枪喷嘴的气体保护效果,模拟了保护气与离子气流量及比例、喷嘴与工件之间的距离、保护气罩位置、焊枪喷嘴的结构等参数对保护效果的影响,得出了各个参数变化时流场状态的变化规律。模拟结果可为等离子焊接气体保护参数制定及其焊枪的设计提供理论指导。计算机模拟辅助焊枪结构设计(Computer Simulation Assist the Design of Welding Torch)的方法还可以适用于等离子喷涂、钨极氩弧焊、熔化极气体保护焊等一切气体保护加工方法的枪体结构设计。
Plasma arc welding has the character of high depth-to-width ratio and good welding quality, the workpiece can be penetrated directly by this way. This method can achieve the result of one-side welding with back formation. So, this method has wide applications in many areas such as shipbuilding and aerospace industry. Welding torch is the key technology of plasma arc welding, it’s the basis of achieving perfect welding quality. The design of plasma arc welding torch still stays in the imitation or empirical stage in our country, this method is not scientific enough. The torch designed by this method is low-skilled, and the high quality welding torch still needs to be imported. On the basis of the plasma arc welding torch provided by Suzhou Ahand Ltd, the shielding gas protective effect of the nozzle of the torch was simulated by the method of numerical simulation. The influence of flux of shielding gas, the ratio of plasma gas and shielding gas, distance between the nozzle of torch and workpiece, position of shielding gas cup and structure of the nozzle on the flow field was simulated. The changing regularity of the state of flow field with the change of these parameters was summarized. The simulation result provided some theoretical basis for the formulation of technological parameters and the design of welding torch. The method of“Computer Simulation Assist the Design of Welding Torch”can also be used for the torch design of plasma spray, gas tungsten arc welding and gas metal arc welding et al.
引文
[1]宋天虎.先进制造技术的发展与焊接技术的未来.见:第八次全国焊接会议论文集(第一册).北京:机械工业出版社,1997,17-27.
    [2]李德元,赵文珍,董晓强.等离子技术在材料加工中的应用[M].北京:机械工业出版社,2005.
    [3] E. Graig. The plasma arc welding-A review [J]. Welding Journal, 1988, 67(2): 19-25.
    [4] M. Tomsic, S. Barhost. Keyhole plasma arc welding of aluminum with variable polarity power [J]. Welding Journal, 1984, 63(2):25-32.
    [5]马立,胡绳荪,殷凤良,等.等离子弧焊接过程数值模拟的现状及发展[J].焊接, 2005(8):8-10.
    [6]殷凤良,胡绳荪,郑振太,等.等离子弧焊电弧的数值模拟[J].焊接学报,2006, 27(8):51-54.
    [7]殷凤良,胡绳荪,高忠林,等.等离子体电弧数值模拟的研究进展[J].兵器材料科学与工程,2007,30(6):59-63.
    [8]王怀刚,武传松,张明贤.小孔等离子弧焊接热场的有限元分析[J].焊接学报,2005,26(7):49-53.
    [9] S. Ramakrishnan, A. D. Stokes, J. J. Lowke. An approximate model for high-current free-burning arcs [J]. Journal of Physics D: (Applied Physics), 1978,11(16): 2267-2280.
    [10] K. C. Hsu, K. Etemadi, E. Pfender. Study of the free-burning high-intensity argon arc [ J]. Journal of Applied Physics,1983,54(3):1293-1299.
    [11] J. McKelliget, J. Szekely, M. Vardelle, et al. Temperature and velocity fields in a gas stream exiting a plasma torch: Amathematical model and its experimental verification [J]. Plasma Chemistry and Plasma Processing, 1982, 2(3): 317-332.
    [12] R. Westhoff, J. Szekely. A model of fluid, heat flow, and electromagnetic phenomena in a nontransferred arc plasma torch [J]. Journal of Applied Physics, 1991, 70(7): 3455-3466.
    [13] J. J. Gonzalez, P. Freton, A. Gleizes. Comparisons between two- and three-dimensional models: gas injection and arc attachment [J]. Journal of Physics D: Applied Physics, 2002, 35(24): 3181-3191.
    [14]殷凤良,胡绳荪,高忠林,等.等离子弧焊中电弧反翘现象的数值模拟[J].焊接学报,2007,28(9):29-32.
    [15]王健,雷玉成,朱彬.等离子焊接电弧流场数值分析[J].焊接,2008(2):27-30.
    [16] Y. F. Hsu, B. Rubinsky. Two-dimensional heat transfer study on the keyhole plasma arc welding process [J]. International Journal of Heat and Mass Transfer, 1988, 31(7):1409-1421.
    [17] H. G. Fan, R. Kovacevic. Keyhole formation and collapse in plasma arc welding [J]. Journal of Physics D: (Applied Physics), 1999, 32(22): 2902-2909.
    [18]董洪刚,高洪明,吴林.固定电弧等离子弧焊接热传导的数值计算[J].焊接学报,2002,23(4):24-26.
    [19] R. G. Keanini, B. Rubinsky. Three-dimensional simulation of the plasma arc welding process [J]. International Journal of Heat and Mass Transfer, 1993, 36(13):3283-3298.
    [20]孙俊生,武传松,董博玲.PAW+TIG电弧双面焊接小孔形成过程的数值模拟[J].金属学报,2003,39(1):79-84.
    [21]孙俊生,武传松.等离子与钨极双面电弧焊接热过程的数值模拟[J].金属学报,2003,39(5):499-504.
    [22]武传松,王怀刚,张明贤.小孔等离子弧焊接热场瞬时演变过程的数值分析[J].金属学报,2006,42(3):311-316.
    [23]刘望兰,胡绳荪,马立.三维静态锥体热源穿孔等离子弧焊接熔池的数值模拟[J].焊接学报,2006,27(6):33-36.
    [24]李力,胡绳荪,殷凤良,等.等离子弧焊接熔池温度场的三维数值模拟[J].天津大学学报,2007,40(10):1260-1264.
    [25]王小杰,武传松,陈茂爱.等离子弧定点焊熔池穿孔过程的数值分析[J].金属学报,2010,46(8):984-990.
    [26] D. Rosenthal. Mathematical theory of heat distribution during welding and Cutting [J]. Welding Journal. 1941, 20(5):220—234.
    [27]张文钺.焊接传热学[M].北京:机械工业出版社,1989.
    [28]莫立春,钱百年,国旭明,等.焊接热源计算模式的研究进展[J].焊接学报,2001,22(3):93-96.
    [29] T. W. Eager and N. S. Tsai. Temperature fields produced by traveling distributed heat sources[J]. Welding Journal, 1983, 62(12): 3462s-3552s.
    [30] J. Goldak. A new finite model for welding heat source[J]. Metallurgical. Transactions B,1984,15B(2):299-305.
    [31]吴甦,赵海燕,王煜,等.高能束焊接数字模拟中的新型热源模型[J].焊接学报,2004,25(1):91-94.
    [32] C. S. Wu, H. G. Wang, Y. M. Zhang. A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile [J]. Welding Journal, 2006, 85(12):284s-291s.
    [33]张义顺,董晓强,李德元.等离子枪体内部流场及温升的模拟分析[J].焊接学报,2005,26(9):77-80.
    [34]张瑞华.活性焊接法及熔深增加机理的数值模拟研究[D].兰州,兰州理工大学,2005.
    [35] J. Dowden, P. Kapadia. Plasma arc welding: a mathematical model of the arc [J]. Journal of Physics D: Applied Physics, 1994, 27(5):902-910.
    [36] M. Schnick, U. Füssel, J. Zschetzsche. Simulation of plasma and shielding gas flows in welding and cutting arcs with Ansys CFX. In: International Scientific Colloquium Modelling for Material Processing. Riga, 2006, 146-148.
    [37]武传松.焊接热过程数值分析[M].哈尔滨:哈尔滨工业大学出版社,1990.
    [38]吴言高,李午申,邹宏军等.焊接数值模拟技术发展现状[J].焊接学报,2002,23(5):90-93.
    [39]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [40] M. Ushio, D.j.Fan. A method of estimating the space-charge voltage drop for thermionic arc cathodes [J]. Phys. D, Appl. Phys,1994,27(3):561-566.
    [41] Tatsuo Inoue. Metallo-Thermo-Mechanics: Application to phase transformation incorporated processes[J]. Transactions of JWRI,1996,25(2),69-87.
    [42] Tsirkas S A, Papanikos P, Kermanidis, Th. Numerical simulation of the laser welded process in but joint specimens [J]. Journal of Materials Processing Technology,2003(134):59 -69.
    [43] W. F. McGee, D. J. Rybicki, D. J. Waldron. Ternary gas plasma arc welding[P]. US Patent, 5399831. 1995-3-21.
    [44] Hughes Michael, Gareth Taylor, Koulis Pericleous, et al. Thermo capillary and magneto hydrodynamic effects in modeling the thermodynamics of stationary welding processes [J]. Phoenics Journal, 2000, 13(1):99-113.
    [45] Choo R T C. Mathematical modeling of heat and fluid flow phenomena in a mutually coupled welding arc and weld pool [D].USA: Massachusetts Institute of Technology, 1991.
    [46] Massoud Goodarzi. Mathematical modeling of gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes [D].Australia: University of Wollongong, 1996.
    [47] I. S. Kim, J. S. Son, H. J. Kim, et al. Development of a mathematical model tostudy on variation of shielding gas in GTA welding[J].Journal of Achievement in Materials and Manufacturing Engineering,2006,19(2):73-80.
    [48] M. Ushio, D. Fan. A method of estimating the space-charge voltage drop for thermionic arc cathodes [J]. Journal of Physics D: (Applied Physics), 1994, 27(3):561~566.
    [49] S. A. Tsirkas, P. Papanikos, Th. Kermanidis. Numerical simulation of the laser welded process in but joint specimens [J]. Journal of Materials Processing Technology,2003(134):59 -69.
    [50]陈家权,肖顺湖,杨新彦等.焊接过程数值模拟热源模型的研究发展[J].装备制造技术,2005(3):10-14.
    [51]刘黎明,迟鸣声,宋刚等.镁合金激光-TIG复合热源焊接热源模型的建立及其数值模拟[J].机械工程学报,2006,42(2):82-85.
    [52]芦凤桂,姚舜,钱伟方.钨极氩弧焊焊接电弧数值分析[J].上海交通大学学报,2003,37(12),862-1865.
    [53]张瑞华,樊丁,杜华云.PHOENICS在焊接数值模拟中的应用[J].甘肃工业大学学报,2003(4):6-28.
    [54] R. Ducharme, P. Kapadia, J. Dowden,et al. A mathematical model of the arc in electric arc welding including shielding gas flow and cathode spot location[J]. Journal of Physics D: (Applied Physics), 1995, 28:1840- 1850.
    [55] Z. Peiyuan, J. J. Lowke, Morrow R. Prediction of anode temperature of free burning arcs[J]. Journal of Physics D: (Applied Physics), 1995, 28:1369-1376.
    [56] L. Sansonnens, J. Haidar, J. J. Lowke, et al. Prediction of properties of free burning arcs including effects of ambipolar diffusion[J]. Journal of Physics D: (Applied Physics), 2000(33): 148-157.
    [57] M. Tanaka, M. Ushio, W. Chuansong, One dimensional analysis of the anode boundary layer in free-burning argon arcs[J]. Journal of Physics D: (Applied Physics), 1999(32): 605-611.
    [58]杜华云,樊丁,张瑞华.GTA电弧温度场流场数值计算[J].兰州理工大学学报,2004,30(5):24-27.
    [59] D. Fan, M. Ushio, F. Matsuda. Numerical computation of arc pressure distribution[J]. Transaction of JWRI,1996,15(1):1-5.
    [60] M. Ushio, D. Fan, M. Tanaka. Contribution of arc plasma radiation energy to electrodes[J]. Transaction of JWRI,1993,22(2):201-207.
    [61]樊丁,陈剑虹.TIG电弧传热传质过程的数值分析[J]机械工程学报,1998,34(2): 39-45.
    [62] J. Menart, S. Mallk, L. Lin, et al. Coupled radiative, flow and temperature-field analysis of a free-burning arc[J]. Journal of Physics D: (Applied Physics), 2000 (33): 257-269.
    [63] P. Freton, J. J. Gonzalez, A. Gleizes. Comparison between a two- and a three- dimensional of a arc plasma configuration[J]. Journal of Physics D: (Applied Physics), 2000(33):2442-2452.
    [64]范红刚,陆家榆,史耀武.直流TIG焊接电弧的数值分析[J].海军工程学院学报,1996,(4):1-6.
    [65]范红刚,杨军,史耀武等.直流TIG焊接电弧阳极电流密度的数值计算[J].西安交通大学学报,1997,31(4):77-82.
    [66]谭险峰. TIG对接焊热力耦合数值模拟及其应用研究[D].南昌:南昌大学,2005.
    [67]王西昌,吴冰,左从进,等.电子束焊接数值模拟新型热源模型的初步探索[J]焊接学报,2005,26(12):81-84.
    [68]王煜,赵海燕,吴甦,等.高能束焊接双椭球热源模型参数的确定[J].焊接学报, 2003,24(2):67-70.
    [69]胡特生,徐耀德.TIG焊枪气体保护性能测定方法研究[J].焊接,1995(10):4-7.
    [70]孙俊生,武传松.双面电弧焊接的传热模型[J]物理学报,2002,51(2):286-290.
    [71] P. W. Fuerschbach, G. A. Knorovsky. A study of melting efficiency in plasma arc and gas tungsten arc welding[J]. Welding Journal,1991,70(11):287s-297s.
    [72]胡特生,陈球武,徐有涛,等.钦合金钨极氩弧焊枪的保护性能试验研究[J].金属科学与工艺,1986,5(8):99-104.
    [73]董春林,吴林,邵亦陈.穿孔等离子弧焊发展历史与现状[J].中国机械工程,2000, 11(5):577-580.
    [74]贾传宝,武传松,高进强.受控脉冲穿孔等离子弧焊小孔热滞后效应的研究[J].金属学报,2010,46(8):991-996.
    [75] A. Kumar, T. DebRoya. Calculation of three-dimensional electromagnetic force field during arc welding[J]. Journal of Applied Physics, 2003,94(2):1267-1277.
    [76] J. Martikainen. Conditions for achieving high-quality welds in the plasma-arc keyhole welding of structural steels[J]. Journal of Materials Processing Technology,1995(52): 68-75.
    [77] J. Tusěk, M. Suban. Experimental research of the e.ect of hydrogen in argon as a shielding gas in arc welding of high-alloy stainless steel[J]. International Journal of Hydrogen Energy, 2000(25):369-376.
    [78] Y. F. Hsiao, Y. S. Tarng, W. J. Huang. Optimization of plasma arc weldingparameters by using the Taguchi Method with the Grey Relational Analysis[J]. Materials and Manufacturing Process, 2008,23(1):51-58.
    [79] M. Schnick, U. Füssel, J. Zschetzsche. Simulation of plasma and shielding gas flows in welding and cutting arcs with ansys CFX[C]. in: International Scientific Colloquium Modelling for Material Processing. Riga, 2006, 143-148.
    [80] M. G. Sharapov. Optimisation of gas shielding in plasma welding[J]. Weding International, 2003, 17(11):886-889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700