用户名: 密码: 验证码:
环氧二烯Mycoepoxydiene和类固醇激素受体辅激活子3(SRC-3)在过敏发生过程中作用的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肥大细胞是在IgE介导的过敏反应中起到关键作用的效应细胞,当过敏原引发其表面高亲和受体FcsRI聚集交联后即可触发信号通路的激活从而引起细胞的脱颗粒和炎症因子的产生。因此,研究抑制IgE和FcεRI言号通路成为研究新的抗过敏药物的重要手段。
     环氧二烯(Mcoyepoxydiene, MED)是海洋木栖真菌菜豆间坐壳菌(Diaporthe sp. HLY-1)的次级代谢产物,是一个以含有氧桥的八元环二烯为骨架的化合物。已有的研究显示MED有抗肿瘤活性,抑制炎症反应等功能,而过敏反应的发生和炎症的产生有密切的关系,但MED在过敏反应发生的过程中的作用尚无研究。
     在本课题研究中发现MED可明显抑制抗原引起的肥大细胞脱颗粒和炎症因子的产生,分子机制研究发现,MED通过抑制抗原刺激引起的酪氨酸激酶(Spleen tyrosine kinase, Syk)的磷酸化后进一步抑制其下游基因磷酸酯酶C(phospholipase C. PLCyl),丝氨酸/苏氨酸激酶Akt的磷酸化,且MED对在炎症因子表达中起重要作用的丝裂原活化蛋白激酶(Mitogen activated protein kinase. MAPKs,包括ERK, JNK, p38)磷酸化也有明显的抑制作用。小鼠被动型皮肤过敏反应(Passive cutaneous anaphylaxis. PCA)模型研究结果表明,MED可明显抑制小鼠耳朵血管渗透的发生,发挥了明显的抑制过敏反应发生的作用。综上所述,MED通过抑制Syk的磷酸化进而抑制PI3K/Akt和MAPKs的信号通路,抑制肥大细胞的活性从而抑制小鼠过敏反应的发生。本研究为进一步将MED开发为治疗过敏药物提供了一定的理论依据。
     同时,我们利用了类固醇激素受体辅激活子3(Steriod receptor coactivator. SRC-3)野生型和敲除型小鼠进行过敏的实验研究。通过体外肥大细胞诱导系统和(Passive systemic anaphylaxis, PSA)动物模型的研究,我们发现来源SRC-3敲除小鼠的细胞在抗原抗体刺激下炎症因子的产生量明显高于来源于野生型小鼠的细胞,动物模型结果显示,SRC-3敲除小鼠表现出比野生型小鼠更为强烈的过敏反应,提示SRC-3在小鼠过敏反应发生中起到了一个保护作用
Mast cells play a critical role in IgE-mediated allergic response. Aggregation of the high affinity IgE receptor (FcεRl) which is on the surface of mast cell activates a cascade of signaling events leading to the degranulation and cytokines production. Therefore, inhibition of IgE and FcεRI signaling pathway provides a new method for development of novel anti-anaphylaxis drugs.
     Mycoepoxydiene (MED) is a compound which was extracted from Diaporthe phaseolorum as a secondary metabolic product. Previous study has revealed that MED has many kinds of biologic activity including anti-cancer and inhibiting inflammation. However. the function of MED in allergic reaction is still unknown.
     It is well known that allergic response displays cytokines production and degranulation features. In our study, we found that MED could significantly suppress antigen-stimulated degranulation and cytokines production in bone marrow derived mast cells (BMMCs). The study showed that MED could significantly inhibit the phosphorylation of Syk and in turn to inhibit the phosphorylation of its downstream molecules PLCy and Akt. Beside. MED suppressed the phosphorylation of MAPKs including extracellular signal-regulated kinase (ERK). c-jun N-terminal kinase (JNK). and p38in antigen stimulated mast cells.
     Based on the results of cell experiments, we studied MED in PCA mouse model, and MED effectively alleviated the ear blood vessel permeation caused by antigen. These results suggested that MED is a potential compound for developing a promising anti-anaphylaxis drug.
     At the same time. we studied the role of SRC-3in allergic response. Our results displayed that the BMMCs from SRC-3knockout mice produced more cytokines than the cells from wide type mice. PSA mouse model also showed that the SRC-3knockout mice suffered a more severe allergic response. These results demonstrated that SRC-3play a protect role in the anaphylaxis in mice.
引文
[1]. Galli. S. J.,Tsai. M.,Piliponsky, A. M. The development of allergic inflammation.[J]. Nature,2008.454 (7203):445-54.
    [2]. Laemmle-Ruff.1.,O'Hehir. R.,Ackland. M., et al. Anaphylaxis-Identification, management and prevention.[J]. Aust Fam Physician.2013.42 (1-2):38-42.
    [3]. Metcalfe. D. D.,Peavy. R. D.,Gilfillan. A. M. Mechanisms of mast cell signaling in anaphylaxis.[J]. J Allergy Clin Immunol.2009,124 (4):639-46:quiz 647-8.
    [4]. Hua, X..Kovarova, M.,Chason, K. D.. et al. Enhanced mast cell activation in mice deficient in the A2b adenosine receptor.[J]. J Exp Med,2007.204 (1):117-28.
    [5]. Abraham. S. N.,St John. A. L. Mast cell-orchestrated immunity to pathogens.[J]. Nat Rev Immunol.2010.10 (6):440-52.
    [6]. Metz. M..Siebenhaar. F..Maurer, M. Mast cell functions in the innate skin immune system.[J]. Immunobiology,2008.213 (3-4):251-60.
    [7]. Shelburne. C. P.,Abraham, S. N. The mast cell in innate and adaptive immunity.[J].Adv Exp Med Biol.2011,716 162-85.
    [8]. Galli. S. J..Maurer. M.,Lantz, C. S. Mast cells as sentinels of innate immunity.[J]. Curr Opin Immunol,1999.11 (1):53-9.
    [9]. Galinsky. D. S..Nechushtan. H. Mast cells and cancer--no longer just basic science.[J]. Crit Rev Oncol Hematol.2008.68 (2):115-30.
    [10]. Ribatti. D..Crivellato. E. Mast cells, angiogenesis. and tumour growth.[J]. Biochim Biophys Acta,2012,1822 (1):2-8.
    [11]. Saito. H. Role of mast cell proteases in tissue remodeling.[J]. Chem Immunol Allergy.2005.87 80-4.
    [12]. Maltby. S.,Khazaie. K.,McNagny. K. M. Mast cells in tumor growth: angiogenesis. tissue remodelling and immune-modulation.[J]. Biochim Biophys Acta, 2009.1796(1):19-26.
    [13]. Norrby. K. In vivo models of angiogenesis.[J]. J Cell Mol Med.2006.10 (3):588-612.
    [14]. Rodewald, H. R.,Feyerabend, T. B. Widespread immunological functions of mast cells:fact or fiction?[J]. Immunity,2012,37 (1):13-24.
    [15]. Theoharides, T. C.,Alysandratos, K. D.,Angelidou, A., et al. Mast cells and inflammation.[J]. Biochim Biophys Acta,2012,1822 (1):21-33.
    [16]. Kirshenbaum, A. S.,Goff, J. P.,Semere, T., et al. Demonstration that human mast cells arise from a progenitor cell population that is CD34(+), c-kit(+), and expresses aminopeptidase N (CD13).[J]. Blood,1999,94 (7):2333-42.
    [17]. Tsai, M.,Grimbaldeston, M.,Galli, S. J. Mast cells and immunoregulation/immunomodulation.[J]. Adv Exp Med Biol,2011,716 186-211.
    [18]. Metcalfe, D. D.,Baram, D.,Mekori, Y. A. Mast cells.[J]. Physiol Rev,1997, 77(4):1033-79.
    [19]. Mitsui, H.,Furitsu, T.,Dvorak, A. M., et al. Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand.[J]. Proc Natl Acad Sci U S A,1993,90 (2):735-9.
    [20]. Ishizaka, T.,Mitsui, H.,Yanagida, M., et al. Development of human mast cells from their progenitors.[J]. Curr Opin Immunol,1993,5 (6):937-43.
    [21]. Blechman, J. M.,Lev, S.,Brizzi, M. F., et al. Soluble c-kit proteins and antireceptor monoclonal antibodies confine the binding site of the stem cell factor.[J]. J Biol Chem,1993,268 (6):4399-406.
    [22]. Thompson-Snipes, L.,Dhar, V.,Bond, M. W., et al. Interleukin 10:a novel stimulatory factor for mast cells and their progenitors.[J]. J Exp Med,1991,173 (2): 507-10.
    [23]. Grizzi, F.,Di Caro, G.,Laghi, L., et al. Mast cells and the liver aging process.[J]. Immun Ageing,2013,10(1):9.
    [24]. Molin, D.,Edstrom, A.,Glimelius,I., et al. Mast cell infiltration correlates with poor prognosis in Hodgkin's lymphoma.[J]. Br J Haematol,2002,119 (1): 122-4.
    [25]. Gibson, P. G.,Allen, C. J.,Yang, J. P., et al. Intraepithelial mast cells in allergic and nonallergic asthma. Assessment using bronchial brushings.[J]. Am Rev Respir Dis.1993,148 (1):80-6.
    [26]. Malone, D. G..Wilder. R. L..Saavedra-Delgado, A. M., et al. Mast cell numbers in rheumatoid synovial tissues. Correlations with quantitative measures of lymphocytic infiltration and modulation by antiinflammatory therapy.[J]. Arthritis Rheum.1987.30 (2):130-7.
    [27]. Jensen. B. M.,Akin. C.Gilfillan, A. M. Pharmacological targeting of the KIT growth factor receptor:a therapeutic consideration for mast cell disorders. [J]. Br J Pharmacol.2008,154 (8):1572-82.
    [28]. Ekoff. M..Nilsson, G. Mast cell apoptosis and survival.[J]. Adv Exp Med Biol.2011.716 47-60.
    [29]. Alfredsson. J.,Puthalakath. H.,Martin. H., et al. Proapoptotic Bcl-2 family member Bim is involved in the control of mast cell survival and is induced together with Bcl-XL upon IgE-receptor activation.[J]. Cell Death Differ,2005,12 (2): 136-44.
    [30]. Okayama, Y..Kawakami. T. Development, migration, and survival of mast cells.[J]. Immunol Res,2006.34 (2):97-115.
    [31]. Alfredsson. J..Moller. C.,Nilsson, G. IgE-receptor activation of mast cells regulates phosphorylation and expression of forkhead and Bcl-2 family members.[J]. Scand J Immunol,2006,63 (1):1-6.
    [32]. Amin. K. The role of mast cells in allergic inflammation.[J]. Respir Med. 2012.106(1):9-14.
    [33]. Galli. S. J..Tsai. M. lgE and mast cells in allergic disease.[J]. Nat Med. 2012.18 (5):693-704.
    [34]. Djukanovic. R..Lai. C. K...Wilson. J. W.. et al. Bronchial mucosal manifestations of atopy:a comparison of markers of inflammation between atopic asthmatics, atopic nonasthmatics and healthy controls.[J]. Eur Respir J.1992.5 (5): 538-44.
    [35]. Holdsworth, S. R.,Summers. S. A. Role of mast cells in progressive renal diseases.[J]. J Am Soc Nephrol.2008.19 (12):2254-61.
    [36]. Levi-Schaffer. F..Rubinchik. E. Mast cell role in fibrotic diseases.[J]. Isr J Med Sci,1995,31 (7):450-3.
    [37]. Chlap, Z.,Jedynak, U.,Sladek, K. [Mast cell:it's significance in bronchoalveolar lavage fluid cytologic diagnosis of bronchial asthma and interstitial lung disease].[J]. Pneumonol Alergol Pol,1998,66 (5-6):321-9.
    [38]. Hunt, L. W.,Colby, T. V.,Weiler, D. A., et al. Immunofluorescent staining for mast cells in idiopathic pulmonary fibrosis:quantification and evidence for extracellular release of mast cell tryptase.[J]. Mayo Clin Proc,1992,67 (10):941-8.
    [39]. Burton, O. T.,Oettgen, H. C. Beyond immediate hypersensitivity:evolving roles for IgE antibodies in immune homeostasis and allergic diseases.[J]. Immunol Rev,2011,242(1):128-43.
    [40]. Galli, S. J.,Tsai, M. Mast cells in allergy and infection:versatile effector and regulatory cells in innate and adaptive immunity.[J]. Eur J Immunol,2010,40 (7): 1843-51.
    [41]. Moon, T. C.,St Laurent, C. D.,Morris, K. E., et al. Advances in mast cell biology:new understanding of heterogeneity and function.[J]. Mucosal Immunol, 2010,3(2):111-28.
    [42]. Kraft, S.,Kinet, J. P. New developments in FcepsilonRI regulation, function and inhibition.[J]. Nat Rev Immunol,2007,7 (5):365-78.
    [43]. Gilfillan, A. M.,Tkaczyk, C. Integrated signalling pathways for mast-cell activation.[J]. Nat Rev Immunol,2006,6 (3):218-30.
    [44]. Rivera, J.,Gilfillan, A. M. Molecular regulation of mast cell activation.[J]. J Allergy Clin Immunol,2006,117 (6):1214-25; quiz 1226.
    [45]. Moiseeva, E. P.,Bradding, P. Mast cells in lung inflammation.[J]. Adv Exp Med Biol,2011,716 235-69.
    [46]. Kuehn, H. S.,Gilfillan, A. M. G protein-coupled receptors and the modification of FcepsilonRI-mediated mast cell activation.[J]. Immunol Lett,2007, 113 (2):59-69.
    [47]. Hibbs, M. L.,Tarlinton, D. M.,Armes, J., et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease.[J]. Cell,1995,83(2):301-11.
    [48]. Odom, S.,Gomez, G.,Kovarova, M., et al. Negative regulation of immunoglobulin E-dependent allergic responses by Lyn kinase.[J]. J Exp Med,2004.
    199(11):1491-502.
    [49]. Nishizumi, H.,Yamamoto, T. Impaired tyrosine phosphorylation and Ca2+ mobilization, but not degranulation. in lyn-deficient bone marrow-derived mast cells.[J].J Immunol,1997,158 (5):2350-5.
    [50]. Kawakami, Y.,Kitaura, J.,Satterthwaite, A. B., et al. Redundant and opposing functions of two tyrosine kinases, Btk and Lyn, in mast cell activation.[J]. J Immunol. 2000,165(3):1210-9.
    [51]. Yamashita, Y.,Charles, N.,Furumoto, Y., et al. Cutting edge:genetic variation influences Fc epsilonRI-induced mast cell activation and allergic responses.[J]. J Immunol,2007,179 (2):740-3.
    [52]. Costello, P. S.,Turner, M.,Walters, A. E., et al. Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor of mast cells.[J]. Oncogene,1996,13 (12):2595-605.
    [53]. Miyajima, I.,Dombrowicz, D.,Martin, T. R., et al. Systemic anaphylaxis in the mouse can be mediated largely through IgGl and Fc gammaRⅢ. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE-or IgGl-dependent passive anaphylaxis.[J]. J Clin Invest,1997,99 (5): 901-14.
    [54]. Silverman, M. A.,Shoag, J.,Wu, J., et al. Disruption of SLP-76 interaction with Gads inhibits dynamic clustering of SLP-76 and FcepsilonRI signaling in mast cells.[J]. Mol Cell Biol,2006,26 (5):1826-38.
    [55]. Parravicini, V.,Gadina, M.,Kovarova, M., et al. Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation.[J]. Nat Immunol,2002,3 (8):741-8.
    [56]. Gu, H.,Saito, K.,Klaman, L. D., et al. Essential role for Gab2 in the allergic response.[J]. Nature,2001,412 (6843):186-90.
    [57]. Yu. M.,Lowell, C. A.,Neel, B. G., et al. Scaffolding adapter Grb2-associated binder 2 requires Syk to transmit signals from FcepsilonRI.[J]. J Immunol,2006, 176 (4):2421-9.
    [58]. Iwaki, S.,Spicka, J.,Tkaczyk, C., et al. Kit- and Fc epsilonRl-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells.[J]. Cell Signal,2008,20(1):195-205.
    [59]. Linnekin, D. Early signaling pathways activated by c-K.it in hematopoietic cells.[J]. Int J Biochem Cell Biol,1999,31 (10):1053-74.
    [60]. Ozawa, K.,Yamada, K.,Kazanietz, M. G., et al. Different isozymes of protein kinase C mediate feedback inhibition of phospholipase C and stimulatory signals for exocytosis in rat RBL-2H3 cells.[J]. J Biol Chem,1993,268 (4):2280-3.
    [61]. Furuichi, T.,Yoshikawa, S.,Miyawaki, A., et al. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400.[J]. Nature,1989,342 (6245):32-8.
    [62]. Kim, M. S.,Radinger, M.,Gilfillan, A. M. The multiple roles of phosphoinositide 3-kinase in mast cell biology.[J]. Trends Immunol,2008,29 (10): 493-501.
    [63]. Ali, K.,Bilancio, A.,Thomas, M., et al. Essential role for the p110delta phosphoinositide 3-kinase in the allergic response.[J]. Nature,2004,431 (7011): 1007-11.
    [64]. Laffargue, M.,Calvez, R.,Finan, P., et al. Phosphoinositide 3-kinase gamma is an essential amplifier of mast cell function.[J]. Immunity,2002,16 (3):441-51.
    [65]. Lin, X.,Huang, Y.,Fang, M., et al. Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp.[J]. FEMS Microbiol Lett,2005,251 (1):53-8.
    [66]. Wang, J.,Zhao, B.,Zhang, W., et al. Mycoepoxydiene, a fungal polyketide, induces cell cycle arrest at the G2/M:phase and apoptosis in HeLa cells.[J]. Bioorg Med Chem Lett,2010,20 (23):7054-8.
    [67]. Chen, Q.,Chen, T.,Li, W., et al. Mycoepoxydiene inhibits lipopolysaccharide-induced inflammatory responses through the suppression of TRAF6 polyubiquitination [corrected].[J]. PLoS One,2012,7 (9):e44890.
    [68]. Moore, J. T.,Collins. J. L.,Pearce. K. H. The nuclear receptor superfamily and drug discovery.[J]. ChemMedChem.2006.1 (5):504-23.
    [69]. Weatherman. R. V.,Fletterick. R. J.,Scanlan. T. S. Nuclear-receptor ligands and ligand-binding domains.[J]. Annu Rev Biochem.1999,68559-81.
    [70]. Lonard. D. M.,O'Malley B. W. Nuclear receptor coregulators:judges, juries, and executioners of cellular regulation.[J]. Mol Cell.2007.27 (5):691-700.
    [71]. Meyer. M. E.,Gronemeyer. H.Turcotte. B.. et al. Steroid hormone receptors compete for factors that mediate their enhancer function.[J]. Cell.1989.57 (3): 433-42.
    [72]. Halachmi. S.,Marden. E..Martin, G.. et al. Estrogen receptor-associated proteins:possible mediators of hormone-induced transcription.[J]. Science.1994. 264(5164):1455-8.
    [73]. Onate, S. A.,Tsai, S. Y.,Tsai. M. J., et al. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily.[J]. Science,1995.270 (5240):1354-7.
    [74]. Lonard. D. M.,O'Malley. B. W. The expanding cosmos of nuclear receptor coactivators.[J]. Cell,2006,125 (3):411-4.
    [75]. Hong, H.,Kohli, K..Garabedian, M. J., et al. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid. and vitamin D receptors.[J]. Mol Cell Biol.1997,17 (5):2735-44.
    [76]. Anzick. S. L.,Kononen.J.,Walker, R. L., et al. AIB1. a steroid receptor coactivator amplified in breast and ovarian cancer.[J]. Science.1997,277 (5328): 965-8.
    [77], Li. H.,Gomes. P. J.,Chen,J. D. RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2.[J]. Proc Natl Acad Sci U S A.1997. 94 (16):8479-84.
    [78]. Xu,J.,O'Malley, B. W. Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptor function.[J]. Rev Endocr Metab Disord,2002,3 (3):185-92.
    [79]. Savkur. R. S..Burris, T. P. The coactivator LXXLL nuclear receptor recognition motif.[J]. J Pept Res,2004,63 (3):207-12.
    [80]. Lanz, R. B.,McKenna, N. J.,Onate, S. A., et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex.[J]. Cell,1999,97 (1):17-27.
    [81]. Horlein, A. J.,Naar, A. M.,Heinzel, T., et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor.[J]. Nature,1995,377 (6548):397-404.
    [82]. Hu, X.,Lazar, M. A. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors.[J]. Nature,1999,402 (6757):93-6.
    [83]. Tsai, M. J.,O'Malley, B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members.[J]. Annu Rev Biochem,1994,63 451-86.
    [84]. Kamei, Y.,Xu, L.,Heinzel, T., et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors.[J]. Cell,1996, 85 (3):403-14.
    [85]. Takeshita, A.,Yen, P. M.,Misiti, S., et al. Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator.[J]. Endocrinology,1996, 137 (8):3594-7.
    [86]. Wang, J. C.,Stafford, J. M.,Granner, D. K. SRC-1 and GRIP1 coactivate transcription with hepatocyte nuclear factor 4.[J]. J Biol Chem,1998,273 (47): 30847-50.
    [87]. Lee, S. K.,Kim, H. J.,Na, S. Y., et al. Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits.[J]. J Biol Chem,1998,273 (27):16651-4.
    [88]. Kim, H. J.,Kim, J. H.,Lee, J. W. Steroid receptor coactivator-1 interacts with serum response factor and coactivates serum response element-mediated transactivations.[J]. J Biol Chem,1998,273 (44):28564-7.
    [89]. Na, S. Y.,Lee, S. K.,Han, S. J., et al. Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappaB-mediated transactivations.[J]. J Biol Chem,1998,273 (18):10831-4.
    [90]. Yeatman, C. F.,2nd,Jacobs-Helber, S. M.,Mirmonsef, P.. et al. Combined stimulation with the T helper cell type 2 cytokines interleukin (1L)-4 and IL-10 induces mouse mast cell apoptosis.[J]. J Exp Med,2000.192 (8):1093-103.
    [91]. Hong, H.,Kohli. K.,Trivedi. A., et al. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. [J]. Proc Natl Acad Sci U S A,1996,93 (10):4948-52.
    [92]. Voegel, J. J.,Heine. M. J..Zechel, C., et al. TIF2. a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors.[J]. EMBO J.1996.15 (14):3667-75.
    [93]. Torchia. J.,Rose. D. W.,Inostroza. J., et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function.[J]. Nature,1997.387 (6634):677-84.
    [94]. Misiti, S.,Schomburg, L.,Yen, P. M., et al. Expression and hormonal regulation of coactivator and corepressor genes.[J]. Endocrinology,1998.139 (5): 2493-500.
    [95]. Xu. J.,Qiu. Y.,DeMayo. F. J., et al. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene.[J]. Science.1998.279 (5358):1922-5.
    [96]. Nishihara. E.,Yoshida-Komiya. H.,Chan? C. S., et al. SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells.[J]. Journal of Neuroscience.2003,23 (1):213-22.
    [97]. Li, H..Chen. J. D. The receptor-associated coactivator 3 activates transcription through CREB-binding protein recruitment and autoregulation.[J]. J Biol Chem.1998,273 (10):5948-54.
    [98]. Puustinen. R.,Sarvilinna, N,Manninen. T., et al. Localization of glucocorticoid receptor interacting protein 1 in murine tissues using two novel polyclonal antibodies.[J]. Eur J Endocrinol,2001,145 (3):323-33.
    [99]. Chen, H.,Lin. R.J.,Schiltz. R. L., et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300.[J]. Cell.1997.90 (3):569-80.
    [100]. Takeshita, A.,Cardona, G. R.,Koibuchi, N., et al. TRAM-1, A novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1.[J]. J Biol Chem,1997,272 (44):27629-34.
    [101]. Suen, C. S.,Berrodin, T. J.,Mastroeni, R., et al. A transcriptional coactivator, steroid receptor coactivator-3, selectively augments steroid receptor transcriptional activity.[J]. J Biol Chem,1998,273 (42):27645-53.
    [102]. Xu, J.,Liao, L.,Ning, G., et al. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development.[J]. Proc Natl Acad Sci U S A,2000,97 (12):6379-84.
    [103]. Carapeti, M.,Aguiar, R. C.,Chase, A., et al. Assignment of the steroid receptor coactivator-1 (SRC-1) gene to human chromosome band 2p23.[J]. Genomics, 1998,52 (2):242-4.
    [104]. Kalkhoven, E.,Valentine, J. E.,Heery, D. M., et al. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor.[J]. EMBO J,1998,17(1):232-43.
    [105]. Ning, G.,Jurecic, V.,Baldini, A., et al. Structure and chromosomal locations of mouse steroid receptor coactivator gene family.[J]. In Vitro Cell Dev Biol Anim, 1999,35 (8):481-6.
    [106]. Huang, Z. J.,Edery, I.,Rosbash, M. PAS is a dimerization domain common to Drosophila period and several transcription factors.[J]. Nature,1993,364 (6434): 259-62.
    [107]. McKenna, N. J.,Nawaz, Z.,Tsai, S. Y., et al. Distinct steady-state nuclear receptor coregulator complexes exist in vivo.[J]. Proc Natl Acad Sci U S A,1998, 95 (20):11697-702.
    [108]. Belandia, B.,Parker, M. G:Functional interaction between the p160 coactivator proteins and the transcriptional enhancer factor family of transcription factors.[J]. J Biol Chem,2000,275 (40):30801-5.
    [109]. Liao, L.,Kuang, S. Q.,Yuan, Y., et al. Molecular structure and biological function of the cancer-amplified nuclear receptor coactivator SRC-3/AIB1.[J]. J Steroid Biochem Mol Biol.2002,83 (1-5):3-14.
    [110]. York. B.,O'Malley, B. W. Steroid receptor coactivator (SRC) family:masters of systems biology.[J]. J Biol Chem.2010.285 (50):38743-50.
    [111]. Testoni, P. A.,Mangiavillano. B..Albarello. L.. et al. Optical coherence tomography to detect epithelial lesions of the main pancreatic duct:an Ex Vivo study.[J]. Am J Gastroenterol.2005.100 (12):2777-83.
    [112]. Han, S. J.,DeMayo, F. J..Xu, J., et al. Steroid receptor coactivator (SRC)-1 and SRC-3 differentially modulate tissue-specific activation functions of the progesterone receptor.[J]. Mol Endocrinol.2006,20 (1):45-55.
    [113]. Weiss. R. E.,Xu. J.,Ning. G., et al. Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone.[J]. EMBO J.1999.18 (7): 1900-4.
    [114]. Winnay, J. N.,Xu, J..O'Malley. B. W.. et al. Steroid receptor coactivator-1-deficient mice exhibit altered hypothalamic-pituitary-adrenal axis function.[J]. Endocrinology,2006,147 (3):1322-32.
    [115]. Yuan, Y.,Xu. J. Loss-of-function deletion of the steroid receptor coactivator-1 gene in mice reduces estrogen effect on the vascular injury response.[J]. Arterioscler Thromb Vasc Biol,2007.27 (7):1521-7.
    [116]. Modder. U. I.,Sanyal. A.,Kearns. A. E.. et al. Effects of loss of steroid receptor coactivator-1 on the skeletal response to estrogen in mice.[J]. Endocrinology. 2004.145 (2):913-21.
    [117]. Yamada. T.,Kawano, H.,Sekine. K., et al. SRC-1 is necessary for skeletal responses to sex hormones in both males and females.[J]. Journal of Bone and Mineral Research,2004,19 (9):1452-61.
    [118]. Modder. U.I.,Sanyal. A.,Xu, J., et al. The skeletal response to estrogen is impaired in female but not in male steroid receptor coactivator (SRC)-1 knock out mice.[J]. Bone,2008,42 (2):414-21.
    [119]. Agoulnik. I. LLVaid, A.,Bingman. W. E.,3rd. et al. Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression.[J]. Cancer Res, 2005,65 (17):7959-67.
    [120]. Walsh, C. A.,Qin, L.,Tien, J. C., et al. The function of steroid receptor coactivator-1 in normal tissues and cancer.[J]. International Journal of Biological Sciences,2012,8 (4):470-85.
    [121]. Kavanagh, D. O.,McIlroy, M.,Myers, E., et al. The role of oestrogen receptor (alpha} in human thyroid cancer:contributions from coregulatory proteins and the tyrosine kinase receptor HER2.[J]. Endocr Relat Cancer,2010,17 (1):255-64.
    [122]. Wang, S.,Yuan, Y.,Liao, L., et al. Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation.[J]. Proc Natl Acad Sci U S A,2009,106 (1):151-6.
    [123]. Gehin, M.,Mark, M.,Dennefeld, C., et al. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP.[J]. Mol Cell Biol, 2002,22(16):5923-37.
    [124]. Jeong, J. W.,Lee, K. Y.,Han, S. J., et al. The p160 steroid receptor coactivator 2, SRC-2, regulates murine endometrial function and regulates progesterone-independent and -dependent gene expression.[J]. Endocrinology,2007, 148 (9):4238-50.
    [125]. Patchev, A. V.,Fischer, D.,Wolf, S. S., et al. Insidious adrenocortical insufficiency underlies neuroendocrine dysregulation in TIF-2 deficient mice.[J]. FASEB J,2007,21(1):231-8.
    [126]. Picard, F.,Gehin, M.,Annicotte, J., et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues.[J]. Cell,2002,111 (7):931-41.
    [127]. Xu, J. M.,Liao, L.,Ning, C., et al. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development.[J]. Proc Natl Acad Sci U S A,2000,97 (12):6379-6384.
    [128]. Wang, Z.,Rose, D. W.,Hermanson, O., et al. Regulation of somatic growth by the p160 coactivator p/CIP.[J]. Proc Natl Acad Sci U S A,2000,97 (25):13549-54.
    [129]. Louet, J. F.,Coste, A.,Amazit, L., et al. Oncogenic steroid receptor coactivator-3 is a key regulator of the white adipogenic program.[J]. Proc Natl Acad Sci U S A,2006,103 (47):17868-73.
    [130]. Coste, A.,Louet, J. F.,Lagouge, M., et al. The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}.[J]. Proc Natl Acad Sci U S A,2008,105(44):17187-92.
    [131]. Yu, C.,York, B.,Wang, S., et al. An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response.[J]. Mol Cell,2007,25 (5):765-78.
    [132]. Gnanapragasam, V. J.,Leung, H. Y.,Pulimood, A. S., et al. Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer.[J]. Br J Cancer. 2001.85(12):1928-36.
    [133]. Zhou, H. J.,Yan, J.,Luo, W., et al. SRC-3 is required for prostate cancer cell proliferation and survival.[J]. Cancer Res,2005,65 (17):7976-83.
    [134]. Tanner, M. M.,Grenman, S.,Koul, A., et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer.[J]. Clin Cancer Res,2000,6 (5): 1833-9.
    [135]. Carroll, R. S.,Brown, M.,Zhang. J., et al. Expression of a subset of steroid receptor cofactors is associated with progesterone receptor expression in meningiomas.[J]. Clin Cancer Res,2000,6 (9):3570-5.
    [136]. List, H. J.,Reiter, R.,Singh, B., et al. Expression of the nuclear coactivator AIBl in normal and malignant breast tissue.[J]. Breast Cancer Res Treat,2001,68 (1):21-8.
    [137]. Ma, G.,Ren. Y.,Wang, K., et al. SRC-3 has a role in cancer other than as a nuclear receptor coactivator.[J]. International Journal of Biological Sciences,2011, 7 (5):664-72.
    [138]. Azorsa, D. O.,Cunliffe, H. E.,Meltzer, P. S. Association of steroid receptor coactivator AIBl with estrogen receptor-alpha in breast cancer cells.[J]. Breast Cancer Res Treat,2001,70 (2):89-101.
    [139]. List. H. J.,Lauritsen, K. J.,Reiter, R., et al. Ribozyme targeting demonstrates that the nuclear receptor coactivator AIBl is a rate-limiting factor for estrogen-dependent growth of human MCF-7 breast cancer cells.[J]. J Biol Chem. 2001,276 (26):23763-8.
    [140]. Sakakura, C.,Hagiwara, A.,Yasuoka, R., et al. Amplification and over-expression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers.[J]. Int J Cancer,2000,89 (3); 217-23.
    [141]. Xie, D.,Sham, J. S.,Zeng, W. F., et al. Correlation of AIB1 overexpression with advanced clinical stage of human colorectal carcinoma.[J]. Hum Pathol,2005, 36 (7):777-83.
    [142]. Wang, Y.,Wu, M. C.,Sham, J. S., et al. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray.[J]. Cancer,2002,95 (11):2346-52.
    [143]. Bouras, T.,Southey, M. C.,Venter, D. J. Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu.[J]. Cancer Res,2001, 61 (3):903-7.
    [144]. Werbajh, S.,Nojek, I.,Lanz, R., et al. RAC-3 is a NF-kappa B coactivator.[J]. FEBS Lett,2000,485 (2-3):195-9.
    [145]. Louie, M. C.,Zou, J. X.,Rabinovich, A., et al. ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance.[J]. Mol Cell Biol,2004,24 (12):5157-71.
    [146]. Dimova, D. K.,Dyson, N. J. The E2F transcriptional network:old acquaintances with new faces.[J]. Oncogene,2005,24 (17):2810-26.
    [147]. Hunt, K. K.,Keyomarsi, K. Cyclin E as a prognostic and predictive marker in breast cancer.[J]. Semin Cancer Biol,2005,15 (4):319-26.
    [148]. Keyomarsi, K.,Tucker, S. L.,Buchholz, T. A., et al. Cyclin E and survival in patients with breast cancer.[J]. N Engl J. Med,2002,347 (20):1566-75.
    [149]. Han, S.,Park, K.,Bae, B. N., et al. E2F1 expression is related with the poor survival of lymph node-positive breast cancer patients treated with fluorouracil, doxorubicin and cyclophosphamide.[J]. Breast Cancer Res Treat,2003,82 (1):11-6.
    [150]. Grimberg, A. Mechanisms by which 1GF-1 may promote cancer.[J]. Cancer Biol Ther,2003,2 (6):630-5.
    [151]. Torres-Arzayus, M. I.,Font de Mora, J.,Yuan, J., et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene.[J]. Cancer Cell.2004.6 (3):263-74.
    [152]. Tilli, M. T.,Reiter, R..Oh. A. S., et al. Overexpression of an N-terminally truncated isoform of the nuclear receptor coactivator amplified in breast cancer 1 leads to altered proliferation of mammary epithelial cells in transgenic mice.[J]. Mol Endocrinol.2005.19 (3):644-56.
    [153]. Oh. A.,List, H. J.,Reiter, R.. et al. The nuclear receptor coactivator AIB1 mediates insulin-like growth factor I-induced phenotypic changes in human breast cancer cells.[J]. Cancer Res,2004,64 (22):8299-308.
    [154]. Zhou. G..Hashimoto, Y.,Kwak. I., et al. Role of the steroid receptor coactivator SRC-3 in cell growth.[J]. Mol Cell Biol.2003.23 (21):7742-55.
    [155]. Lin, A.,Karin, M. NF-kappaB in cancer:a marked target.[J]. Semin Cancer Biol.2003,13(2):107-14.
    [156]. Pages. F.,Vives, V.,Sautes-Fridman. C., et al. Control of tumor development by intratumoral cytokines.[J]. Immunol Lett,1999,68 (1):135-9.
    [157]. Giri, D.,Ozen, M.,Ittmann, M. Interleukin-6 is an autocrine growth factor in human prostate cancer.[J]. Am J Pathol,2001,159 (6):2159-65.
    [158]. Shariat. S. F.,Andrews. B.,Kattan. M. W.. et al. Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis.[J]. Urology,2001.58 (6):1008-15.
    [159]. Raught. B.,Liao, W. S.,Rosen. J. M. Developmentally and hormonally regulated CCAAT/enhancer-binding protein isoforms influence beta-casein gene expression.[J]. Mol Endocrinol.1995.9 (9):1223-32.
    [160]. Kagan, B. L.,Henke. R. T,Cabal-Manzano, R., et al. Complex regulation of the fibroblast growth factor-binding protein in MDA-MB-468 breast cancer cells by CCAAT/enhancer-binding protein beta.[J]. Cancer Res,2003.63 (7):1696-705.
    [161]. Kuang. S. Q.,Liao. L.,Wang. S., et al. Mice lacking the amplified in breast cancer 1/steroid receptor coactivator-3 are resistant to chemical carcinogen-induced mammary tumorigenesis.[J]. Cancer Res.2005,65 (17):7993-8002.
    [162]. Font de Mora. J.,Brown. M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor.[J]. Mol Cell Biol,2000,20 (14):5041-7.
    [163]. Osborne, C. K.,Bardou, V.,Hopp, T. A., et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer.[J]. J Natl Cancer Inst,2003,95 (5):353-61.
    [164]. Zhu, J.,Chen, Q.,Xia, X., et al. Mycoepoxydiene suppresses RANKL-induced osteoclast differentiation and reduces ovariectomy-induced bone loss in mice.[J]. Appl Microbiol Biotechnol,2013,97 (2):767-74.
    [165]. Li, H. J.,Haque, Z.,Lu, Q., et al. Steroid receptor coactivator 3 is a coactivator for myocardin, the regulator of smooth muscle transcription and differentiation.[J]. Proc Natl Acad Sci U S A,2007,104 (10):4065-70.
    [166]. Xu, Y.,Chen, Q.,Li, W., et al. Overexpression of transcriptional coactivator AIB1 promotes hepatocellular carcinoma progression by enhancing cell proliferation and invasiveness.[J]. Oncogene,2010,29 (23):3386-97.
    [167]. Schauber, J.,Oda, Y.,Buchau, A. S., et al. Histone acetylation in keratinocytes enables control of the expression of cathelicidin and CD 14 by 1,25-dihydroxyvitamin D3.[J]. J Invest Dermatol,2008,128 (4):816-24.
    [168]. Wedemeyer, J.,Tsai, M.,Galli, S. J. Roles of mast cells and basophils in innate and acquired immunity.[J]. Curr Opin Immunol,2000,12 (6):624-31.
    [169]. Chai, O. H.,Shon, D. H.,Han, E. H., et al. Effects of Anemarrhena asphodeloides on IgE-mediated passive cutaneous anaphylaxis, compound 48/80-induced systemic anaphylaxis and mast cell activation.[J]. Exp Toxicol Pathol, 2013,65 (4):419-26.
    [170]. Lee, J. H.,Kim, J. W.,Ko, N. Y., et al. Camellia japonica suppresses immunoglobulin E-mediated allergic response by the inhibition of Syk kinase activation in mast cells.[J]. Clin Exp Allergy,2008,38 (5):794-804.
    [171]. Kinet, J. P. The high-affinity IgE receptor (Fc epsilon RI):from physiology to pathology.[J]. Annu Rev Immunol,1999,17931-72.
    [172]. Holgate, S. T.,Polosa, R. Treatment strategies for allergy and asthma.[J]. Nat Rev Immunol,2008,8 (3):218-30.
    [173]. de Castro, R. O. Regulation and function of syk tyrosine kinase in mast cell signaling and beyond.[J].J Signal Transduct,2011,2011507291.
    [174]. Gilfillan. A. M.,Rivera. J. The tyrosine kinase network regulating mast cell activation.[J]. Immunol Rev.2009,228 (1):149-69.
    [175]. El-Sibai, M.,Backer. J, M. Phospholipase C gamma negatively regulates Rac/Cdc42 activation in antigen-stimulated mast cells.[J]. Eur J Immunol,2007,37 (1):261-70.
    [176]. Lorentz, A.,Klopp, I.,Gebhardt. T.. et al. Role of activator protein 1. nuclear factor-kappaB, and nuclear factor of activated T cells in IgE receptor-mediated cytokine expression in mature human mast cells.[J]. J Allergy Clin Immunol.2003, 111 (5):1062-8.
    [177]. Taketomi. Y.,Sunaga. K.,Tanaka. S., et al. Impaired mast cell maturation and degranulation and attenuated allergic responses in Ndrgl-deficient mice.[J]. J Immunol,2007,178 (11):7042-53.
    [178]. Cheng. C.,Ng. D. S..Chan, T. K., et al. Anti-allergic action of anti-malarial drug artesunate in experimental mast cell-mediated anaphylactic models.[J]. Allergy, 2013.68(2):195-203.
    [179]. Kim do. K.,Lee, J. H.,Kim. J. W., et al. A novel imidazo[1.5-b]isoquinolinone derivative. U63A05, inhibits Syk activation in mast cells to suppress IgE-mediated anaphylaxis in mice.[J]. J Pharmacol Sci.2011.115 (4):500-8.
    [180]. Maier, J. V..Brema. S.,Tuckermann. J., et al. Dual specificity phosphatase 1 knockout mice show enhanced susceptibility to anaphylaxis but are sensitive to glucocorticoids.[J]. Mol Endocrinol.2007,21 (11):2663-71.
    [181]. Coste, A.,Antal. M. C.,Chan. S., et al. Absence of the steroid receptor coactivator-3 induces B-cell lymphoma.[J]. EMBO J.2006.25 (11):2453-64.
    [182]. Wu. R. C.,Qin. J..Hashimoto. Y.. et al. Regulation of SRC-3 (pCIP/ACTR/AlB-1/RAC-3/TRAM-1) Coactivator activity by I kappa B kinase.[J]. Mol Cell Biol.2002.22 (10):3549-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700