用户名: 密码: 验证码:
抗非特异性蛋白质吸附多肽的合成、表征及体外酶降解性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物材料与普通的材料的一个根本区别在于其生物相容性。生物相容性不仅包括组织相容性,不会使组织产生炎症甚至免疫原性;而且包括血液相容性,即不会产生凝血和血栓现象。聚乙二醇(PEG)是为数不多的经过美国食品药品监督管理局(FDA)批准能够应用于临床的医用生物材料,但是已经证明其在长期体内环境条件下容易氧化,失效甚至引起血栓等严重后果。传统两性离子材料如聚甲基丙烯酰氧基乙基磷酰胆碱(pMPC)、聚磺基甜菜碱甲基丙烯酸酯(pSBMA)和聚羧基甜菜碱甲基丙烯酸酯(pCBMA)具有优良的抗非特异性吸附性能和生物相容性,但是由于其甲基丙烯酸酯类的聚合物骨架不能生物降解,这限制了它们在药物与基因载体等领域的应用。因此,我们开发了若干具有优异抗非特异性蛋白质吸附性能的多肽,并综合考察了它们的各种性能,尤其是酶降解性能。主要的内容和结论包括以下几个部分:
     1、以Nε-苄氧羰基-α-叔丁基-L-赖氨酸盐酸盐(H-Lys (Z)-OtBu.HCl)和δ-苄基-N-叔丁氧羰基-L-谷氨酸(Boc-Glu(Z)-OH)作为起始原料,合成了具有均一正负电荷分布的多肽(poly(EK),对应二聚体称dimer1)抗非特异性蛋白质吸附材料,解决了N-羧基环状酸酐(NCA)单体混聚所产生的不均一性和PEG类和甲基丙烯酸酯类材料的生物不可降解性问题。核磁共振图谱(1HNMR)和凝胶渗透色谱(GPC)检测结果表明已经成功得到不同分子量的poly(EK).以dimer1作为原料,典型的poly(EK)收率为45%左右。衰减全反射傅立叶转换红外光谱(ATR-FTIR)、X-射线光电子谱(XPS)以及椭圆偏振光谱仪(Ellipsometer, ELL)检测结果表明在金片表面存在多肽的自组装单分子膜(SAMs). ELL测定的SAMs膜厚大约只有几纳米,且随着多肽的分子量呈非线性增加。以TCPS表面作为对照,SAMs表面对anti-IgG和Fg的最低相对吸附量只有5.1±1.6%和7.3±1.8%,表明该多肽具有良好的抗非特异性蛋白质吸附性能。没有发现明显的细菌和细胞吸附。在5mg/mL情况下,poly(EK)没有发现明显的细胞毒性和溶血现象。
     2、以α-苄基-Nε-苄氧羰基-L-赖氨酸盐酸盐(H-Lys(Z)-OBzl.HCl)和α-叔丁基-N-叔丁氧羰基-L-谷氨酸(BOC-Glu-O'Bu)作为起始原料,我们合成了一种具有聚谷氨酸骨架带赖氨酸侧链的多肽(poly(E)-K,对应二聚体称dimer2)。1HNMR和GPC的检测结果表明得到了不同分子量的目标多肽。以dimer2作为原料,典型的poly(E)-K的收率为40%左右。ATR-FTIR、XPS以及ELL的检测结果都证实了金片表面存在多肽SAMs.以TCPS表面作为对照,该多肽SAMs (3.5kDa)对anti-IgG和Fg的最低吸附量只有3.3±1.8%和4.4±1.6%,具有比poly(EK)更好的抗非特异性蛋白质吸附性能。在5mg/mL的情况下,poly(E)-K也没有发现明显的细胞毒性和溶血性能。在溶血性实验中,poly(E)-K的吸光度甚至低于阴性对照组PBS的吸光度,表明它对细胞膜的作用很小,甚至可能还有一定的保护作用
     3、预备实验发现,由a-氨基和α-羧基正常接肽的poly(EK)可以被胰蛋白酶降解;而聚合物骨架与侧链之间通过γ-羧基与a-氨基非正常接肽而成的poly(E)-K,则不能被胰蛋白酶降解。在此基础上,通过调节两种二聚体的比例,缩合得到不同比例的混聚多肽。]HNMR的检测结果表明,已经成功得到不同比例的混聚多肽。初步酶降解实验结果显示,随着poly(E)-K的比例不断增加,混聚多肽的酶降解时间有一定程度的延长。因此,通过调节混聚多肽的组成,可以方便调控其酶降解速度和时间,这在药物/基因控制释放,以及组织工程等方面有广阔的应用前景。
The inherent difference between the biomaterials and common materials is their biocompatibility. Biocompatibility includes not only organ compatibility, but also blood compatibility. Organ compatibility means that biomaterials doesn't cause inflammation immunogenicity for the organ, and blood compatibility means that biomaterials doesn't cause coagulation or thrombosis. PEG is one of the few biomaterials approved by the Food and Drug Adiministration (FDA) for clinical use, but researchers demonstrated that it can be easily oxidized, becoming failure or causing thrombosis under long exposure to the blood. Traditional zwitterionic materials, such as poly(2-methacryloyloxyethyl phosphorylcholine)(pMPC), poly(sulfobetaine methacylate)(pSBMA) and poly(carboxybetaine methacylate)(pCBMA) are ideal candidates for nonfouling materials due to their excellent anti-nonspecific protein adsorption property and biocompatibility. But their methacrylic backbones cannot biodegrade, which hinders their further applications. Herein, we developed several polypeptide-based antifouling biomaterials and intensive investigations were done for their properties especially for their enzymatic degradation property. The main contents and conclusions of the dissertation are presented as follows:
     1. Using H-Lys(Z)-O\Bu.HCl and Boc-Glu(Z)-OH as starting materials, antifouling polypeptide with alternative uniform charges (poly(EK), its corresponding dimer is designated as dimer1) were synthesized by polycondesation. We have resolved the dilemma of ununiformity or local defects caused by the random ring opening polymerzation(ROP) of glutamic acid and lysine N-carboxyanhydrate (NCA) and the unbiodegradability of poly(ethylene glycol)(PEG) or methacrylic materials. Results from Nuclear Magnetic Resonance (1HNMR) and Gel Permeation Chromatography (GPC) demonstrated successful synthesis of the target polymer. Typical yield of the polypeptide is about45%from the dimer1. Successful formation of self-assembly monolayers (SAMs) on gold chips were demonstrated by ATR-FTIR, XPS and ELL. The thicknesses of the SAMs determined by ELL are several nanometers and the thicknesses don't linearly increase with the molecular weights (MWs) increase. The lowest relative nonspecific adsorption of the polypeptide SAMs for anti-IgG and Fg is5.1±1.6%and7.3±1.8%, respectively, when tissue cultural polystyrene (TCPS) surface adsorption is set as control. No obvious cell attachment or bacterium adhesion were observed on the SAMs surfaces. When the feeding concentration of the polypeptide is about5mg/mL, no toxicity or hemolytic activity were detected for the polypeptide.
     2. Using H-Lys(Z)-OBzl.HCl and BOC-Glu-O'Bu as starting materials, polypeptide of poly(glutamic acid) backbone with lysine side chains (poly(E)-K, its corresponding dimer is designated as dimer2) were synthesized. Results from1HNMR and GPC show that poly(E)-K with different molecular weights(MWs) were obtained. Typical yield of the polypeptide is about40%from the dimer2. Results from ATR-FTIR, XPS and ELL demonstrate the formation of the polypeptide SAMs on gold surface. The lowest relative protein adsorption for anti-IgG and Fg were observed for the3.5kDa polypeptide SAMs, for which the values are3.3±1.8%and4.4±1.6%, respectively, indicating this kind of polypeptide owns better antifouling property than poly(EK). No toxicity and no hemolytic activity were detected for the polypeptide. In hemolytic assay, the absorbance of polypeptide is even lower than the negative control PBS, indicating the low interactions between the polypeptide and the cell membranes or even the protection of the polypeptide for the cells.
     3. In preparatory enzymatic degradation experiments, we found that poly(EK) can degrade while poly(E)-K can't. Thus, we synthesized several copolypeptide by adjusting the ratios of dimer1to dimer2. Results from1HNMR demonstrate that we have successfully synthesized the co-polypeptides with different ingredients. The enzymatic degradation results indicate that the enzymatic degradation time of the copolypeptide become longer when the ratios of the poly(E)-K increase. Consequently, the enzymatic degradation speed and time of the copolypeptide can be easily manipulated by adjusting the proportions of the two dimmers. We are sure to believe that this kind of technology will have a wide range of applications in drug/gene controlled release or tissue engineering in future.
引文
[1]沈健.生物医用高分子材料的研制及其基础研究.[博士学位论文].南京,南京理工大学,2004,1-396.
    [2]周健.何淑漫.抗凝血生物材料.化学进展.2010;22:760-772.
    [3]Collier TO, Jenney CR, DeFife KM, Anderson JM. Protein adsorption on chemically modified surfaces. Biomedical sciences instrumentation.1997; 33:178-183.
    [4]Steinberg J, Neumann AW, Absolom DR, Zingg W. Human erythrocyte adhesion and spreading on protein-coated polymer surfaces. J Biomed Mater Res.1989; 23:591-610.
    [5]Tang ZC, Li D, Liu XL, Wu ZQ, Liu W, Brash JL, et al. Vinyl-monomer with lysine side chains for preparing copolymer surfaces with fibrinolytic activity. Polym Chem-Uk. 2013; 4:1583-1589.
    [6]Hatakeyama ES, Ju H, Gabriel CJ, Lohr JL, Bara JE, Noble RD, et al. New protein-resistant coatings for water filtration membranes based on quaternary ammonium and phosphonium polymers. J Membrane Sci.2009; 330:104-116.
    [7]Holmlin RE, Chen XX, Chapman RG, Takayama S, Whitesides GM. Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir. 2001; 17:2841-2850.
    [8]Prime KL, Whitesides GM. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide):A model system using self-assembled monolayers. J Am Chem Soc.1993; 115:10714-10721.
    [9]Roberts C, Chen CS, Mrksich M, Martichonok V, Ingber DE, Whitesides GM. Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize the long-term attachment of bovine capillary endothelial cells to surfaces. J Am Chem Soc.1998; 120:6548-6555.
    [10]Levy ML, Luu T, Meltzer HS, Bennett R, Bruce DA. Bacterial adhesion to surfactant-modified silicone surfaces. Neurosurgery.2004; 54:488-490.
    [11]Li V. Methods and complications in surgical cerebrospinal fluid shunting. Neurosurg Clin N Am.2001; 12:685-693.
    [12]Quigley MR, Reigel DH, Kortyna R. Cerebrospinal fluid shunt infections. Report of 41 cases and a critical review of the literature. Pediatric neuroscience.1989; 15:111-120.
    [13]Zhang X, Lin W, Chen S, Xu H, Gu H. Development of a stable dual functional coating with low non-specific protein adsorption and high sensitivity for new superparamagnetic nanospheres. Langmuir.2011; 27:13669-13674.
    [14]Zhang Y, Wang Z, Lin WF, Sun HT, Wu LG, Chen SF. A facile method for polyamide membrane modification by poly(sulfobetaine methacrylate) to improve fouling resistance. J Membrane Sci.2013; 446:164-170.
    [15]Lin WF, Zhang J, Wang Z, Chen SF. Development of robust biocompatible silicone with high resistance to protein adsorption and bacterial adhesion. Acta Biomater.2011; 7:2053-2059.
    [16]Ekblad T, Bergstroem G, Ederth T, Conlan SL, Mutton R, Clare AS, et al. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules.2008; 9:2775-2783.
    [17]Schilp S, Kueller A, Rosenhahn A, Grunze M, Pettitt ME, Callow ME, et al. Settlement and adhesion of algal cells to hexa (ethylene glycol)-containing self-assembled monolayers with systematically changed wetting properties. Biointerphases.2007; 2:143-150.
    [18]Schilp S, Rosenhahn A, Pettitt ME, Bowen J, Callow ME, Callow JA, Grunze M. Physicochemical properties of (ethyleneglycol)-containing self-assembled monolayers relevant for protein and algal cell resistance. Langmuir.2009; 25:10077-10082.
    [19]Statz A, Finlay J, Dalsin J, Callow M, Callow JA, Messersmith PB. Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels. Biofouling.2006; 22:391-399.
    [20]Zhang Z, Finlay JA, Wang LF, Gao Y, Callow JA, Callow ME, et al. Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langmuir.2009; 25:13516-13521.
    [21]Chen SF, Li LY, Zhao C, Zheng J. Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials. Polymer.2010; 51:5283-5293.
    [22]Zheng J, Li LY, Tsao HK, Sheng YJ, Chen SF, Jiang SY. Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers:A molecular simulation study. Biophys J.2005; 89:158-166.
    [23]Li LY, Chen SF, Zheng J, Ratner BD, Jiang SY. Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers:The molecular basis for nonfouling behavior. J Phys Chem B.2005; 109:2934-2941.
    [24]陈宝林(Chen BL),计剑(JJ),季任天(Ji RT)等.聚氨酯接枝磺化聚氧乙烯的合成及其血液相容性研究.高分子学报.1999;4:449-453.
    [25]Kozak D, Chen A, Bax J, Trau M. Protein resistance of dextran and dextran-poly(ethylene glycol) copolymer films. Biofouling.2011; 27:497-503.
    [26]Metzke M, Guan Z. Structure-property studies on carbohydrate-derived polymers for use as protein resistant biomaterials. Biomacromolecules.2007; 9:208-215.
    [27]Nakaya T, Li YJ. Phospholipid polymers. Prog Polym Sci.1999; 24:143-181.
    [28]Ueda T, Oshida H, Kurita K, Ishihara K, Nakabayashi N. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym J.1992; 24:1259-1269.
    [29]Ye SH, Watanabe J, Iwasaki Y, Ishihara K. Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials.2003; 24:4143-4152.
    [30]Vaisocherova H, Yang W, Zhang Z, Cao ZQ, Cheng G, Piliarik M, et al. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem.2008; 80:7894-7901.
    [31]Zhang Z, Chen SF, Jiang SY. Dual-functional biomimetic materials:Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules.2006; 7:3311-3315.
    [32]Zhang Z, Vaisocherova H, Cheng G, Yang W, Xue H, Jiang S. Nonfouling behavior of polycarboxybetaine-grafted surfaces:Structural and environmental effects. Biomacromolecules.2008; 9:2686-2692.
    [33]Chang Y, Chen SF, Zhang Z, Jiang SY. Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir.2006; 22:2222-2226.
    [34]Chien HW, Tsai CC, Tsai WB, Wang MJ, Kuo WH, Wei TC, et al. Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption. Colloid Surf B.2013; 107:152-159.
    [35]Yang W, Chen SF, Cheng G, Vaisocherova H, Xue H, Li W, et al. Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir.2008; 24:9211-9214.
    [36]Chen SF, Cao ZQ, Jiang SY. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials.2009; 30:5892-5896.
    [37]Nowinski AK, Sun F, White AD, Keefe AJ, Jiang SY. Sequence, structure, and function of peptide self-Assembled monolayers. J Am Chem Soc.2012; 134:6000-6005.
    [38]Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM. Surveying for surfaces that resist the adsorption of proteins. J Am Chem Soc.2000; 122:8303-8304.
    [39]Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A Survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir.2001; 17:5605-5620.
    [40]Aguilar GA, Hiza RJ. Extreme pressure additives for lubricating greases containing thiadiazoles, polyoxyalkylenes and metal dithiophosphates. R.T. Vanderbilt Company Inc, U.S. Pat.,2009,20090156444.
    [41]Brash JL, Horbett TA. Proteins at interfaces for an overview. ACS Symp Ser.1995; 602:1-23.
    [42]Hoffman AS. Non-fouling surface technologies. J Biomater Science Polym Ed. 1999; 10:1011-1014.
    [43]Jeon SI, Lee JH, Andrade JD, De Germes PG. Protein-surface interactions in the presence of polyethylene oxide:I. Simplified theory. J Colloid Interf Sci.1991; 142:149-158.
    [44]Jeon SI, Andrade JD. Protein rs on glass substrates:diffusion and adsorption idh oxide. II. Effect of protein size. J Colloid Interface Sci.1991; 142:159-166.
    [45]Yang Z, Galloway JA, Yu H. Protein interactions with polyethylene glycol selfassembled monolayers on glass substrates:diffusion and adsorption. Langmuir. 1999; 15:8405-8411.
    [46]Luk YY, Kato M, Mrksich M. Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir.2000; 16:9604-9608.
    [47]Unsworth LD, Sheardown H, Brash JL. Polyethylene oxide surfaces of variable chain density by chemisorption of PEO-thiol on gold:Adsorption of proteins from plasma studied by radiolabelling and immunoblotting. Biomaterials.2005; 26:5927-5933.
    [48]Unsworth LD, Sheardown H, Brash JL. Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold:Effect of surface chain density. Langmuir.2005; 21:1036-1041.
    [49]Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, et al. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces:Attachment strength of the diatom Navicula and the green alga Ulva. Biomacromolecules.2006; 7:1449-1462.
    [50]Youngblood JP, Andruzzi L, Ober CK, Hexemer A, Kramer EJ, Callow JA, et al. Coatings based on side-chain ether-linked poly(ethylene glycol) and fluorocarbon polymers for the control of marine biofouling. Biofouling.2003; 19:91-98.
    [51]Finlay JA, Krishnan S, Callow ME, Callow JA, Dong R, Asgill N, et al. Settlement of Ulva zoospores on patterned fluorinated and PEGylated monolayer surfaces. Langmuir.2008; 24:503-510.
    [52]Park D, Weinman CJ, Finlay JA, Fletcher BR, Paik MY, Sundaram HS, et al. Amphiphilic surface active triblock copolymers with mixed hydrophobic and hydrophilic side chains for tuned marine fouling-release properties. Langmuir.2010; 26:9772-9781.
    [53]Dimitriou MD, Zhou Z, Yoo HS, Killops KL, Finlay JA, Cone G, et al. A general approach to controlling the surface composition of poly(ethylene oxide)-based block copolymers for antifouling coatings. Langmuir.2011; 27:13762-13772.
    [54]Arcot LR, Regina VR, Ogaki R, Meyer RL, Kingshott P. Grafting poly ethylene glycol chains for antifouling purposes using supercritical CO2.
    [55]Chen YJ, Tao J, Xiong F, Zhu JB, Gu N, Zhang YH, Ding Y, Ge L. Synthesis, self-assembly,and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Dev Ind Pharm.2010; 36:1235-1244.
    [56]Liu X, Huang N, Wang H, Li H, Jin Q, Ji J. The effect of ligand composition on the in vivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles. Biomaterials.2013; 34:8370-8381.
    [57]Brault ND, Gao CL, Xue H, Piliarik M, Homola J, Jiang SY, et al. Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media. Biosens Bioelectron.2010; 25:2276-2282.
    [58]Huang CJ, Li YJ, Jiang SY. Zwitterionic polymer-based platform with two-layer architecturefor ultra low fouling and high protein loading. Anal Chem.2012; 84:3440-3445.
    [59]Carr LR, Jiang SY. Mediating high levels of gene transfer without cytotoxicity via hydrolytic cationic ester polymers. Biomaterials.2010; 31:4186-4193.
    [60]Chien HW, Tsai WB, Jiang SY. Direct cell encapsulation in biodegradable and functionalizable carboxybetaine hydrogels. Biomaterials.2012; 33:5706-5712.
    [61]杨薇.抗非特异性蛋白吸附两性离子聚合物表面的制备、优化及应用.[博士学位论文].天津,2009,1-113.
    [62]Kuang JH, Messersmith PB. Universal surface-initiated polymerization of antifouling zwitterionic brushes using a mussel-mimetic peptide initiator. Langmuir. 2012; 28:7258-7266.
    [63]Lewis AL. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B.2000; 18:261-275.
    [64]Vermette P, Meagher L. Interactions of phospholipid and poly(ethylene glycol)-modified surfaces with biological systems:relation to physico-chemical properties and mechanisms. Colloid and Surface B.2003; 28:153-198.
    [65]Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J.1990; 22:355-360.
    [66]Ishihara K, Aragaki R, Ueda T, Ueda T, Watenabe A, Nakabayashi N. Reduced thrombogenicity of polymers having phospholipid polar groups. J Biomed Mater Res. 1990; 24:1069-1077.
    [67]Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. J Biomed Mater Res.1992; 26:1543-1552.
    [68]Ishihara K, Tsuji T, Kurosaki T, Nakabayashi N. Hemocompatibility on graft copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine) side chain and poly(n-butyl methacrylate) backbone. J Biomed Mater Res.1994; 28:225-232.
    [69]Iwasaki Y, Mikami A, Kurita K, Yui N, Ishihara K, Nakabayashi N. Reduction of surface-induced platelet activation on phospholipid polymer. J Biomed Mater Res.1997; 36:508-515.
    [70]Ueda T, Oshida H, Kurita K, Ishihara K, Nakabayashi N. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym J.1992; 24:1259-1269.
    [71]Su YL, Li C, Zhao W, Shi Q, Wang HJ, Jiang ZY, et al. Modification of polyethersulfone ultrafiltration membranes with phosphorylcholine copolymer can remarkably improve the antifouling and permeation properties. J Membrane Sci.2008; 322:171-177.
    [72]Akkahat P, Kiatkamjornwong S, Yusa S, Hoven VP, Iwasaki Y. Development of a novel antifouling platform for biosensing probe immobilization from methacryloyloxyethyl phosphorylcholine-containing copolymer brushes. Langmuir. 2012; 28:5872-5881.
    [73]Nishigochi S, Ishigami T, Maruyama T, Hao Y, Ohmukai Y, Iwasaki Y, et al. Improvement of antifouling properties of polyvinylidene fluoride hollow fiber membranes by simple dip coating of phosphorylcholine copolymer via hydrophobic interactions. Ind Eng Chem Res.2014; 53:2491-2497.
    [74]Chen XJ, Lawrence J, Parelkar S, Emrick T. Novel zwitterionic copolymers with dihydrolipoic acid:synthesis and preparation of nonfouling nanorods. Macromolecules. 2013; 46:119-127.
    [75]Liu QS, Singh A, Liu LY. Amino acid-based zwitterionic poly(serine methacrylate) as an antifouling material. Biomacromolecules.2013; 14:226-231.
    [76]Liu Q, Li WC, Singh A, Cheng G, Liu L. Two amino acid-based superlow fouling polymers:Poly(lysine methacrylamide) and poly(ornithine methacrylamide). Acta Biomater.2014; http://dx.doi.Org/10.1016/j.actbio.2014.02.046
    [77]Chen SF, Yu FC, Yu QM, He Y, Jiang SY. Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption. Langmuir.2006; 22:8186-8191.
    [78]Chen SF, Jiang SY. A new avenue to nonfouling materials. Adv Mater.2008; 20:335-338.
    [79]Zolk M, Eisert F, Pipper J, Herrwerth S, Eck W, Buck M, et al. Solvation of oligo(ethylene glycol)-terminated self-assembled monolayers studied by vibrational sum frequency spectroscopy. Langmuir.2000; 16:5849-5852.
    [80]Ong TH, Davies PB, Bain CD. Sum-frequency spectroscopy of monolayers of alkoxy-terminated alkanethiols in contact with liquids. Langmuir.1993; 9:1836-1845.
    [81]Hower JC, Bernards MT, Chen S, Tsao HK, Sheng YJ, Jiang S. Hydration of "nonfouling" functional groups. J Phys Chem B.2009; 113:197-201.
    [82]Wu J, Lin W, Wang Z, Chen S, Chang Y. Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir.2012; 28:7436-7441.
    [83]Aliferis T, Iatrou H, Hadjichristidis N. Living polypeptides. Biomacromolecules. 2004; 5:1653-1656.
    [84]石卿,苏延磊,姜忠义.材料表面抗蛋白质污染机理研究进展[J].中国科技论 文在线.2010:5:172-175.
    [85]王克夷.蛋白质导论第一版:科学出版社,2007.
    [86]Kowtoniuk RA, Tao P, DeAngelo CM, Waldman JH, Guidry EN, Williams JM, Garbaccio RM and Barrett SE. Optimization of an a-(Amino acid)-N-carboxyanhydride polymerization using the high vacuum technique:examining the effects of monomer concentration, polymerization kinetics, polymer molecular weight, and monomer purity. J Polym Sci Part A:Polym Chem.2014; 52:1385-1391.
    [87]Peng H, Ling J, Zhu YH, You LX, Shen ZQ. Polymerization of a-amino acid N-carboxyanhydrides catalyzed by rare earth tris(borohydride) complexes:mechanism and hydroxy-endcapped polypeptides. J Polym Sci Part A:Polym Chem.2012; 50:3016-3029.
    [88]Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G. Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Chem Rev.2009; 109:5528-5578.
    [89]Deming TJ. Polypeptide and polypeptide hybrid copolymer synthesis via NCA polymerization. Peptide Hybrid Polymers.2006; 202:1-18.
    [90]Deming TJ, Curtin SA. Chain initiation efficiency in cobalt and nickel-mediated polypeptide synthesis. J Am Chem Soc.2000; 122:5710-5717.
    [91]Deming TJ. Development of transition metal-amine initiators for preparation of well-defined poly(gamma-benzyl L-glutamate). J Am Chem Soc.1997; 119:2759-2760.
    [92]Deming TJ. Cobalt and iron initiators for the controlled polymerization of a-amino acid-N-carboxyanhydrides. Macromolecules.1999; 32:4500-4502.
    [93]Deming TJ. Living polymerization of a-amino acid N-carboxyanhydrides. J Polym Sci Part A:Polym Chem.2000; 38:3011-3018.
    [94]Hadjichristidis N, Iatrou H, Pispas S, Pitsikalis M. Anionic polymerization:High vacuum techniques. J Polym Sci Part A:Polym Chem.2000; 38:3211-3234.
    [95]Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science.1991; 254:1497-1500.
    [96]Tedeschi T, Corradini R, Nielsen PE. Racemization of chiral PNAs during solid-phasesynthesis:effect of the coupling conditions on enantiomeric purity. Tetrahedron:Asymmetry.2002; 13:1629-1636.
    [97]Gait RJ, Langlgis JR, Williams RE. Use of N-carboxyanhydrides in the synthesis of dipeptides. The improvement of isolated yields by the facile removal of buffer components. Can J Chem.1972; 50:299-303.
    [98]Sheehan JC, Hess GP. A new method of forming peptide bonds. J Am Chem Soc. 1955; 77:1067-1068.
    [99]Neises B, Steglich W. Simple method for the esterification of carboxylic acids. Angew Chem Int Ed.1978; 17:522-524.
    [100]Padiya KJ, Mohe NU, Patil PS, Pal RR and Salunkhe MM. 1,3-Dicyclohexylcarbodiimide, an effective activating agent for H-phosphonate chemistry. J Chin Chem Soc.2002;49:1115-1118.
    [101]Shaye NA, Boa AN, Coulbeck E, Eames J. Parallel kinetic resolution of racemic 1-phenylethanol using quasi-enantiomeric combinations of carboxylic acids mediated by N,N-dicyclohexylcarbodiimide and 3,5-lutidine.Tetrahedron Lett.2008; 49(31): 4661-4665.
    [102]Dourtoglou V, Ziegler J.-C, Gross B. L'hexafluorophosphate de O-benzotriazolyl-N,N-tetramethyluronium:Un reactif de couplage peptidique nouveau et efficace. Tetrahedron Lett.1978; 19:1269-1272.
    [103]Dourtoglou V, Ziegler J.-C, Gross B. O-benzotriazolyl-N, N, N, N-tetramethyluronium hexafluorophosphate as coupling reagent for the synthesis of peptides of biological interest. Synthesis.1984; 7:572-574.
    [104]Knorr R, Trzeciak A, Bannwarth W, Gillessen D. New coupling reagents in peptide chemistry. Tetrahedron Lett.1989; 30:1927-1930.
    [105]Carpino LA, Imazumi H, El-Faham A, Fernando JF, Zhang C, Lee Y, et al. The uronium/guanidinium peptide coupling reagents:Finally the true uronium salts. Biopolymers.2003; 71:349-349.
    [106]Carpino LA, Henklein P, Foxman BM, Abdelmoty I, Costisella B, Wray V, et al. The solid state and solution structure of HAPyU. J Org Chem.2001; 66:5245-5247.
    [107]Hiebl J, Alberts DP, Banyard AF, et al. Large-scale synthesis of hematoregulatory nonapeptide SK&F 107647 by fragment coupling. J Pept Res.1999;54(1):54-65.
    [108]Albericio F, El-Faham A, Kates SA. Use of onium salt-based coupling reagents in peptide synthesis. J Org Chem.1998; 68:9678-9683.
    [109]Han SY, Kim YA. Recent development of peptide coupling reagents in organic synthesis. Tetrahedron.2004; 60:2447-2467.
    [110]Khattab SN, Subiros-Funosas R, El-Faham A, and Albericio F. Screening of N-alkyl-cyanoacetamido oximes as substitutes for N-hydroxysuccinimide. ChemistryOpen.2012; 1:147-152.
    [111]Khattab SN. Sulfonate esters of 1-hydroxypyridin-2(1H)-one and ethyl 2-cyano-2-(hydroxyimino)acetate (oxyma) as effective peptide coupling reagents to replace 1-hydroxybenzotriazole and 1-hydroxy-7-azabenzotriazole. Chem Pharm Bull. 2010;58(4):501-506.
    [112]吴相钰,刘恩山.生物学必修一:浙江科学技术出版社,2005.
    [113]孟凡莉.花生肽的酶法制备、分离纯化及其抗氧化活性研究.[硕士学位论文].合肥,合肥工业大学,2010,1-41.
    [114]潘思轶.大豆蛋白的分子修饰及特性研究.[博士学位论文].武汉,华中农业大学,2005,1-56.
    [115]Tomohiro H. Microbial and enzymatic hydrolysis of poly(aspartic acid). RIKEN Review.2011; 42:81-84.
    [116]苏荣欣.蛋白质酶解历程动态特性和多肽释放规律研究.[博士学位论文].天津,天津大学,2007,1-133.
    [1]Shen MC, Wagner MS, Castner DG, Ratner BD and Horbett TA. Multivariate surface analysis characterization of plasma deposited tetraglyme surface chemistry for reduction of protein adsorption and monocyte adhesion. Langmuir.2003; 19:1692-1699.
    [2]Li D, Chen H, Wang SS, Wu ZQ, Brash JL. Lysine-poly(2-hydroxyethyl methacrylate) modified polyurethane surface with high lysine density and fibrinolytic activity. Acta Biomater.2011; 7:954-958.
    [3]Li D, Chen H, Wang SS, Wu ZQ, Brash JL. A new t-PA releasing concept based on protein-protein displacement. Soft Matter.2013; 9:2321-2328.
    [4]Chen H, Wang L, Zhang YX, Li D, McClung WG, Brook MA, Sheardown H, Brash JL. Fibrinolytic poly(dimethyl siloxane) surfaces. Macromol Biosci.2008; 8(9):863-870.
    [5]Chen SF, Cao ZQ, Jiang SY. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials.2009; 30(29):5892-5896.
    [6]Nowinski AK, Sun F, White AD, Keefe AJ and Jiang SY. Sequence, structure, and function of peptide self-Assembled monolayers. J Am Chem Soc.2012; 134(13):6000-6005.
    [7]Nowinski AK, White AD, Keefe AJ and Jiang SY. Biologically inspired stealth peptide-capped gold nanoparticles. Langmuir.2014; DOI:dx.doi.org/10.1021/la404980g.
    [8]Lin WF, Zhang J, Wang Z, Chen SF. Development of robust biocompatible silicone with high resistance to protein adsorption and bacterial adhesion. Acta Biomater.2011; 2053-2059.
    [9]Wang LG, Wang Z, Ma GL, Lin WF and Chen SF. Reducing the cytotoxity of poly(amidoamine) dendrimers by modification of asingle layer of carboxybetaine. Langmuir.2013; 29:8914-8921.
    [10]Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett.2008; 8(8):2180-2187.
    [11]Yu T, Malugin A, Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. Acs Nano.2011; 5(7):5717-5728.
    [12]Chen HT, Neerman MF, Parrish AR, Simanek EE. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc.2004; 126(32):10044-10048.
    [13]Sato M. Preparation of kaolinite-amino acid intercalates derived from hydrated kaolinite. Clays and Clay Minerals.1999; 47:793-802.
    [14]Chen SF, Li LY, Zhao C, Zheng J. Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials. Polymer.2010; 51:5283-5293.
    [15]Chen SF, Jiang SY. A new avenue to nonfouling materials. Adv Mater.2008; 20:335-338.
    [16]Wu J, Lin W, Wang Z, Chen S, Chang Y. Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir.2012; 28:7436-7441.
    [17]Aliferis T, Iatrou H, Hadjichristidis N. Living polypeptides. Biomacromolecules. 2004; 5:1653-1656.
    [18]Chen SF, Zheng J, Li LY, Jiang SY. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption:Insights into nonfouling properties of zwitterionic materials. J Am Chem Soc.2005; 127:14473-14478.
    [19]Chung YC, Chiu YH, Wu YW, Tao YT. Self-assembled biomimetic monolayers using phospholipid-containing disulfides. Biomaterials.2005; 26:2313-2324.
    [20]Chang Y, Chen SF, Zhang Z, and Jiang SY. Highly protein-resistant coatings from well defined diblock copolymers containing sulfobetaines. Langmuir.2006; 22:2222-2226.
    [21]Wu J, Wang Z, Lin WF, Chen SF. Investigation of the interaction between poly(ethylene glycol) and protein molecules using low field nuclear magnetic resonance. Acta Biomater.2013; 9:6414-6420.
    [22]Cheng G, Li GZ, Xue H, Chen SF, Bryers JD, Jiang SY. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation Biomaterials.2009;30:5234-5240.
    [23]Corey GR. Staphylococcus aureus bloodstream infections:definitions and treatment. Clin Infect Dis.2009;48:S254-S259.
    [24]Fortunov RM, Hulten KG, HammermanWA, Mason EO. And Kaplan SL. Community-acquired staphylococcus aureus infections in term and near-term previously healthy neonates. Pediatrics.2006; 118:874-881.
    [25]Ishii S, Sadowsky MJ. Escherichia coli in the environment:Implications for water quality and human health. Microbes Environ.2008;23(2):101-108.
    [26]LeJeune JT and Wetzel AN. Preharvest control of Escherichia coli 0157 in cattle. J Anim Sci.2007; 85(13):E73-E80.
    [1]Nowinski AK, Sun F, White AD, Keefe AJ, Jiang SY. Sequence, structure, and function of peptide self-assembled monolayers. J Am Chem Soc.2012; 134:6000-6005.
    [2]Yang QH, Wang LG, Lin WF, Ma GL, Yuan J, Chen SF. Development of nonfouling polypeptides with uniform alternating charges by polycondensation of the covalently bonded dimer of glutamic acid and lysine. J Mater Chem B.2014; 2:577-584.
    [3]Nowinski AK, White AD, Keefe AJ, and Jiang SY. Biologically inspired stealth peptide-capped gold nanoparticles. Langmuir.2014; DOI:dx.doi.org/10.1021/la404980g.
    [4]Liu QS, Singh A, Liu LY. Amino acid-based zwitterionic poly(serine methacrylate) as an antifouling material. Biomacromolecules.2013; 14:226-231.
    [5]Liu QS, Li WC, Singh A, Liu LY. Two amino acid-based superlow fouling polymers:poly(lysine methacrylamide) and poly(ornithine methacrylamide). Acta Biomater.2014; http://dx.doi.Org/10.1016/j.actbio.2014.02.046.
    [6]Ishii T, Wada A, Tsuzuki S, Casolaro M and Ito Y. Copolymers including histidine and hydrophobic moiety preparation of nonbiofouling surface. Biomacromolecules. 2007;8:3340-3344.
    [7]Shiraishi K, Ohnishi T, Sugiyama K. Preparation of poly(methyl methacrylate) microspheres modified with amino acid moieties. Macromol Chem Phys. 1998; 199:2023-2028.
    [8]Li D, Chen H, Wang SS, Wu ZQ, Brash JL. Lysine-poly(2-hydroxyethyl methacrylate) modified polyurethane surface with high lysine density and fibrinolytic activity. Acta Biomater.2011;7:954-958.
    [9]Li D, Chen H, Mcclung WG, Brash JL. Lysine-PEG-modified polyurethane as a fibrinolytic surface:Effect of PEG chain length on protein interactions, platelet interactions and clot lysis. Acta Biomater.2009;5:1864-1871.
    [10]Wang J, Gibson MI, Barbey R, Xiao SJ, Klok H-A. Nonfouling polypeptide brushes via surface initiated polymerization of Ne-oligo(ethylene glycol)succinate-L-lysine N-carboxyanhydride. Macromol Rapid Commun. 2009;30:845-850.
    [11]Klok H-A, Rodriguez-Hernandez J. Dendritic-graft polypeptides. Macromolecules.2002; 35:8718-8723.
    [12]Chen SF, Cao ZQ, Jiang SY. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials.2009; 30:5892-5896.
    [13]Wang LG, Wang Z, Ma GL, Lin WF, Chen SF. Reducing the Cytotoxity of Poly(amidoamine) Dendrimers by Modification of a Single Layer of Carboxybetaine. Langmuir.2013;29:8914-8921.
    [14]Gouda N, Miyata K, Christie RJ, Suma T, Kishimura A, Fukushima S, Nomoto S, Liu X, NishiyamaN, Kataoka K. Biomaterials.2013;34 (2):562-570.
    [15]Gao WW, Langer R, Farokhzad O, Angew Chem Int Ed.2010;49 (37):6567-6571.
    [16]Chen SF, Zheng J, Li LY and Jiang SY. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption:insights into nonfouling properties of zwitterionic materials. J Am Chem Soc.2005; 127: 14473-14478.
    [17]Chung YC, Chiu YH, Wu YW, Tao YT. Self-assembled biomimetic monolayers using phospholipid-containing disulfides. Biomaterials.2005; 26:2313-2324.
    [18]Chen SF, Li LY, Zhao C, Zheng J. Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials. Polymer.2010;51: 5283-5293.
    [19]Chen SF, and Jiang SY. A New Avenue to Nonfouling Materials. Adv Mater. 2008;20:335-338.
    [20]Currie EPK, Norde W, Cohen Stuart MA. Tethered polymer chains:surface chemistry and their impact on colloidal and surface properties. Adv Coloid Interface Sci.2003; 100-102:205-265.
    [21]Halperin A. Polymer brushes that resist adsorption of model proteins:design parameters. Langmuir.1999; 15:2525-2533.
    [22]Wu J, Wang Z, Lin WF, Chen SF. Investigation of the interaction between poly(ethylene glycol) and protein molecules using low field nuclear magnetic resonance. Acta Biomater.2013; 9:641.4-6420.
    [1]翟美玉,彭茜.生物可降解高分子材料.化学与黏胶剂.2008;30(5):66-69.
    [2]张以絮.PLA-PCL可降解共聚物的制备[硕士学位论文].上海,复旦大学,2009,1-53.
    [3]Lin WF, He YY, Zhang J, Wang LG, Wang Z, Ji FQ, Chen SF. Highly hemocompatible zwitterionic micelles stabilized by reversiblecross-linkage for anti-cancer drug delivery. Colloids and Surfaces B.2014; 115:384-390.
    [4]Kweon H, Yoo M K, Park IK, Kim TH, Lee HC, Lee HS, Oh JS, Akaike T, Cho CS. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials.2003; 24(5):801-808.
    [5]Rezgui F, Swistek M, Hiver JM, G'Sell C, Sadoun T. Deformation and damage upon stretching of degradable polymers(PLA and PCL). Polymer.2005; 46(18):7370-7385.
    [6]Matsumoto H, Ishiguro T, Konosu Y, et al. Shape-memory properties of electrospun non-woven fabrics prepared from degradable polyesterurethanes containing poly(ω-pentadecalactone) hard segments. Eur Polym J.2012; 48, (11): 1866-1874.
    [7]Nagata M, Goto H, Sakai W, et al. Synthesis and enzymatic degradation of poly(tetramethylene succinate) copolymers with terephthalic acid. Polymer.2000; 41(11).:4373-4376
    [8]Muller RJ, Witt U, E Rantze, et al. Architecture of biodegradable copolyesters containing aromatic constituents. Polym Degrad Stabil.1998;59(1-3):203-208.
    [9]Tomita K, Kuroki Y, Hayashi N, et al. Isolation of a thermophile degrading poly(butylenes succinate-co-butylene adipate). J Biosci Bioeng.2000; 90(3):350-352.
    [10]李修莲.生物可降解脂肪族聚酯的改性及性能研究[硕士学位论文].合肥,安徽大学,2013;1-74.
    [11]Holmes PA, Wrigt LF, Collins S.3-Hydroxybutyrate polymers[P]. U.S.Patent:4477654,1985.
    [12]Brown HC, Gerstine MJ. Acid-base studies in gaseous systems VII dissociation of the addition compounds of trimethylboron and cyclic imines I-strain. J Am Chem Soc.1950;72:2926-2933.
    [13]Pranamuda H, Tokiwa Y, Tanaka H. Polylactic degradation by an amycolatopsis sp. Appl Environ Microb.1997;63(4):1637-1640.
    [14]Kim MN, Lee AR, Yoon JS, et al. Biodegradation of poly(3-hydroxybutyrate), sky-Green and Mater-Bi by fungi isolated from soils. Eur Polym J.2000; 36:1677-1685.
    [15]Rafael A, Bruce H, Susan S. An overview of polylactides as packaging materials. Macromol Biosci.2004; 4:835-864.
    [16]Fields RD, Rodriguez F, Finn RK. Microbial degradation of polyesters polycaprolactone degraded by Pullularia pullulans. J Appl Polym Sci.1974; 18:3571-3577.
    [17]Raghavan D. Characterization of biodegradable plastics. Polym Plast Tech Eng. 1995; 34:41-46.
    [18]戴晓晖.生物降解脂肪族聚酯与聚准轮烷及其含糖嵌段共聚物的合成与性能研究[博士学位论文].上海,上海交通大学,2008;1-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700