用户名: 密码: 验证码:
白蚁菌圃及中药等对神经系统退行性疾病治疗机制及效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     神经系统退行性疾病,是一组由慢性进行性中枢神经组织退行性变性而产生的疾病总称,它包括:阿尔茨海默病(Alzheimer's disease, AD)、肌萎缩侧索硬化症(amyotrophic lateral sclerosis, ALS)、亨廷顿病(Huntington disease, HD)、帕金森氏病(Parkinson's disease, PD)、多发性硬化(multiple sclerosis, MS)等。迄今为止,此类疾病的发病病因及发病机制尚未完全阐明,随着老龄化社会的来临,神经系统退行性疾病中AD和PD患病率呈逐年上升趋势,虽然其具体发病机制目前尚不能明确,但有研究表明,AD和PD的发生发展有着共同的氧化应激损伤通道,从而造成生物大分子物质氧化损伤,并最终导致细胞凋亡,氧化应激在AD、PD发生发展中起着重要作用。
     在神经系统退行性疾病治疗方面,传统的药物治疗方法,副作用大,费用高,易产生耐药性,长期服药效果下降,近年来,大量的研究证明,很多中药均有清除自由基的功效,能够抑制氧化应激所带来的一系列的损伤及其继发的细胞凋亡,尤其在治疗AD、PD方面取得了显著的成绩,今后中药在阻止或延缓AD、PD发生、发展,以及预防和治疗AD、PD中会起着一定的积极作用。
     本研究旨在研究和探讨白蚁菌圃及中药等,其抗氧化、治疗神经系统退行性疾病的机制和效果,为开发新的治疗神经系统退行性疾病的药物提供理论依据。
     研究方法
     1.利用N-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)给大鼠腹腔注射,再用爬杆法进行筛选,选取PD模型大鼠随机抽取治疗组及对照组,由黄芪、天麻、银杏叶、白芍、钩藤、连翘、生甘草、野生葛根、大叶红景天、黄连等配成中药平颤方,联合褪黑素(MT)给予模型组及对照组进行治疗21d,观察大鼠的行为学及脑切片,分别用H-E染色,Bax/Bcl-2免疫组织化学染色和TUNEL法细胞凋亡染色,对脑匀浆进行多巴胺(dopamine, DA)及高香草酸(homovanillic acid, HVA)和二羟基苯乙酸(dihydroxy-phenyl acetic acid, DOPAC)的测定。
     2.利用野生型果蝇(UAS-wild-type a-synuclein/+)及UAS-DdC果蝇杂交得到PD果蝇,以野生型果蝇为对照组和PD果蝇作为研究组,给予不同浓度的白蚁菌圃醇提液培养42d,并对培养前后PD果蝇的行为学及寿命进行分析、对果蝇脑组织病理切片苏木精-伊红(HE)染色后观察。
     3.利用D-半乳糖持续皮下注射建立小鼠AD模型的,作为实验组,正常小鼠作为对照组,采用Morris水迷宫定位航行实验,分别从四个象限将小鼠放入水池中,计算潜伏期平均值,以评价小鼠空间记忆的获得能力,并对模型实验组小鼠血液进行过氧化物歧化酶(SOD),丙二醛(MDA)及谷胱甘肽(GSH)的测定,评价造模是否成功,给予模型组小鼠喂食不同浓度的白蚁菌圃醇提液,同时测定AD模型治疗组小鼠血液的SOD,MDA和GSH水平,评价不同浓度白蚁菌圃醇提液对AD小鼠的治疗效果,并分别观察比较AD模型组与治疗组的小鼠脑部p-淀粉样蛋白表达、脑组织和肝组织病理学改变。
     4.白蚁菌圃醇提液对抗SH-SY5Y细胞氧化应激损伤作用的研究,用H202建立人神经瘤母细胞SH-SY5Y氧化应激损伤模型,MTT法测不同时间段的细胞存活率,同时收集各组细胞培养液用于检测SOD、MDA和GSH,在造模同时和造模后加入不同浓度的白蚁菌圃醇提取液,观察其对SH-SY5Y细胞氧化应激损伤的预防及治疗作用。
     5.白蚁菌圃水提液对胃癌细胞系BGC-823细胞生长的影响,应用白蚁菌圃水提液与BGC-823细胞作用24h后,于倒置显微镜下观察细胞形态的变化,台盼蓝染色法测细胞存活率,MTT比色法检测细胞活性,取对数期生长的BGC-823细胞,同时设空白对照组,流式细胞仪检测细胞凋亡,并行细胞总RNA的提取,cDNA逆转录,荧光定量PCR,设计引物,扩增。
     结果
     1.MPTP复制的PD动物模型,其前脑组织DA、HVA、DOPAC含量与空白对照组相比,均显著降低,同时伴随有智力减退和运动障碍;使用中药平颤方+MT治疗21d,模型组中DA、HVA、DOPAC含量均较病理对照组明显增加;给予中药平颤方联合MT治疗PD,大鼠前脑纹状体神经元和胶质细胞Bcl-2基因蛋白的表达明显增多、增强,Bax基因表达受到抑制,同时DA细胞凋亡减少。
     2.与对照组相比,PD雄性果蝇的攀爬能力随年龄成熟而增强,但在羽化后的24到48d,下降较明显。在白蚁菌圃实验组中,白蚁菌圃干预并起作用的时间和浓度相关,在雌性果蝇中,PD果蝇的攀爬能力随着年龄的增长而逐渐降低,不同浓度的白蚁菌圃培养都能提高PD果蝇的攀爬能力,在羽化后18到48d最显著,且随浓度及果蝇年龄的增长,效果更好,雌雄PD果蝇之间攀爬能力无明显差异,且用含不同浓度的白蚁菌圃醇提液培养基饲养的果蝇寿命明显延长,呈现了较好的剂量依赖性关系。取攀爬能力下降较明显的第36d的果蝇,制作病理切片,经HE染色的病理切片可见,与对照组相比,PD果蝇的脑组织边缘皮质层细胞变薄、排列紊乱,空泡增多,添食了白蚁菌圃提取物的果蝇脑组织中,细胞数目增多,排列较紧密有序,空泡减少。
     3.在AD衰老模型组迷宫试验中,小鼠体力、智力下降,逃避潜伏期延长明显,其氧化和抗氧化指标明显改变,且AD模型组脑部改变与衰老的生理变化相符合,与相关文献报道一致,证明造模成功。治疗组中,小鼠血液SOD活力、GSH含量、MDA含量较模型组有明显改善,不同浓度白蚁菌圃治疗后AD模型组脑细胞、肝细胞中,细胞形态随着药物治疗浓度的增加,绝大多数细胞形态逐渐接近正常,且治疗组脑组织绝大多数细胞中,β-淀粉样蛋白表达逐渐接近正常组小鼠脑组织。
     4.在神经瘤母细胞SH-SY5Y细胞的培养液中加入不同剂量的白蚁菌圃醇提液,通过SOD、MDA及GSH测定结果表明,白蚁菌圃醇提液预先处理细胞,可以对抗H202诱导的SH-SY5Y细胞的损伤,存活率提高,表明白蚁菌圃醇提取液可以对抗H202造成的损伤。
     5.白蚁菌圃水提液与胃癌细胞系BGC-823细胞作用24h后,结果显示,加药后BGC-823细胞的生长受到抑制,细胞的数量和形态都发生了改变,细胞数目减少,部分细胞破裂,另有部分细胞的核皱缩,核浆变少等,表明白蚁菌圃水提液能破坏和抑制BGC-823细胞的生长,对BGC-823细胞的存活率有较大影响,细胞的存活率与浓度呈负性相关,同时发现白蚁菌圃提取物可以引起p53基因表达的上调,但其机理有待研究。
     结论
     1.MPTP注射建模显示,模型组绝大多数小鼠鼠须脱落明显,毛色逐渐失去光泽,易脱落,皮肤弹性差,呈现出衰老体征,表明AD模型成功建立,中药副作用小,可以和西药配伍,从而增加治疗的效果减少耐药性,模型实验组中药治疗后,衰老症状、行为学及脑部组织病变等均有改善,褪黑激素分子小,作用部位广泛,以其高弥散的穿透能力发挥生物学效应,通过提高脑的抗氧化能力,防止脑组织免受自身氧化应激损伤。中西药二者联合使用,有机联系辨证论治的统性和证候之间的关系,为探索中医或中西医结合治疗PD的优势及其作用机制提供了理论基础。
     2.果蝇具有高度发达的神经系统、较短的生命周期,并且易于进行细胞生物学、遗传学、分子生物学研究的操作和分析,是一个非常稳定而实用的模式生物,果蝇PD模型能够很好的模拟人类PD的慢性退行性改变。白蚁菌圃对PD果蝇的攀爬能力及寿命有较明显的改善,且呈现较好的浓度和时间依赖性,雌性和雄性之间无明显差异,经白蚁菌圃治疗后的PD果蝇,其脑组织边缘皮质层细胞较PD模型组增多,且排列整齐,脑组织内的空泡减少,此改变与果蝇的攀爬能力和寿命的改变相一致,由此可以证明白蚁菌圃可以改善PD的运动障碍,可能与白蚁菌圃抗氧化作用相关,其神经保护作用及抗PD的作用机制,仍需进一步研究,因其较强的抗氧化作用,白蚁菌圃有望发展成为一种预防和治疗PD的新型药物。
     3.在实验中,利用D-半乳糖持续皮下注射建立小鼠AD模型可靠,经不同浓度白蚁菌圃治疗后,氧化抗氧化指标及肝组织、脑组织形态改变、脑组织中β-淀粉样蛋白表达减少,随着治疗浓度的增加,改变呈现浓度依赖性,显示高浓度治疗剂量效果更佳,说明白蚁菌圃具有抗AD的作用。
     4.以H202体外诱导SH-SY5Y细胞氧化损伤的模型,可以比较直观地分析抗氧化剂对细胞的保护作用,预先加入白蚁菌圃醇提取液处理细胞,说明白蚁菌圃醇提取液具有一定的预防H202对SH-SY5Y细胞的损伤作用。当白蚁菌圃醇提取液与H202同时处理细胞时,细胞的存活率比H202损伤对照组仍有提高,并与剂量呈正向趋势,说明在白蚁菌圃醇提取液中存在抗氧化的物质,推论白蚁菌圃具有抗氧化的作用,可能与其高含量的黄酮总甙有关,但其起作用的主要成分尚不清楚,需进一步检测。
     5.实验研究结果表明,白蚁菌圃对胃癌细胞BGC-823具有一定的促凋亡作用,但具体机制尚不清楚,有待深入研究。
Background and purpose
     Neurodegenerative diseases are generally caused by the chronic and progressive degeneration of the central nervous system. These diseases usually include the Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS) and other related disorders. Up to date, the etiology and pathogenesis of these diseases remain unclear. With the aging population in China, the neurodegenerative diseases such as AD and PD are becoming more and more prevalent. It has been shown that oxidative stress can cause oxidative damage of biological macromolecules, lead to apoptosis, and play an important role in the pathogenesis of AD and PD.Although many drugs have been applied to the treatment of various degenerative diseases of the nervous system,they often can cause serious side effects with a high cost and promote the generation of drug resistance which greatly reduced the effectiveness of long-term medication. Recently, many studies have shown that some traditional Chinese medicines can scavenge free radicals, inhibit oxidative stress and the resultant apoptosis, and thus display significant efficacy in the treatment of AD and PD.
     The purpose of this study is to analyze the antioxidant capacity of termite fungus garden and compatible medicines, and investigate their effects and possible mechanisms in the treatment of degenerative diseases of the nervous system, which may provide new knowledge for the development of drugs to treat neurological diseases.
     Methods
     1.The peritoneal cavities of rats were injected with the N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and the PD-model rats were selected by the pole-climbing method. The Pingchan Fang medicines were composed of Astragalus, Tianma, ginkgo biloba, white peony root, Uncaria, forsythia, raw licorice,wild arrowroot,big leave and red Jing tian and berberine.The PD model rats were randomly grouped into treatment group and control group, and then were treated with the Pingchan Fang together with melatonin for21days.The rat behavior was documented. The rat brain sections were prepared and applied for hematoxylin-eosin (HE) staining, Bax/Bcl-2immunohisto chemical staining and TUNEL staining (apoptosis analysis). The content of dopamine (DA) in the brain homogenates was determined, as well as its metabolites homovanillic acid (HVA) and dihydroxy acid (DOPAC).
     2. The PD models of fruit fly (Drosophila) were prepared by the hybrid of wild-type (UAS-wild-type a-synuclein/+) and UAS-DdC flies. The wild-type and PD flies had been fed with different concentrations of alcohol extract of termites fungus garden for42d, and the life span and the behavior of them were analyzed. The brain tissue biopsy was performed and the sections were treated by HE staining.3. The PD models of mouses were prepared by subcutaneous injection of D-galactose, and were fed with different concentrations of alcohol extract of termites fungus garden, then the Morris water maze place navigation method was used to place mice in the pool from four quadrants. The average latency time was calculated to evaluate the mouse ability to obtain spatial memory. The measurements for SOD, MDA and GSH of these PD model mice were performed to evaluate the establishment of these models and the effects of ethanol extracts of the termite fungus garden. The changes of brain β-amyloid and the histopathological changes in the brains and livers were also examined.
     4. The oxidative stress model of neuroblastoma SH-SY5Y cells were prepared by H2O2treatment, and the effects of the application of alcohol extract of termites fungus garden are investigated. The MTT assay was used to determine the cell viability at different incubation time points. The SOD, MDA, GSH and other activities were also examined. In addition, the alcohol extract of termites fungus garden was applied both during and after the construction of the models to analyze the prevention and treatment effects of these extracts.5. The gastric cancer cells BGC-823were incubated with the water extract of the termites and fungus garden for24h to observing its effect on the growth of these cells under an inverted microscope. The cell survival was determined by Trypan blue staining method. The cell viability was measured by MTT method. The apoptosis was examined by the flow cytometry. The changes of p53gene expression levels were tedected using quantitative PCR analysis.
     Results
     1. The PD animal models were successfully constructed by MPTP method. The significant reductions of the amount of DA, HVA, DOPAC in forebrain tissues were found, accompanied by mental deterioration and movement disorders. The combined use of Pingchan Fang and MT can significantly increase the levels of DA, HVA, DOPAC, increase the expression of Bel-2in rat striatum expressing neurons and glial cells, decrease the expression of Bax, and reduce the apoptosis of DA cells.
     2. By contrast to wild-type fruit flies (control group), the PD male fruit flies climbing ability is enhanced during maturation, but was decreased significantly during the24to48d after emergence. In the experimental group treated with Termite fungus garden, the climbing ability of female PD flies was gradually decreased with age. The alcohol extract of termites fungus garden can improve the climbing capability of PD flies, and the effects were the most prominent during the18-48d after emergence. The improvement was becoming more prominent as the extract concentration or fly age was increased, and there were no significant difference in the climbing ability between male and female PD flies. The life span of male and female flies can be significantly prolonged by the treatment of the termite fungus garden, with a good dose-dependent manner. The flies with significantly decreased ability of climbing activity (36d) were biopsied to prepare the pathological sections. Compared to control groups, the brain cortex cells of PD flies were thinned and in disorder with increased vacuoles. Application of the fungus garden extracts can increase the brain cell numbers of cells with well arranged array and reduced vacuoles.
     3. The AD aging mice show great physical and mental decline in the maze test and significantly delayed escape latency. The oxidation and antioxidant indicators were changed significantly. The changes in the brain were consistent with the physiological changes of aging, indicating that AD model mices were successfully established. In the treatment group, the blood SOD activity, GSH and MDA content are significantly improved as compared with the model group. After treatment with different concentrations of the extract of termites and fungus garden, the cell morphology was gradually becoming normal for most of the brain and liver cells of the AD model group, and the amount of brain tissue β-amyloid is also becoming normal.
     4. The measurement of SOD, MDA and GSH showed that the addition of alcohol extract of termites fungus garden into the culture medium for SH-SY5Y cells can prevent the H2O2-induced cell damage and improve the cell survival, indicating that the extract can fight against the damage caused by H2O2.
     5. After24h incubation of the water extract of termites and fungus garden, the growth of BGC-823cells was inhibited, accompanied with the cell number and morphological changes. The cell number was reduced and some cells were ruptured. Some cell nucleus was shrunk with less nuclear plasma. Thus, the extract can inhibit the growth of these tumor cells, which is in a dose-dependent manner. This extract can up-regulate the gene expression of p53, which may be the way to affect cell survival.
     Conclusion
     1. The combined use of traditional Chinese medicine and Western medicine with an emphasis on the close relationship between the diagnosis and symptom shows great advantages in the treatment of PD and other nervous degenerative diseases.
     2. The significant improvement of the climbing ability and life span of PD flies suggests the extract of termite fungus garden can improve the movement ability of PD flies, which may be related to its role in the antioxidant reactions.
     3. The extract of termite fungus garden shows positive effects in the treatment of AD, which is in a concentration-dependent manner.
     4. The alcohol extract of the termites fungus garden shows protective effects for SH-SY5Y cells against the H2O2induced damage, indicating the presence of antioxidant substances in this extract.
     5. The extract of termite fungus garden shows pro-apoptotic effects for the gastric cancer cells BGC-823and can up-regulate the p53expression, indicating it is related to the p53-mediated apoptosis.
引文
[1]HONDA K, CASADESUS G, PETERSEN R B, et al. Oxidative Stress and Redox- Active Iron in Alzheimer's Disease[J]. Annals of the new York Academy of Sciences,2004,1012(1): 179-182.
    [2]Roertgen KE, Parisi JE, Clark HB, Barnes DL, O'Brien TD, Johnson KH (1996). A beta-associated cerebral angiopathy and senile plaques with neurofibrillary tangles and cerebral hemorrhage in an aged wolverine (Gulo gulo). Neurobiol Aging 17:243-247.
    [3]Ling D, Song H J, Garza D, et al. Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila[J]. PloS one,2009,4(1):e4201.
    [4]Campbell W A, Yang H, Zetterberg H, et al. Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss[J]. Journal of neurochemistry,2006,96(5):1423-1440.
    [5]Byerly L, Cassada R C, Russell R L. The life cycle of the nematode Caenorhabditis elegans:I. Wild-type growth and reproduction[J]. Developmental biology,1976,51(1):23-33.
    [6]Rosen D R, Martin-Morris L, Luo L Q, et al. A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor[J]. Proceedings of the National Academy of Sciences, 1989,86(7):2478-2482.
    [7]Poon H F, Farr S A, Thongboonkerd V, et al. Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid:implications for aging and age-related neurodegenerative disorders[J]. Neurochemistry international,2005,46(2):159-168.
    [8]Reisberg B, Borenstein J, Salob S P, et al. Behavioral symptoms in Alzheimer's disease: phenomenology and treatment[J]. Journal of Clinical Psychiatry,1987.
    [9]Crowther D C, Kinghorn K J, Miranda E, et al. Intraneuronal Ap, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer's disease[J]. Neuroscience,2005, 132(1):123-135.
    [10]Brundin P, Strecker R E, Widner H, et al. Human fetal dopamine neurons grafted in a rat model of Parkinson's disease:immunological aspects, spontaneous and drug-induced behaviour, and dopamine release[J]. Experimental brain research,1988,70(1):192-208.
    [11]Guillot T S, Shepherd K R, Richardson J R, et al. Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis[J]. Journal of neurochemistry,2008,106(5):2205-2217.
    [12]Cubells J F, Rayport S, Rajendran G, et al. Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress[J]. The Journal of neuroscience,1994,14(4):2260-2271.
    [13]Dluzen D E, Anderson L I, McDermott J L, et al. Striatal dopamine output is compromised within+/-BDNF mice[J]. Synapse,2002,43(2):112-117.
    [14]Bezard E, Przedborski S.2011. A tale on animal models of Parkinson's disease. Mov Disord 26: 993-1002.; Meredith GE, Sonsalla PK, Chesselet MF.2008. Animal models of Parkinson's disease progression. ActaNeuropa-thol 115:385-398.
    [15]Dawson T M, Ko H S, Dawson V L. Genetic animal models of Parkinson's disease[J]. Neuron, 2010,66(5):646-661.
    [16]Senoh S, Creveling C R, Udenfriend S, et al. Chemical, Enzymatic and Metabolic Studies on the Mechanism of Oxidation of Dopaminel[J]. Journal of the American Chemical Society,1959, 81(23):6236-6240.
    [17]Porter C C, Totaro J A, Burcin A. The relationship between radioactivity and norepinephrine concentrations in the brains and hearts of mice following administration of labeled methyldopa or 6-hydroxydopamine[J]. Journal of Pharmacology and Experimental Therapeutics,1965, 150(1):17-22.
    [18]Langston J W, Forno L S, Tetrud J, et al. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure [J]. Annals of neurology,1999,46(4):598-605.
    [19]Rojas J C, Simola N, Kermath B A, et al. Striatal neuroprotection with methylene blue[J]. Neuroscience,2009,163(3):877-889.
    [20]Tweeddale H, Gebicki J M. Effect of proteins and amino acids on oxidation of liposomes by hydroxyl and peroxyl free radicals[J]. Redox report,2002,7(5):332-334.
    [21]Markesbery W R. Oxidative stress hypothesis in Alzheimer's disease[J]. Free Radical Biology and Medicine,1997,23(1):134-147.
    [22]Kim M S, Lee J I, Lee W Y, et al. Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson's disease[J]. Phytotherapy Research,2004,18(8):663-666.
    [23]Carlsson A, Lindqvist M, Magnusson T O R.3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists [J].1957.
    [24]李种泰,杨文波.滋补肝肾填精益髓法治疗帕金森病临床观察[J].时珍国医国药,2006,17(2):258-259.
    [25]蔡定芳.中西医结合治疗帕金森病研究思考[J].中国中西医结合杂志,2007,27(9):775-776.
    [26]袁昌文.滋补肝肾法治疗帕金森病疗效观察[J].中华现代中医学杂志,2007,3(3):204-206.
    [27]Wang J W. Research in pharmacological experiments on Ter-mite White Ants Oral Liquid[J]. Termite White Ants Sci Technol (白蚁科技),1995,12:1-1.
    [28]Wani M C, Taylor H L, Wall M E, et al. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia[J]. Journal of the American Chemical Society,1971,93(9):2325-2327.
    [29]王磊,李玉艳,尤启冬.DNA拓扑异构酶Ⅰ抑制药——抗肿瘤药喜树碱类衍生物的研究进展[J].中国药师,2003,6(7):402-405.
    [30]雷秋模,刘金妹.藤黄抗癌作用研究的回顾与展望[J].肿瘤防治杂志,2003,10(2):216-219
    [31]曾郁敏,顾立刚.白首鸟甙诱导肿瘤细胞凋亡的实验研究[J].中国中医药信息杂志,2000,7(6):25-27.
    [32]李兴玉,晁党校.红毛五加多糖抗肿瘤的实验研究[J].甘肃科学学报,1998,10(33):75-77.
    [33]卢玉兰,翁开敏.冬虫夏草的药理作用研究[J].中国药师,2003,6(6):371-372.
    [34]仲兆金,刘浚.茯苓有效成分三萜的研究进展[J].中成药,2001,23(1):58-62.
    [35]彭光勇,周峰,丁如宁,等.莲必治注射液(穿心莲内酯)对免疫功能的调节作用[J].中国中药杂志,2002,27(2):147-150.
    [36]张荣,赵翌,刘基巍,等.人参皂苷Rg3诱导小鼠肝癌细胞凋亡及抑制肿瘤血管内皮生长因子生成的研究[J].时珍国医国药,2007,18(1):130-133.
    [37]梁永红,侯华新,黎丹戎,等.板蓝根二酮B体外抗癌活性研究[J].中草药,2000,31(7):531-533.
    [38]王本祥.现代中药药理学[M].天津科学技术出版,2005,600-605;713-735;809-824.
    [1]Zhang Z X, Roman G C, Hong Z, et al. Parkinson's disease in China:prevalence in Beijing, Xian, and Shanghai[J]. The Lancet,2005,365(9459):595-597.
    [2]李种泰,杨文波.滋补肝肾填精益髓法治疗帕金森病临床观察[J].时珍国医国药,2006,17(2):258-259.
    [3]罗毅.原发性帕金森病药物治疗的探讨[J].解放军保健医学杂志,2006,8(1):1-5.
    [4]Naoi M, Maruyama W, Akao Y, et al. Dopamine-derived endogenous N-methl-(R)-salsolinol: Its role in Parkinson's disease[J]. Neurotoxicology and teratology,2002,24(5):579-591.
    [5]Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP:contribution to the apoptotic theory in Parkinson's disease[J]. Progress in neurobiology,2001,65(2):135-172.
    [6]Arai N, Misugi K, Goshima Y, et al. Evaluation of a 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP)-treated C57 black mouse model for parkinsonism[J]. Brain research,1990,515(1):57-63.
    [7]Nicotra A, Parvez S H. Apoptotic molecules and MPTP-induced cell death[J]. Neurotoxicology and teratology,2002,24(5):599-605.
    [8]蔡定芳.中西医结合治疗帕金森病研究思考[J].中国中西医结合杂志,2007,27(9):775-776.
    [9]孙红梅,白丽敏,张军,等.银杏平颤方及其拆方对帕金森病模型小鼠脑内线粒体酶复合体活性的影响[J].中国中西医结合杂志,2006,25(11):1008-1011.
    [10]Sun H M, Bai L M, Zhang J. Effects of yinxing pingchan recipe and its components on activity of mitochondrial enzyme complex in brain of mice with Parkinson's disease [J]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi= Chinese journal of integrated traditional and Western medicine/Zhongguo Zhong xi yi jie he xue hui, Zhongguo Zhong yi yan jiu yuan zhu ban,2005,25(11):1008-1011.
    [11]Hayley S, Crocker S J, Smith P D, et al. Regulation of dopaminergic loss by Fas in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease[J]. The Journal of neuroscience,2004,24(8):2045-2053.
    [12]Nicotra A, Parvez S H. Apoptotic molecules and MPTP-induced cell death[J]. Neurotoxicology and teratology,2002,24(5):599-605.
    [13]Medeiros C A M, de Bruin P F C, Lopes L A, et al. Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson's disease[J]. Journal of neurology,2007,254(4):459-464.
    [14]Rocchitta G, Migheli R, Esposito G, et al. Endogenous melatonin protects L-DOPA from autoxidation in the striatal extracellular compartment of the freely moving rat:potential implication for long-term L-DOPA therapy in Parkinson's disease[J]. Journal of pineal research,2006,40(3):204-213.
    [15]Tan D X, Manchester L C, Hardeland R, et al. Melatonin:a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin[J]. Journal of pineal research,2003,34(1): 75-78.
    [16]Reiter R J, Melchiorri D, Sewerynek E, et al. A review of the evidence supporting melatonin's role as an antioxidant[J]. Journal of pineal research,1995,18(1):1-11.
    [17]Chen L D, Tan D X, Reiter R J, et al. In vivo and in vitro effects of the pineal gland and melatonin on [Ca2++Mg2+]-dependent ATPase in cardiac sarcolemma[J]. Journal of pineal research,1993,14(4):178-183.
    [18]Antolin I, Mayo J C, Sainz R M, et al. Protective effect of melatonin in a chronic experimental model of Parkinson's disease[J]. Brain research,2002,943(2):163-173.
    [19]Bordet R, Devos D, Brique S, et al. Study of circadian melatonin secretion pattern at different stages of Parkinson's disease[J]. Clinical neuropharmacology,2003,26(2):65-72.
    [20]袁昌文.滋补肝肾法治疗帕金森病疗效观察[J].中华现代中医学杂志,2007,3(3):204-206.
    [21]赵虹,李文伟,高俊鹏,等.补肾养肝方药治疗肝肾阴虚型帕金森病临床研究[J].中国中西医结合杂志,2007,27(9):780-784.
    [22]Medeiros C A M, de Bruin P F C, Lopes L A, et al. Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson's disease[J]. Journal of neurology,2007,254(4):459-464.
    [23]Rocchitta G, Migheli R, Esposito G, et al. Endogenous melatonin protects L-DOPA from autoxidation in the striatal extracellular compartment of the freely moving rat:potential implication for long-term L-DOPA therapy in Parkinson's disease[J]. Journal of pineal research, 2006,40(3):204-213.
    [24]24. Sharma R, McMillan CR, Tenn CC, et al. Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson's disease. Brain Res,2006; 1068(1):230-236.
    [25]Alvira D, Tajes M, Verdaguer E, et al. Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson's disease[J]. Journal of pineal research,2006,40(3):251-258.
    [26]王本祥.现代中药药理学.天津科学技术出版社,2005;600-605;713-735;809-824.
    [1]Lehmensiek V, Tan E M, Liebau S, et al. Dopamine transporter-mediated cytotoxicity of 6-hydroxydopamine in vitro depends on expression of mutant a-synucleins related to Parkinson's disease[J]. Neurochemistry international,2006,48(5):329-340.
    [2]Hasegawa T, Matsuzaki-Kobayashi M, Takeda A, et al. a-Synuclein facilitates the toxicity of oxidized catechol metabolites:Implications for selective neurodegeneration in Parkinson's disease[J]. FEBS letters,2006,580(8):2147-2152.
    [3]Turnbull S, Tabner B J, El-Agnaf O, et al. a-Synuclein implicated in Parkinson's disease catalyses the formation of hydrogen peroxide in vitro[J]. Free Radical Biology and Medicine, 2001,30(10):1163-1170.
    [4]严丽荣,高放,周亚平,等.中药平颤方加褪黑素对PD模型大鼠行为和前脑多巴胺及其代谢的影响[J].中国老年学杂志,2009,29(11):1355-1355.
    [5]李种泰,杨文波.滋补肝肾填精益髓法治疗帕金森病临床观察[J].时珍国医国药,2006,17(2):258-259.
    [6]罗毅.原发性帕金森病药物治疗的探讨[J].解放军保健医学杂志,2006,8(1):1-5.
    [7]蔡定芳.中西医结合治疗帕金森病研究思考[J].中国中西医结合杂志,2007,27(9):775-776.
    [8]贝伟剑,陈勇.土垄大白蚁菌圃的药理作用[J].中草药,1995,26(9):476-477.
    [9]薛德钧,周慧,张敏,等.白蚁菌圃的水溶性化学成分研究[J].中药材,2005,28(10):873-875.
    [10]胡乔生,屈红恩.白蚁菌圃有效药用成分的提取与应用研究[J].江西化工,2008(3):19-20.
    [11]段金廒,张培毅.黑翅土白蚁菌圃的定量及微量元素分析[J].中药材,1999,22(11):554-556.
    [12]Xue DJ, Zhou H, Zhang M, et al. Study of fat-soluble compounds from fungus garden of Odontotermes formosanus. Chin Tradit Herb Drugs(中草药),2005,36(Spl):76.
    [13]Xue D, Zhou H, Zhang M, et al. [Study of water-soluble compounds from fungus garden of Odontotermes formosanus][J]. Zhong yao cai= Zhongyaocai= Journal of Chinese medicinal materials,2005,28(10):873-875.
    [14]Xue D J, Wang X L. Study of chemical composition from Odontotermes formosanus Skiraki[J]. Chin Tradit Herb Drugs,2006,37:989-990.
    [15]温艾,刘力.以果蝇模型研究人类神经退行性疾病[J].生物化学与生物物理进展,2003,30(3):357-362.
    [16]Fortini M E, Bonini N M. Modeling human neurodegenerative diseases in Drosophila:on a wing and a prayer[J]. Trends in genetics,2000,16(4):161-167.
    [1]王怀明,郭洪志.阿尔茨海默氏病:p-淀粉样蛋白及其毒性的研究进展[J].中风与神经疾病杂志,2000,5:317-317.
    [2]贾建平,王荫华,章军建,等.中国痴呆与认知障碍诊治指南(四):辅助检查及其选择[J].中华医学杂志,2011,91(13):867-875.
    [3]Itagaki S, McGeer P L, Akiyama H, et al. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease[J]. Journal of neuroimmunology,1989,24(3):173-182.
    [4]Christen Y. Oxidative stress and Alzheimer disease[J]. The American journal of clinical nutrition,2000,71(2):621s-629s.
    [5]HONDA K, CASADESUS G, PETERSEN R B, et al. Oxidative Stress and Redox- Active Iron in Alzheimer's Disease[J]. Annals of the new York Academy of Sciences,2004,1012(1): 179-182.
    [6]石雪蓉.衰老机制和抗衰老药物的研究现状[J].四川解剖学杂志,2008,16(3):43-45.
    [7]王访,张有权.抗衰老中药的药理研究近况[J].时珍国医国药,2002,13(4):236-237.
    [8]李巧兰.论中医抗衰防老的研究[J].陕西中医学院学报,2002,25(1):15-16.
    [9]曹湘博,西月,王艳春,等.维生素E对D2半乳糖亚急性中毒拟衰老模型鼠氧自由基及相关生化指标的影响[J].中国老年学杂志,2007,27(7):1335-1336.
    [10]秦红兵,杨朝晔,范忆江,等.D-半乳糖诱导衰老小鼠模型的建立与评价[J].中国组织工程研究与临床康复,2009,13(7):1275-1278.
    [11]Swerdlow R H, Parks J K, Cassarino D S, et al. Cybrids in Alzheimer's disease:a cellular model of the disease?[J]. neurology,1997,49(4):918-925.
    [12]Polidori M C. Oxidative stress and risk factors for Alzheimer's disease:clues to prevention and therapy[J]. Journal of Alzheimer's Disease,2004,6(2):185-191.
    [13]薛德钧,周慧,张敏,等.白蚁菌圃的水溶性化学成分研究[J].中药材,2005,28(10):873-875.
    [14]胡乔生,屈红恩.白蚁菌圃有效药用成分的提取与应用研究[J].江西化工,2008(3):19-20.
    [15]段金廒,张培毅.黑翅土白蚁菌圃的定量及微量元素分析[J].中药材,1999,22(11):554-556.
    [16]Wang Y H, Ye J, Li C L, et al. [An experimental study on anti-aging action of Cordyceps extract][J]. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica,2004,29(8):773-776.
    [17]Smith M A, Casadesus G, Joseph J A, et al. Amyloid-β and τ serve antioxidant functions in the aging and Alzheimer brain[J]. Free Radical Biology and Medicine,2002,33(9):1194-1199.
    [18]Yankner B A, Duffy L K, Kirschner D A. Neurotrophic and neurotoxic effects of amyloid beta protein:reversal by tachykinin neuropeptides[J]. Science,1990,250(4978):279-282.
    [19]Mattson M P, Pedersen W A. Effects of amyloid precursor protein derivatives andoxidative stress on basal forebrain cholinergic systems inALZHEIMERS disease[J]. International journal of developmental neuroscience,1998,16(7):737-753.
    [20]Maren S, Baudry M. Properties and mechanism of long-term synaptic plasticity in the mammalian brain:relationship to learn and memory [J]. Neurobiol Learn Mem,1995;63(2):12.
    [1]陈文为,陈瑗.自由基与中医中药[J].自由基医学,1991:354-468.
    [2]Christen Y. Oxidative stress and Alzheimer disease[J]. The American journal of clinical nutrition,2000,71(2):621s-629s.
    [3]HONDA K, CASADESUS G, PETERSEN R B, et al. Oxidative Stress and Redox-Active Iron in Alzheimer's Disease[J]. Annals of the new York Academy of Sciences,2004,1012(1): 179-182.
    [4]CAO J, SUN T, ZHANG M. Anti-inflammatory effect of termitarium[J]. J Chin Med Mater (中 药材),2006,29(10):1011-1013.
    [5]Onyango I G, Khan S M. Oxidative Stress, Mitochondrial Dysfunction, and Stress Signaling in Alzheimers Disease[J]. Current Alzheimer Research,2006,3(4):339-349.
    [6]Mancuso M, Coppede F, Migliore L, et al. Mitochondrial dysfunction, oxidative stress and neurodegeneration[J]. Journal of Alzheimer's Disease,2006,10(1):59-73.
    [7]Sohal R S, Arnold L, Orr W C. Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/NADP and NADH/NAD in Drosophila melanogaster [J]. Mechanisms of aging and development,1990, 56(3):223-235.
    [8]Li W G, Miller F J, Zhang H J, et al. H2O2-induced O2 Production by a Non-phagocytic NAD (P)H Oxidase Causes Oxidant Injury[J]. Journal of Biological Chemistry,2001,276(31): 29251-29256.
    [1]王家鹏,郭刚.中药诱导恶性肿瘤细胞分化的研究进展[J].中医研究,2003,16(2):48-51.
    [2]徐霞飞,陆茵.中药抗肿瘤血管生成研究进展[J].现代中药研究与实践,2007,21(1):61-64.
    [3]李昕,聂克.中药抑制肿瘤端粒酶活性的研究进展[J].中药新药与临床药理,2005,15(6):440-443.
    [4]赵一.白蚁的药用价值[J].广西中医药,1996,19(5):45.
    [5]李爱媛,谢沛珊,赵一,等.土垄大白蚁巢的药效研究[J].广西中医学院学报,1999,16(2):66-66.
    [6]黄瑞松,陈燕军,苏青,等.固本止咳膏质量标准的研究[J].中国实验方剂学杂志,2003,9(4):1-4.
    [7]贝伟剑,陈勇.土垄大白蚁菌圃的药理作用[J].中草药,1995,26(9):476-477.
    [8]王学宏,李明春.中药多糖的免疫及抗肿瘤作用研究进展[J].齐鲁医学杂志,2000,15(3):230-231.
    [9]曾艳兵,张妮娜,卜平.中药对恶性肿瘤细胞信号转导通路的影响及其作用机理研究的进展[J].中国中西医结合杂志,2004,24(7):670-672.
    [1]Di Fonzo, A., et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome [J]. Neurology,2009,72(3):240-5.
    [2]Kitada, T., et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism [J]. Nature,1998,392(6676):605-8.
    [3]Lautier, C., et al. Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease [J]. Am J Hum Genet,2008,82(4):822-33.
    [4]Paisan-Ruiz, C., et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease [J]. Neuron,2004,44(4):595-600.
    [5]Paisan-Ruiz, C. LRRK2 gene variation and its contribution to Parkinson disease[J]. Hum Mutat, 2009,30(8):1153-60.
    [6]Polymeropoulos, M.H., et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease [J]. Science,1997,276(5321):2045-7.
    [7]Valente, E.M., et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1 [J]. Science,2004,304(5674):1158-60.
    [8]Zimprich, A., et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology [J]. Neuron,2004,44(4):601-7.
    [9]Polymeropoulos, M.H., et al. Mapping of a gene for Parkinson's disease to chromosome 4q21-q23 [J]. Science,1996,274(5290):1197-9.
    [10]Belin, A.C. and M. Westerlund. Parkinson's disease:a genetic perspective [J]. Febs J,2008, 275(7):1377-83.
    [11]Farrer, M.J. Genetics of Parkinson disease:paradigm shifts and future prospects [J]. Nat Rev Genet,2006,7(4):306-18.
    [12]Bras, J., et al. Complete screening for glucocerebrosidase mutations in Parkinson disease patients from Portugal [J]. Neurobiol Aging,2009,30(9):1515-7.
    [13]De Marco, E.V., et al. Glucocerebrosidase gene mutations are associated with Parkinson's disease in southern Italy [J]. Mov Disord,2008,23(3):460-3.
    [14]Fuchs, J., et al. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication [J]. Neurology,2007,68(12):916-22.
    [15]Singleton, A.B., et al. alpha-Synuclein locus triplication causes Parkinson's disease [J]. Science, 2003,302(5646):841.
    [16]Uversky, V.N. A protein-chameleon:conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders [J]. J Biomol Struct Dyn,2003,21(2):211-34.
    [17]Pandey, N., R.E. Schmidt, and J.E. Galvin. The alpha-synuclein mutation E46K promotes aggregation in cultured cells [J]. Exp Neurol,2006,197(2):515-20.
    [18]Eriksen, J.L., S. Przedborski, and L. Petrucelli. Gene dosage and pathogenesis of Parkinson's disease [J]. Trends Mol Med,2005,11(3):91-6.
    [19]Goldberg, M.S. and P.T. Lansbury, Jr. Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson's disease? [J]. Nat Cell Biol,2000,2(7):E115-9.
    [20]Moore, D.J., et al. Molecular pathophysiology of Parkinson's disease [J]. Annu Rev Neurosci, 2005,28:57-87.
    [21]Maraganore, D.M., et al. Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease [J]. Jama,2006,296(6):661-70.
    [22]Ritz, B., et al. alpha-Synuclein genetic variants predict faster motor symptom progression in idiopathic Parkinson disease [J]. PLoS One,7(5):e36199.
    [23]Zimprich, A., et al. The PARK8 locus in autosomal dominant parkinsonism:confirmation of linkage and further delineation of the disease-containing interval [J]. Am J Hum Genet,2004, 74(1):11-9.
    [24]Satake, W., et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease [J]. Nat Genet,2009,41(12):1303-7.
    [25]Greggio, E., et al. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation [J]. J Biol Chem,2008,283(24): 16906-14.
    [26]Wang, L., et al. The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2[J]. J Neurosci,2008,28(13):3384-91.
    [27]West, A.B., et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity [J]. Proc Natl Acad Sci U S A,2005,102(46):16842-7.
    [28]Hatano, T., et al. Leucine-rich repeat kinase 2 associates with lipid rafts [J]. Hum Mol Genet, 2007,16(6):678-90.
    [29]Skibinski, G, et al. Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies [J]. J Neurosci,34(2):418-33.
    [30]Vishwanathan Padmaja, M., et al. The SNCA (A53T, A30P, E46K) and LRRK2 (G2019S) mutations are rare cause of Parkinson's disease in South Indian patients [J]. Parkinsonism Relat Disord,18(6):801-2.
    [31]Ma, L., et al. Advances with microRNAs in Parkinson's disease research [J]. Drug Des Devel Ther,7:1103-13.
    [32]Mata, I.F., et al. LRRK2 mutations are a common cause of Parkinson's disease in Spain [J]. Eur J Neurol,2006,13(4):391-4.
    [33]Gilks, W.P., et al. A common LRRK2 mutation in idiopathic Parkinson's disease [J]. Lancet, 2005,365(9457):415-6.
    [34]Liu, G.H., et al. Progressive degeneration of human neural stem cells caused by pathogenic LRRK2[J]. Nature,491(7425):603-7.
    [35]Nijman, S.M., et al. A genomic and functional inventory of deubiquitinating enzymes [J]. Cell, 2005,123(5):773-86.
    [36]Das, C., et al. Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1 [J]. Proc Natl Acad Sci USA,2006,103(12): 4675-80.
    [37]Yamazaki, T., et al. PGP9.5 as a marker for invasive colorectal cancer [J]. Clin Cancer Res, 2002,8(1):192-5.
    [38]Kabuta, T., et al. Aberrant molecular properties shared by familial Parkinson's disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1 [J]. Hum Mol Genet,2008, 17(10):1482-96.
    [39]Liu, Y., et al. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility [J]. Cell,2002,111(2): 209-18.
    [40]Leroy, E., et al. The ubiquitin pathway in Parkinson's disease [J]. Nature,1998,395(6701): 451-2.
    [41]Osaka, H., et al. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron [J]. Hum Mol Genet,2003,12(16):1945-58.
    [42]Lincoln, S., et al. Low frequency of pathogenic mutations in the ubiquitin carboxy-terminal hydrolase gene in familial Parkinson's disease [J]. Neuroreport,1999,10(2):427-9.
    [43]Faccio, L., et al. Tissue-specific of Omi stress-regulated endoprotease leads to an inactive protease with a modified PDZ motif [J]. Genomics,2000,68(3):343-7.
    [44]Strauss, K.M., et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease [J]. Hum Mol Genet,2005,14(15):2099-111.
    [45]Althaus, J., et al. The serine protease Omi/HtrA2 is involved in XIAP cleavage and in neuronal cell death following focal cerebral ischemia/reperfusion [J]. Neurochem Int,2007,50(1): 172-80.
    [46]Srinivasula, S.M., et al. Inhibitor of apoptosis proteins are substrates for the mitochondrial serine protease Omi/HtrA2 [J]. J Biol Chem,2003,278(34):31469-72.
    [47]Suzuki, Y., et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death [J]. Mol Cell,2001,8(3):613-21.
    [48]Martins, L.M., et al. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice [J]. Mol Cell Biol,2004,24(22):9848-62.
    [49]Moisoi, N., et al. Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response [J]. Cell Death Differ,2009,16(3):449-64.
    [50]Plun-Favreau, H., et al. The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1 [J]. Nat Cell Biol,2007,9(11):1243-52.
    [51]Bras, J., et al. Lack of replication of association between GIGYF2 variants and Parkinson disease [J]. Hum Mol Genet,2009,18(2):341-6.
    [52]Kuroda, Y, et al. Parkin enhances mitochondrial biogenesis in proliferating cells [J]. Hum Mol Genet,2006,15(6):883-95.
    [53]Shimura, H., et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase [J]. Nat Genet,2000,25(3):302-5.
    [54]Dawson, T.M. Parkin and defective ubiquitination in Parkinson's disease [J]. J Neural Transm Suppl,2006, (70):209-13.
    [55]Feany, M.B. and L.J. Pallanck. Parkin:a multipurpose neuroprotective agent? [J]. Neuron,2003, 38(1):13-6.
    [56]Henn, I.H., et al. Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling [J]. J Neurosci,2007,27(8):1868-78.
    [57]Fallon, L., et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling [J]. Nat Cell Biol,2006,8(8):834-42.
    [58]Riparbelli, M.G. and G. Callaini. The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis [J]. Dev Biol,2007,303(1):108-20.
    [59]Palacino, J.J., et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice [J]. J Biol Chem,2004,279(18):18614-22.
    [60]Greene, J.C., et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants [J]. Proc Natl Acad Sci U S A,2003,100(7):4078-83.
    [61]Yang, Y., et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pinkl is rescued by Parkin [J]. Proc Natl Acad Sci U S A, 2006,103(28):10793-8.
    [62]Park, J., et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin [J]. Nature,2006,441(7097):1157-61.
    [63]Stichel, C.C., et al. Mono-and double-mutant mouse models of Parkinson's disease display severe mitochondrial damage [J]. Hum Mol Genet,2007,16(20):2377-93.
    [64]LaVoie, M.J., et al. Dopamine covalently modifies and functionally inactivates parkin [J]. Nat Med,2005,11(11):1214-21.
    [65]Sang, T.K., et al. A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine [J]. J Neurosci, 2007,27(5):981-92.
    [66]O'Neil, J.N., et al. Catecholaminergic neuronal loss in locus coeruleus of aged female dtg APP/PS1 mice [J]. J Chem Neuroanat,2007,34(3-4):102-7.
    [67]Perez, F.A., W.R. Curtis, and R.D. Palmiter. Parkin-deficient mice are not more sensitive to 6-hydroxydopamine or methamphetamine neurotoxicity [J]. BMC Neurosci,2005,6:71.
    [68]van Duijn, C.M., et al. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36 [J]. Am J Hum Genet,2001,69(3):629-34.
    [69]Bonifati, V., et al. DJ-1(PARK7), a novel gene for autosomal recessive, early onset parkinsonism[J]. Neurol Sci,2003,24(3):159-60.
    [70]Lockhart, P.J., et al. DJ-1 mutations are a rare cause of recessively inherited early onset parkinsonism mediated by loss of protein function [J]. J Med Genet,2004,41(3):e22.
    [71]Zhang, L., et al. Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis [J]. Hum Mol Genet,2005,14(14):2063-73.
    [72]Taira, T., et al. DJ-1 has a role in antioxidative stress to prevent cell death [J]. EMBO Rep,2004, 5(2):213-8.
    [73]Canet-Aviles, R.M., et al. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization [J]. Proc Natl Acad Sci U S A,2004, 101(24):9103-8.
    [74]Bandopadhyay, R., et al. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease [J]. Brain,2004,127(Pt 2):420-30.
    [75]Wang, Z., et al. DJ-1 modulates the expression of Cu/Zn-superoxide dismutase-1 through the Erkl/2-Elkl pathway in neuroprotection [J]. Ann Neurol,70(4):591-9.
    [76]Takahashi-Niki, K., et al. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson's disease patients [J]. Biochem Biophys Res Commun,2004,320(2):389-97.
    [77]Moore, D.J., et al. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress [J]. Hum Mol Genet,2005,14(1):71-84
    [78]Kim, R.H., et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress [J]. Proc Natl Acad Sci U S A,2005,102(14):5215-20.
    [79]Kim, R.H., et al. DJ-1, a novel regulator of the tumor suppressor PTEN [J]. Cancer Cell,2005, 7(3):263-73.
    [80]Valente, E.M., et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36 [J]. Am J Hum Genet,2001,68(4): 895-900.
    [81]Gandhi, S., et al. PINK1 protein in normal human brain and Parkinson's disease[J]. Brain,2006, 129(Pt 7):1720-31.
    [82]Petit, A., et al. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations [J]. J Biol Chem,2005,280(40): 34025-32.
    [83]Abou-Sleiman, P.M., et al. A heterozygous effect for PINK1 mutations in Parkinson's disease? [J]. Ann Neurol,2006,60(4):414-9.
    [84]Clark, I.E., et al. Drosophila pinkl is required for mitochondrial function and interacts genetically with parkin [J]. Nature,2006,441(7097):1162-6.
    [85]Tan, E.K., et al. PINK1 mutations in sporadic early-onset Parkinson's disease [J]. Mov Disord, 2006,21(6):789-93.
    [86]Hiller, A., et al. Phenotypic spectrum of PINK1-associated parkinsonism in 15 mutation carriers from 1 family [J]. Mov Disord,2007,22(1):145-7.
    [87]Tan, E.K. and L.M. Skipper. Pathogenic mutations in Parkinson disease [J]. Hum Mutat,2007, 28(7):641-53.
    [88]Hampshire, D.J., et al. Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36 [J]. J Med Genet,2001,38(10):680-2.
    [89]Ramirez, A., et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase [J]. Nat Genet,2006,38(10):1184-91.
    [90]Kuhlbrandt, W. Biology, structure and mechanism of P-type ATPases [J]. Nat Rev Mol Cell Biol,2004,5(4):282-95.
    [91]Di Fonzo, A., et al. A common missense variant in the LRRK2 gene, Gly2385Arg, associated with Parkinson's disease risk in Taiwan [J]. Neurogenetics,2006,7(3):133-8.
    [92]Morgan, N.V., et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron [J]. Nat Genet,2006,38(7):752-4.
    [93]Paisan-Ruiz, C., et al. Characterization of PLA2G6 as a locus for dystonia-parkinsonism [J]. Ann Neurol,2009,65(1):19-23.
    [94]Shi, C.H., et al. PLA2G6 gene mutation in autosomal recessive early-onset parkinsonism in a Chinese cohort [J]. Neurology,77(1):75-81.
    [95]Ho, M.S., et al. The utility F-box for protein destruction [J]. Cell Mol Life Sci,2008,65(13): 1977-2000.
    [96]Zhao, T., et al. Loss of nuclear activity of the FBXO7 protein in patients with parkinsonian-pyramidal syndrome (PARK 15) [J]. PLoS One,6(2):e16983.
    [97]Thomas, B. and M.F. Beal. Parkinson's disease [J]. Hum Mol Genet,2007,16 Spec No.2: R183-94.
    [98]Roertgen KE, Parisi JE, Clark HB, Barnes DL, O'Brien TD, Johnson KH (1996). A beta-associated cerebral angiopathy and senile plaques with neurofibrillary tangles and cerebral hemorrhage in an aged wolverine (Gulo gulo). Neurobiol Aging 17:243-247.
    [99]Finelli A, Kelkar A, Song HJ, Yang H, Konsolaki M (2004). A model for studying Alzheimer's Abeta42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci 26:365-375.
    [100]Campbell WA, Yang H, Zetterberg H, Baulac S, Sears JA, Liu T et al. (2006). Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss. J Neurochem 96:1423-1440.
    [101]Byerly L, Cassada RC, Russell RL (1976). The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev Biol 51:23-33.
    [102]Rosen DR, Martin-Morris L, Luo LQ, White K (1989). A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor. Proc Natl Acad SciUSA86:2478-2482.
    [103]Poon HF, Farr SA, Thongboonkerd V, Lynn BC, Banks WA,Morley JE et al. (2005). Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders. Neurochem Int 46: 159-168.
    [104]Reisberg B, Borenstein J, Salob SP, Ferris SH, Franssen E, Georgotas A (1987). Behavioral symptoms in Alzheimer's disease:phenomenology and treatment. J Clin Psychiatry 48:9-15.
    [105]Crowther DC, Kinghorn KJ, Miranda E, Page R, Curry JA, Duthie FA et al. (2005). Intraneuronal Ab, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer's disease.Neuroscience 132:123-135.
    [106]Dauer W, Przedborski S.2003. Parkinson's disease:Mecha-nisms and models. Neuron 39: 889-909.
    [107]Guillot TS, Shepherd KR, Richardson JR, Wang MZ, Li Y, Emson PC, Miller GW.2008. Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis. J Neurochem 106:2205-2217.
    [108]Cubells JF, Rayport S, Rajendran G, Sulzer D.1994. Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intra-cellular oxidative stress. J Neurosci 14:2260-2271.; Fumagalli F, Gainetdinov RR, Valenzano KJ, Caron MG.1998. Role of dopamine transporter in methamphet-amine-induced neurotoxicity:Evidence from mice lack-ing the transporter. J Neurosci 18:4861-4869.
    [109]Bezard E, Przedborski S.2011. A tale on animal models of Parkinson's disease. Mov Disord 26: 993-1002.; Meredith GE, Sonsalla PK, Chesselet MF.2008. Animal models of Parkinson's disease progression. ActaNeuropa-thol 115:385-398.
    [110]Dawson TM, Ko HS, Dawson VL.2010. Genetic animal models of Parkinson's disease. Neuron 66:646-661.
    [111]Senoh S, Witkop B.1959. Nonenzymatic conversions of dopamine to norepinephrine and trihydroxyphenethyl-amine. J Am Chem Soc 81:6222-6231.
    [112]Porter CC, Totaro JA, Burcin A.1965. The relationship between radioactivity and norepinephrine concentra-tions in the brains and hearts of mice following adminis-tration of labeled methyldopa or 6-hydroxydopamine. J Pharmacol Exp Ther 150:17-22.
    [113]Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, KarlukD.1999. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neu-rol 46:598-605.
    [114]Rojas JC, Simola N, Kermath BA, Kane JR, Schallert T, Gonzalez-Lima F.2009. Striatal neuroprotection with methylene blue. Neuroscience 163:877-889.
    [115]Carlsson A, Lindqvist M, Magnusson T.1957.3,4-Dihy-droxyphenylalanine and 5-hydroxytryptophan as reser-pine antagonists. Nature 180:1200.
    [116]Wani MC, Taylor HL, Wall ME. Plant antitumor agents.Ⅵ. The isolation and structure of taxol, a novel antileukemic agent from taxus brevifolia [J]. J Am Chen Soc,1971,93(9):2325-2327.
    [117]翁绳美,胥彬.喜树碱类抗癌物质对拓扑异构酶Ⅰ的作用研究进展[J]I肿瘤,1991,1(2):74-7.
    [118]雷秋模,刘金妹.藤黄抗癌作用研究的回顾与展望[J].肿瘤防治杂志,2003,10(2):216-219.
    [119]曾郁敏,顾立刚.白首乌甙诱导肿瘤细胞凋亡的实验研究[J].中国中医药信息杂志,2000,7(6):25-27.
    [120]李兴玉,晁党校.红毛五加多糖抗肿瘤的实验研究[J].甘肃科学学报,1998,10(3):75-77.
    [121]卢玉兰,翁开敏.冬虫夏草的药理作用研究[J]中国药师,2003,6(6):371-372.
    [122]仲兆金,刘浚.茯苓有效成分三萜的研究进展[J].中成药,2001,23(1):58-62.
    [123]彭光勇,周峰,丁如宁,等.莲必治注射液(穿心莲内酯)对免疫功能的调节作用[J].中国中药杂志,2002,27(2):147-150.
    [124]张荣,赵翌,刘基巍,等.人参皂苷Rg3诱导小鼠肝癌细胞凋亡及抑制肿瘤血管内皮生长因子生成的研究[J].时珍国医国药,2007,18(1):130-133.
    [125]梁永红,侯华新,黎丹戎,等.板蓝根二酮B体外抗癌活性研究[J].中草药,2000,31(7):531-533.
    [1]Bettens, K., K. Sleegers, and C. Van Broeckhoven. Current status on Alzheimer disease molecular genetics:from past, to present, to future [J]. Hum Mol Genet,19(R1):R4-R11.
    [2]Bertram, L. and R.E. Tanzi. The genetic epidemiology of neurodegenerative disease [J]. J Clin Invest,2005,115(6):1449-57.
    [3]Daw, E.W., et al. The number of trait loci in late-onset Alzheimer disease [J]. Am J Hum Genet, 2000,66(1):196-204.Slooter, A.J., et al. Risk estimates of dementia by apolipoprotein E genotypes from a population-based incidence study:the Rotterdam Study [J]. Arch Neurol, 1998,55(7):964-8.
    [4]Harold, D., et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease [J]. Nat Genet,2009,41(10):1088-93.
    [5]Lambert, J.C., et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease [J]. Nat Genet,2009,41(10):1094-9.
    [6]Tanzi, R.E. A genetic dichotomy model for the inheritance of Alzheimer's disease and common age-related disorders [J]. J Clin Invest,1999,104(9):1175-9.
    [7]Goate, A., et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease [J]. Nature,1991,349(6311):704-6.
    [8]Mullan, M., et al. A locus for familial early-onset Alzheimer's disease on the long arm of chromosome 14, proximal to the alpha 1-antichymotrypsin gene[J]. Nat Genet,1992,2(4): 340-2.
    [9]Schellenberg, G.D., et al. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14[J]. Science,1992,258(5082):668-71.
    [10]St George-Hyslop, P., et al. Genetic evidence for a novel familial Alzheimer's disease locus on chromosome 14[J]. Nat Genet,1992,2(4):330-4.
    [11]Van Broeckhoven, C., et al. Mapping of a gene predisposing to early-onset Alzheimer's disease to chromosome 14q24.3 [J]. Nat Genet,1992,2(4):335-9.
    [12]Sherrington, R., et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease [J]. Nature,1995,375(6534):754-60.
    [13]Rovelet-Lecrux, A., et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy [J]. Nat Genet,2006,38(1):24-6.
    [14]Rogaev, E.I., et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene[J]. Nature,1995,376(6543): 775-8.
    [15]Tanzi, R.E. and L. Bertram. Twenty years of the Alzheimer's disease amyloid hypothesis:a genetic perspective [J]. Cell,2005,120(4):545-55.
    [16]Bertram, L., C.M. Lill, and R.E. Tanzi. The genetics of Alzheimer disease:back to the future[J]. Neuron,68(2):270-81.
    [17]Cole, S.L. and R. Vassar. The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology [J]. J Biol Chem,2008,283(44):29621-5.
    [18]Selkoe, D.J. Alzheimer's disease:genes, proteins, and therapy[J]. Physiol Rev,2001,81(2): 741-66.
    [19]Small, S.A. and K. Duff. Linking Abeta and tau in late-onset Alzheimer's disease:a dual pathway hypothesis [J]. Neuron,2008,60(4):534-42.
    [20]Lazarov, O., et al. Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus:revisited [J]. J Neurosci,2005,25(9):2386-95.
    [21]Stokin, G.B., et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease [J]. Science,2005,307(5713):1282-8.
    [22]Lee, E.B., et al. BACE overexpression alters the subcellular processing of APP and inhibits Abeta deposition in vivo [J]. J Cell Biol,2005,168(2):291-302.
    [23]Adalbert, R., J. Gilley, and M.P. Coleman. Abeta, tau and ApoE4 in Alzheimer's disease:the axonal-connection [J]. Trends Mol Med,2007,13(4):135-42.
    [24]Brody, D.L., et al. Amyloid-beta dynamics correlate with neurological status in the injured human brain [J]. Science,2008,321(5893):1221-4.
    [25]LaFerla, F.M., et al. The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice [J]. Nat Genet,1995,9(1):21-30.
    [26]LaFerla, F.M., K.N. Green, and S. Oddo. Intracellular amyloid-beta in Alzheimer's disease [J]. Nat Rev Neurosci,2007,8(7):499-509.
    [27]D'Andrea, M.R., et al. Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease [J]. Histopathology,2001,38(2):120-34.
    [28]Klyubin, I., et al. Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity:prevention by systemic passive immunization [J]. J Neurosci,2008,28(16):4231-7.
    [29]Lesne, S., et al. A specific amyloid-beta protein assembly in the brain impairs memory[J]. Nature,2006,440(7082):352-7.
    [30]Mattson, M.P., et al. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein [J]. Neuron,1993,10(2):243-54.
    [31]Rovelet-Lecrux, A., et al. APP locus duplication in a Finnish family with dementia and intracerebral haemorrhage [J]. J Neurol Neurosurg Psychiatry,2007,78(10):1158-9.
    [32]Howell, B.W., et al. The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids [J]. Mol Cell Biol,1999,19(7): 5179-88.
    [33]Buxbaum, J.D., E.H. Koo, and P. Greengard. Protein phosphorylation inhibits production of Alzheimer amyloid beta/A4 peptide [J]. Proc Natl Acad Sci U S A,1993,90(19):9195-8.
    [34]Querfurth, H.W. and D.J. Selkoe. Calcium ionophore increases amyloid beta peptide production by cultured cells [J]. Biochemistry,1994,33(15):4550-61.
    [35]Buxbaum, J.D., et al. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor [J]. Proc Natl Acad Sci U S A,1992, 89(21):10075-8.
    [36]Checler, F. Processing of the beta-amyloid precursor protein and its regulation in Alzheimer's disease [J]. J Neurochem,1995,65(4):1431-44.
    [37]Nilsberth, C., et al. The'Arctic'APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation [J]. Nat Neurosci,2001,4(9):887-93.
    [38]The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Alzheimer's Disease Collaborative Group [J]. Nat Genet,1995,11(2): 219-22.
    [39]Takasugi, N., et al. The role of presenilin cofactors in the gamma-secretase complex [J]. Nature, 2003,422(6930):438-41.
    [40]Hendriks, B. and E. Reichmann. Wnt signaling:a complex issue [J]. Biol Res,2002,35(2): 277-86.
    [41]Leissring, M.A., et al. A physiologic signaling role for the gamma-secretase-derived intracellular fragment of APP [J]. Proc Natl Acad Sci U S A,2002,99(7):4697-702.
    [42]Citron, M., et al. Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation [J]. Proc Natl Acad Sci U S A,1994,91(25):11993-7.
    [43]Haass, C. et al. Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid beta-protein precursor [J]. J Biol Chem,1994,269(26): 17741-8.
    [44]Rudzinski, L.A., et al. Early onset familial Alzheimer Disease with spastic paraparesis, dysarthria, and seizures and N135S mutation in PSEN1 [J]. Alzheimer Dis Assoc Disord,2008, 22(3):299-307.
    [45]Heckmann, J.M., et al. Novel presenilin 1 mutation with profound neurofibrillary pathology in an indigenous Southern African family with early-onset Alzheimer's disease[J]. Brain,2004, 127(Pt 1):133-42.
    [46]Kwok, J.B., et al. Two novel (M233T and R278T) presenilin-1 mutations in early-onset Alzheimer's disease pedigrees and preliminary evidence for association of presenilin-1 mutations with a novel phenotype [J]. Neuroreport,1997,8(6):1537-42.
    [47]Forsell, C., et al. A novel pathogenic mutation (Leu262Phe) found in the presenilin 1 gene in early-onset Alzheimer's disease [J]. Neurosci Lett,1997,234(1):3-6.
    [48]Sironi, J.J., et al. Ser-262 in human recombinant tau protein is a markedly more favorable site for phosphorylation by CaMKII than PKA or PhK [J]. FEBS Lett,1998,436(3):471-5.
    [49]Aldudo, J., et al. Identification of a novel mutation (Leu282Arg) of the human presenilin 1 gene in Alzheimer's disease [J]. Neurosci Lett,1998,240(3):174-6.
    [50]Li, X. and I. Greenwald. Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins [J]. Proc Natl Acad Sci U S A,1998,95(12): 7109-14.
    [51]Dewji, N.N. and S.J. Singer. The seven-transmembrane spanning topography of the Alzheimer disease-related presenilin proteins in the plasma membranes of cultured cells [J]. Proc Natl Acad Sci U S A,1997,94(25):14025-30.
    [52]Kounnas, M.Z., et al. LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted beta-amyloid precursor protein and mediates its degradation[J]. Cell,1995,82(2): 331-40.
    [53]Bales, K.R., et al. Apolipoprotein E, amyloid, and Alzheimer disease [J]. Mol Interv,2002,2(6): 363-75,339.
    [54]Huang, Y. Molecular and cellular mechanisms of apolipoprotein E4 neurotoxicity and potential therapeutic strategies [J]. Curr Opin Drug Discov Devel,2006,9(5):627-41.
    [55]Rapp, A., B. Gmeiner, and M. Huttinger. Implication of apoE isoforms in cholesterol metabolism by primary rat hippocampal neurons and astrocytes [J]. Biochimie,2006,88(5): 473-83.
    [56]Michikawa, M., et al. Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture [J]. J Neurochem,2000,74(3):1008-16.
    [57]Kim, J., J.M. Basak, and D.M. Holtzman. The role of apolipoprotein E in Alzheimer's disease [J]. Neuron,2009,63(3):287-303.
    [58]Keller, J.N., et al. Amyloid beta-peptide effects on synaptosomes from apolipoprotein E-deficient mice[J]. J Neurochem,2000,74(4):1579-86.
    [59]Buttini, M., et al. Expression of human apolipoprotein E3 or E4 in the brains of Apoe-/-mice: isoform-specific effects on neurodegeneration [J]. J Neurosci,1999,19(12):4867-80.
    [60]Canevari, L. and J.B. Clark. Alzheimer's disease and cholesterol:the fat connection [J]. Neurochem Res,2007,32(4-5):739-50.
    [61]Schmechel, D.E., et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease [J]. Proc Natl Acad Sci U S A,1993,90(20):9649-53.
    [62]Bales, K.R., et al. Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease[J]. Proc Natl Acad Sci U S A,1999,96(26): 15233-8.
    [63]Haltia, M., et al. Chromosome 14-encoded Alzheimer's disease:genetic and clinicopathological description [J]. Ann Neurol,1994,36(3):362-7.
    [64]Ertekin-Taner, N. Genetics of Alzheimer's disease:a centennial review [J]. Neurol Clin,2007, 25(3):611-67.
    [65]Knopman, D.S., et al. Practice parameter:diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology [J]. Neurology,2001,56(9):1143-53.
    [66]Webster, S., et al. Aggregation state-dependent activation of the classical complement pathway by the amyloid beta peptide [J]. J Neurochem,1997,69(1):388-98.
    [67]Harel, A., et al. Evidence for CALM in directing VAMP2 trafficking [J]. Traffic,2008,9(3): 417-29.
    [68]Rogaeva, E., et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease [J]. Nat Genet,2007,39(2):168-77.
    [69]Depboylu, C., et al. Alpha2-macroglobulin, lipoprotein receptor-related protein and lipoprotein receptor-associated protein and the genetic risk for developing Alzheimer's disease[J]. Neurosci Lett,2006,400(3):187-90.
    [70]Reiman, E.M., et al. GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers[J]. Neuron,2007,54(5):713-20.
    [71]Nizzari, M., et al. Amyloid precursor protein and Presenilinl interact with the adaptor GRB2 and modulate ERK 1,2 signaling[J]. J Biol Chem,2007,282(18):13833-44.
    [72]Li, Y.J., et al. Glutathione S-transferase omega-1 modifies age-at-onset of Alzheimer disease and Parkinson disease[J]. Hum Mol Genet,2003,12(24):3259-67.
    [73]Tanzi, R.E., R.D. Moir, and S.L. Wagner. Clearance of Alzheimer's Abeta peptide:the many roads to perdition [J]. Neuron,2004,43(5):605-8.
    [74]Schwagerl, A.L., et al. Elevated levels of the endosomal-lysosomal proteinase cathepsin D in cerebrospinal fluid in Alzheimer disease[J]. J Neurochem,1995,64(1):443-6.
    [75]Counts, S.E., et al. Galanin hyperinnervation upregulates choline acetyltransferase expression in cholinergic basal forebrain neurons in Alzheimer's disease [J]. Neurodegener Dis,2008, 5(3-4):228-31.
    [76]Ertekin-Taner, N., et al. Elevated amyloid beta protein (Abeta42) and late onset Alzheimer's disease are associated with single nucleotide polymorphisms in the urokinase-type plasminogen activator gene[J]. Hum Mol Genet,2005,14(3):447-60.
    [77]Azoitei, N., et al. Thirty-eight-negative kinase 1 (TNK1) facilitates TNFalpha-induced apoptosis by blocking NF-kappaB activation [J]. Oncogene,2007,26(45):6536-45.
    [78]Thies, W. and L. Bleiler.2013 Alzheimer's disease facts and figures [J]. Alzheimers Dement, 9(2):208-45.
    [79]Gao, C.M., et al. Abeta40 oligomers identified as a potential biomarker for the diagnosis of Alzheimer's disease [J]. PLoS One,5(12):e15725.
    [80]Fagan, A.M., et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans[J]. Ann Neurol,2006,59(3):512-9.
    [81]Santos, A.N., et al. Amyloid-beta oligomers in cerebrospinal fluid are associated with cognitive decline in patients with Alzheimer's disease [J]. J Alzheimers Dis,29(1):171-6.
    [82]Humpel, C. Identifying and validating biomarkers for Alzheimer's disease [J]. Trends Biotechnol,29(1):26-32.
    [83]Hall, S. et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders [J]. Arch Neurol,69(11): 1445-52.
    [84]Hansson, O., et al. Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment:a follow-up study [J]. Lancet Neurol,2006,5(3): 228-34.
    [85]Zetterberg, H., L.O. Wahlund, and K. Blennow. Cerebrospinal fluid markers for prediction of Alzheimer's disease [J]. Neurosci Lett,2003,352(1):67-9.
    [86]Yanagida, K., et al. The 28-amino acid form of an APLP1-derived Abeta-like peptide is a surrogate marker for Abeta42 production in the central nervous system [J]. EMBO Mol Med, 2009,1(4):223-35.
    [87]Mulder, S.D., et al. BACE1 activity in cerebrospinal fluid and its relation to markers of AD pathology [J]. J Alzheimers Dis,20(1):253-60.
    [88]Tarawneh, R., et al. CSF VILIP-1 predicts rates of cognitive decline in early Alzheimer disease [J]. Neurology,78(10):709-19.
    [89]Welander, H., et al. Abeta43 is more frequent than Abeta40 in amyloid plaque cores from Alzheimer disease brains [J]. J Neurochem,2009,110(2):697-706.
    [90]Ray, S., et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins [J]. Nat Med,2007,13(11):1359-62.
    [91]Bateman, R.J., et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease [J]. N Engl J Med,367(9):795-804.
    [92]Podlesniy, P., et al. Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease [J]. Ann Neurol,74(5):655-68.
    [93]Leidinger, P., et al. A blood based 12-miRNA signature of Alzheimer disease patients [J]. Genome Biol,14(7):R78.
    [94]Lanni, C., et al. Unfolded p53 in blood as a predictive signature signature of the transition from mild cognitive impairment to Alzheimer's disease [J]. J Alzheimers Dis,20(1):97-104.
    [95]Lovell, M.A. and W.R. Markesbery. Ratio of 8-hydroxyguanine in intact DNA to free 8-hydroxyguanine is increased in Alzheimer disease ventricular cerebrospinal fluid [J]. Arch Neurol,2001,58(3):392-6.
    [96]Aliev, G., et al. Hypoperfusion, Mitochondria Failure, Oxidative Stress, and Alzheimer Disease [J]. J Biomed Biotechnol,2003,2003(3):162-163.
    [97]Hirai, K., et al. Mitochondrial abnormalities in Alzheimer's disease [J]. J Neurosci,2001,21(9): 3017-23.
    [98]Castegna, A., et al. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II:dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71 [J]. J Neurochem,2002,82(6):1524-32.
    [99]Marcus, D.L., et al. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer's disease [J]. Exp Neurol,1998,150(1):40-4.
    [100]Pappolla, M.A., et al. Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer's disease:a chronic oxidative paradigm for testing antioxidant therapies in vivo [J]. Am J Pathol,1998,152(4):871-7.
    [101]Boyd-Kimball, D., et al. Role of phenylalanine 20 in Alzheimer's amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity [J]. Chem Res Toxicol,2004,17(12):1743-9.
    [102]Tabaton, M. and E. Tamagno. The molecular link between beta-and gamma-secretase activity on the amyloid beta precursor protein [J]. Cell Mol Life Sci,2007,64(17):2211-8。
    [103]Lezoualc'h, F., et al. High constitutive NF-kappaB activity mediates resistance to oxidative stress in neuronal cells [J]. J Neurosci,1998,18(9):3224-32.
    [104]Alafuzoff, I., et al. Inter-laboratory comparison of neuropathological assessments of beta-amyloid protein:a study of the BrainNet Europe consortium [J]. Acta Neuropathol,2008, 115(5):533-46.
    [105]Vina, J., et al. Molecular bases of the treatment of Alzheimer's disease with antioxidants: prevention of oxidative stress [J]. Mol Aspects Med,2004,25(1-2):117-23.
    [106]Lovell, M.A. and W.R. Markesbery. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease [J]. Nucleic Acids Res,2007,35(22):7497-504.
    [107]Mattson, M.P. and S.L. Chan. Neuronal and glial calcium signaling in Alzheimer's disease [J]. Cell Calcium,2003,34(4-5):385-97.
    [108]White, A.R., K.J. Barnham, and A.I. Bush. Metal homeostasis in Alzheimer's disease[J]. Expert Rev Neurother,2006,6(5):711-22.
    [109]Browne, S.E. and M.F. Beal. Oxidative damage and mitochondrial dysfunction in neurodegenerative diseases [J]. Biochem Soc Trans,1994,22(4):1002-6.
    [110]Bush, A.I. Metals and neuroscience [J]. Curr Opin Chem Biol,2000,4(2):184-91.
    [111]Sayre, L.M., et al. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease:a central role for bound transition metals [J]. J Neurochem,2000,74(1): 270-9.
    [112]Zhang, J., et al. Fermented papaya preparation attenuates beta-amyloid precursor protein: beta-amyloid-mediated copper neurotoxicity in beta-amyloid precursor protein and beta-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells [J]. Neuroscience,2006,143(1):63-72.
    [113]Wan, L., et al. beta-Amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease [J]. Free Radic Biol Med, 50(1):122-9.
    [114]Zeng, H., Q. Chen, and B. Zhao. Genistein ameliorates beta-amyloid peptide (25-35)-induced hippocampal neuronal apoptosis [J]. Free Radic Biol Med,2004,36(2):180-8.
    [115]Beard, J.L., J.R. Connor, and B.C. Jones. Iron in the brain [J]. Nutr Rev,1993,51(6):157-70.
    [116]Smith, M.A., et al. Abnormal localization of iron regulatory protein in Alzheimer's disease [J]. Brain Res,1998,788(1-2):232-6.
    [117]Duce, J.A., et al. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's disease [J]. Cell,142(6):857-67.
    [118]Lei, P., et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export [J]. Nat Med,18(2):291-5.
    [119]Squitti, R., et al. Excess of serum copper not related to ceruloplasmin in Alzheimer disease [J]. Neurology,2005,64(6):1040-6.
    [120]Olivares, M., M. Araya, and R. Uauy. Copper homeostasis in infant nutrition:deficit and excess [J]. J Pediatr Gastroenterol Nutr,2000,31(2):102-11.
    [121]Singh, I., et al. Low levels of copper disrupt brain amyloid-beta homeostasis by altering its production and clearance [J]. Proc Natl Acad Sci U S A,110(36):14771-6.
    [122]House, E., et al. Copper abolishes the beta-sheet secondary structure of preformed amyloid fibrils of amyloid-beta(42) [J]. JAlzheimers Dis,2009,18(4):811-7.
    [123]Yang, X.H., et al. Coordinating to three histidine residues:Cu(II) promotes oligomeric and fibrillar amyloid-beta peptide to precipitate in a non-beta aggregation manner[J]. J Alzheimers Dis,2009,18(4):799-810.
    [124]Zhang, L.H., et al. Altered expression and distribution of zinc transporters in APP/PS1 transgenic mouse brain [J]. Neurobiol Aging,31(1):74-87.
    [125]Fu, L.W., Z.L. Guo, and J.C. Longhurst. Ionotropic glutamate receptors in the external lateral parabrachial nucleus participate in processing cardiac sympathoexcitatory reflexes [J]. Am J Physiol Heart Circ Physiol,302(7):H1444-53.
    [126]Strozyk, D., et al. Zinc and copper modulate Alzheimer Abeta levels in human cerebrospinal fluid [J]. Neurobiol Aging,2009,30(7):1069-77.
    [127]Deshpande, A., et al. A role for synaptic zinc in activity-dependent Abeta oligomer formation and accumulation at excitatory synapses [J]. J Neurosci,2009,29(13):4004-15.
    [128]Mo, Z.Y., et al. Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322[J]. J Biol Chem,2009,284(50):34648-57.
    [129]Kim, I., et al. Zinc stimulates tau S214 phosphorylation by the activation of Raf/mitogen-activated protein kinase-kinase/extracellular signal-regulated kinase pathway [J]. Neuroreport,22(16):839-44.
    [130]Bonifati, V., et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism [J]. Science,2003,299(5604):256-9..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700